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Abstract: The lidar ceilometer estimates cloud height by analyzing backscatter data. This study
examines weather detectability using a lidar ceilometer by making an unprecedented attempt
at detecting weather phenomena through the application of machine learning techniques to the
backscatter data obtained from a lidar ceilometer. This study investigates the weather phenomena
of precipitation and fog, which are expected to greatly affect backscatter data. In this experiment,
the backscatter data obtained from the lidar ceilometer, CL51, installed in Boseong, South Korea,
were used. For validation, the data from the automatic weather station for precipitation and visibility
sensor PWD20 for fog, installed at the same location, were used. The experimental results showed
potential for precipitation detection, which yielded an F1 score of 0.34. However, fog detection was
found to be very difficult and yielded an F1 score of 0.10.
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1. Introduction

The lidar ceilometer is a remote observation device used to measure cloud height at the location
in which it is installed. Many studies [1-7] have obtained planetary boundary layer height (PBLH)
by analyzing backscatter data: the raw data obtained using a lidar ceilometer. However, there is
considerable room for improvement due to the limited accuracy of past methodologies. In the past,
backscatter data from a lidar ceilometer were used primarily for PBLH measurements, but recently
they have been used for radiation fog alerts [8], optical aerosol characterization [9], aerosol dispersion
simulation [10], and studies of the relationship between cloud occurrence and precipitation [11].

Machine learning techniques have been actively applied to the meteorology field in
recent years. For example, they are used for forecasting very short-range heavy precipitation [12,13],
quality control [14,15] and correction [15-18] of observed weather data, and predicting winter
precipitation types [19].

This study attempts to conduct an unprecedented analysis of backscatter data obtained using a lidar
ceilometer. Beyond the conventional use of backscatter data for the analysis of PBLH measurement,
their correlations with weather phenomena are analyzed and weather detectability is examined.
The weather phenomena of precipitation and fog, which are expected to affect backscatter data,
were examined. Cloud occurrence is related to precipitation [11], and backscatter measurements can
be used to predict fog [8]. Machine-learning techniques are applied in weather detection. To detect
the aforementioned weather phenomena (precipitation and fog) from the backscatter data obtained
from the lidar ceilometer, three machine learning models: random forest, support vector machine,
and artificial neural network were applied.
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This paper is organized as follows: Section 2 describes the three machine learning models used in
this study. Section 3 introduces backscatter data obtained from the lidar ceilometer, and observational
data of precipitation and fog. Section 4 presents machine learning methods for detecting the weather
phenomena. Finally, conclusions are drawn in Section 5.

2. Preliminaries

2.1. Random Forest

Random forest, an ensemble learning method used in classification and regression analysis, is
designed to output the mode of the classes or the average forecast value of each tree by training
multiple decision trees. The first proper random forest was introduced by Breiman [20]. To build a
forest of uncorrelated trees, random forest uses a CART (Classification and Regression Tree) procedure
combined with randomized node optimization and bagging. The two key elements of random forest
are the number of trees and the maximum allowed depth. As the number of random trees increases,
random forest generalizes well, but the training time increases. The maximum allowed depth is the
number of nodes from the root node to the terminal node. Under-fitting may occur if the maximum
allowed depth is small, and over-fitting may occur if it is large. This study set the number of trees to
100 and did not limit the maximum allowed depth.

2.2. Support Vector Machine

Support vector machine (SVM) [21] is a supervised learning model for pattern recognition and
data analysis and is mainly used for classification and regression analysis. When a binary classification
problem is given, SVM creates a non-probabilistic binary linear classification model for classifying
data depending on the category it belongs to. SVM constructs a hyperplane that best separates the
training data points with the maximum-margin. In addition to linear classification, SVM can efficiently
perform nonlinear classification using a kernel trick that maps data to a high dimensional space.

2.3. Artificial Neural Networks

Artificial neural network (ANN) [22,23] is a statistical learning algorithm inspired by the neural
network of biology. ANN generally refers to a model with neurons (nodes) forming a network
through the binding of synapses that have a problem-solving ability by changing the binding force
of synapses through training. This study used multilayer perceptron (MLP). The basic structure of
ANN is composed of the input, hidden, and output layers, and each layer is made up of multiple
neurons. Training is divided into two steps: forward and backward calculations. In the forward
calculation step, the linear function composed of the weights and thresholds of each layer is used for
calculation, and the result is produced through the nonlinear output function. Thus, ANN can perform
nonlinear classification because it is a combination of linear and nonlinear functions. In the backward
calculation step, it seeks the optimal weight to minimize the error between the predicted and target
value (the answer).

3. Weather Data

Three types of weather data were obtained from Korea Meteorological Administration for this
study [24]. This section describes the details of each dataset.

3.1. Backscatter Data from Lidar Ceilometer

Backscatter data were collected by a lidar ceilometer installed in Boseong, South Korea,
from 1 January 2015 to 31 May 2016. CL51 [25] is a ceilometer manufactured by Vaisala. The CL51
ceilometer can provide backscatter profile and detect clouds up to 13 km, which is twice the range of the
previous model CL31. Table 1 gives the basic information on backscatter data. Missing backscatter data
were not used. The measurable range of CL51 is 15 km and the vertical resolution is 10 m. Therefore,
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15,000 backscatter data are recorded in each observation. However, only the bottom 450 data were
used considering that the planetary boundary layer height is generally formed within 3 km. The CL51
provided input to our scheme by calculating the cloud height and volume using the sky-condition
algorithm. The sky-condition algorithm is used to construct an image of the entire sky based on the
ceilometer measurements (raw backscatter data) only from one single point. No more details of this
algorithm have been released. The mechanical characteristics of ceilometer CL51 are outlined in Table 2.

Table 1. Information on the collected backscatter data.

Field Value
Observation period 1 January 2015-31 May 2016
Observation interval approximately 30 s (irregular)
data count 1,162,077
Height ranges 10-4500 m

Table 2. Specification of lidar ceilometer CL51.

Field Description or Value
Laser source Indium Galium Arsenide (InGaAs) Diode Laser
Center wavelength 910 £ 10 nm at 25 °C
Operating mode Pulsed
Surface diameter 0.5 mm
Cloud detection range 0-13 km
Measurement range 0-15 km
Measurement resolution 10 m
Cloud reporting 5m
resolution
Reporting interval 6-120 s, selectable
Measurement interval 6s

The BL-View software [26] estimates the PBLH from two types of ceilometer data: levels 2 and
3. In level 2, backscatter data are stored at intervals of 16 s after post-processing of cloud-and-rain
filter, moving average, application of threshold values, and removal of abnormal values. In level 3,
the PBLHs calculated using the level 2 data are stored. As the raw backscatter data and the level-2
data of BL-View have different measurement intervals, the data of the nearest time slot were matched
and used.

For the raw backscatter data, the denoising method [27] was applied. The noise was eliminated
through linear interpolation and denoising autoencoder [28]. Considering that the backscatter signals
by aerosol particles are mostly similar, the relatively larger backscatter signals were removed through
linear interpolation. The backscatter data to which linear interpolation was applied was used as input
data of the denoising autoencoder. The moving average of backscatter data was calculated and used as
input data to denoise the backscatter data. We used the denoised backscatter data in our experiments.
More details about the used backscatter data related to denoising and weather phenomenon are given
in Appendix A.

3.2. Data from Automatic Weather Station

This study used the data collected from 1 January 2015 to 31 May 2016 from an automatic
weather station (AWS) installed in Boseong, South Korea. AWS is a device that enables automatic
weather observation. Observation elements include temperature, accumulated precipitation,
precipitation sensing, wind direction, wind speed, relative humidity, and sea-level air pressure.
In this study, AWS data with 1 h observation interval was used; the collected information is listed in
Table 3. The installation information of the AWS in Boseong is outlined in Table 4.
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Table 3. Information on the collected AWS data.

Field Value
Observation period 1 January 2015-31 May 2016
Observation interval One hour

#data 17,544

Table 4. Information on the used AWS.

Field Value
Station number 258
Starting date 8 February 2010
Station name Boseong
. Yelang-ri, Deokcheok-myeon, Boseong-gun,
Ph ladd
ysical acdress Jeollanam-do, South Korea
Latitude 34.7633
Longitude 34.6261
Altitude (m) 2.8
Barometer 4.3
Ground height (m) Th?rmometer 1.7
Wind gauge 10.0
Rainfall 0.6

As the observation interval of AWS data is different from that of backscatter data, the data of the
nearest time slot based on the backscatter data were matched and used. The used elements included
precipitation sensing, accumulated precipitation, relative humidity, and sea-level air pressure.

3.3. Data from Visibility Sensor

Visibility data were collected by PWD20 [29] installed in Boseong, South Korea (see Table 5).
PWD20 manufactured by Vaisala is a device that is used to observe the MOR (measurement range)
and current weather condition. As its observation range is 10-20,000 m, and vertical resolution is
1 m, it allows a determination of long-range visibility. PWD20 can be fixed to various types of towers
because the device is short, compact, and lightweight. The mechanical properties of PWD20 are
outlined in Table 6.

Table 5. Information on the collected visibility data.

Field Value
. . 1 January 2015-31 May
Observation period 2016
Observation interval 1-3 min
#data 1,018,122

Table 6. Information on the used PWD20.

Field Description or Value
Usage Visibility for weather observation
Observed element MOR (measurement range)
Observation method Forward scatter
Observation range 10-20,000 m
Operatlon —40-+65 °C
environment

Fog reduces visibility below 1000 m, and it occurs at a relative humidity near 100% [30].
The visibility sensor data was used to determine fog presence (low visibility). The criteria for
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fog were 1000 m or lower visibility for 20 mins, 90% or higher relative humidity, and no precipitation.
The AWS data were used for precipitation sensing and relative humidity. As the ceilometer backscatter
data, AWS and visibility sensor data have different observation intervals, the data of the nearest time
slot were matched and used based on the ceilometer backscatter data.

4. Weather Detection

In this section, we use the denoised backscatter data, cloud volume, and cloud height as training
data, and describe how to detect weather phenomena using three machine learning (ML) models:
random forest, SVM, and ANN.

4.1. Data Analysis

The observational data of AWS range from 1 January 2015 to 31 December 2016. The performance of
learning algorithms may decrease if they are not provided with enough training data. For precipitation,
the presence or absence of precipitation in the AWS hourly data was used. In general, the lower the
visibility sensor value was, the higher the probability of fog was. Hence, the visibility sensor data were
categorized into 1000 m or below, between 1000 m and 20,000 m, and 20,000 m or higher. Table 7 shows
that precipitation data account for 6.38% of all data (1120 cases), and Table 8 shows that visibility sensor
data that fall into 1000 m or below account for 1.16% of all data (11,082 cases).

Table 7. Statistics of hourly AWS data related to precipitation.

Field Missing  Precipitation = Non-Precipitation Total
#data 558 1120 15,866 17,544
Percentage 3.18% 6.38% 90.44% 100%

Table 8. Statistics of visibility data.

Field 20,000 m [0 m, 1000 m] (1000 m, 20,000 m) Total
#data 84,767 11,802 921,553 1,018,122
Percentage 8.33% 1.16% 90.51% 100%

The precipitation data has a value of 0 or 1, indicating only presence or absence, thus forming a
binomial distribution. However, the visibility sensor values range from 0 m to 20,000 m and the data
distribution can be represented as a histogram in Figure 1. The MOR in the figure indicates the visibility
sensor value, and the values at the bottom of the figure are the mean (i) and standard distribution (o)
of all visibility sensor values. The line indicates a normal distribution, and the values on the X axis are
the values obtained by adding or subtracting the standard deviation to or from the mean.
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Figure 1. Histogram on visibility data.
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The observation interval of ceilometer backscatter data is irregular at approximately 30 s.
The observation interval of AWS data is irregular at 1 h, and the observation interval of visibility
sensor data is irregular at 1-3 mins. The intervals of observational data were adjusted to those of the
backscatter data.

4.2. Training Data Generation

The training data were generated using denoised backscatter data and weather phenomenon
(presence/absence) data. For precipitation, the precipitation sensing value of AWS was used. For fog,
AWS and visibility data were used to indicate whether fog occurred. Asshownin Table 9, the backscatter
coefficients of all heights were used for AWS hourly data.

Table 9. Field information on train data for weather phenomenon detection.

Field Information Description or Value
1 Month
2 Day
Hourly AWS data Backscatter coefficients
3 on heights 10 m, 20 m, ... , 4500 m
4 Presence of weather phenomenon (0 or 1)

4.3. Under-Sampling

The number of absent examples was much higher than that of present examples in the training
data. Such highly imbalanced data can hinder the training process of machine learning algorithms,
making the resulting prediction model rarely predict the present examples. Therefore, we used
under-sampling to balance the training data as in [12,31].

The training data comprised data from the first day to the 15th day of each month, and the validation
data were composed of data ranging from the 16th to the last day of each month. Random forest was
used to find the optimal under-sampling ratio by varying the presence to absence ratio from 1:1 to 1:7.
Note that under-sampling is applied only to the training data.

To validate the results, we calculated and compared the accuracy, precision, false alarm rate (FAR),
recall (or probability of detection; POD), and F1 score, which are measures that are frequently used in
machine learning and meteorology (see Table 10) [32]. Accuracy is the probability that the observed
value will coincide with the predicted value among all data ((@ + d)/n). In precipitation detection,
precision is the probability that the predicted precipitation is correct (a/(a + b)); the FAR is the number
of false alarms over the total number of alarms or predicted precipitation samples (b/(a + b)), and
recall (or POD) is the fraction of the total amount of precipitation occurrences that were correctly
predicted (a/(a + c)). In fog detection, precision is the probability that the predicted fog is correct (a/(a +
b)), the FAR is the number of false alarms over the total number of alarms or predicted fog samples
(b/(a + b)), and recall (or POD) is the fraction of the total amount of fog occurrences that were correctly
predicted (a/(a + c)). F1 score is an index that measures the accuracy of validation, and the harmonic
mean of precision and recall (2 X (precision X recall)/(precision + recall)). In imbalanced classification,
accuracy can be a misleading metric. Therefore, the F1 score, which considers both precision and recall,
is widely used as a major assessment criterion [33,34].
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Table 10. Contingency table for prediction of a binary event. The numbers of occurrences in each
category are denoted by a, b, ¢, and d.

b d (OB
Predicted Observed (OBS)
Yes No Total
Yes a b a+b
No C d c+d
Total a+c b+d a+b+c+d=n

In Tables 11 and 12, F1 score is the highest when the under-sampling ratio is 1:2. When the
under-sampling ratio is 1:7, accuracy is high, but precision is very low. A high precision is good
considering the accuracy in the case of precipitation or visibility sensor phenomenon. However,
if precision is high, there is a tendency to only overestimate the corresponding phenomenon. Therefore,
we selected the case of the highest F1 score whereby precision and recall were balanced. In other words,
we under-sampled the precipitation and fog (low visibility) at the under-sampling ratio of 1:2.

Table 11. Results of precipitation detection according to the under-sampling ratio. The bold number is
the best result.

Under-Sampling Ratio =~ Accuracy Precision FAR Recall (POD) F1 Score

1:1 0.8708 0.6468 0.3532 0.2170 0.3250
1:2 0.9025 0.5172 0.4828 0.2507 0.3377
1:3 0.9183 0.4327 0.5673 0.2766 0.3374
1:4 0.9277 0.3710 0.6290 0.2979 0.3305
1:5 0.9335 0.3068 0.6932 0.3078 0.3073
1:6 0.9380 0.2534 0.7466 0.3182 0.2821
1.7 0.9420 0.2093 0.7907 0.3346 0.2575
Rand 0.5000 0.0659 0.9341 0.5000 0.1165
W-rand 0.8769 0.0659 0.9341 0.0659 0.0659

Table 12. Results of low visibility detection according to the under-sampling ratio. The bold number is
the best result.

Under-Sampling Ratio  Accuracy Precision FAR Recall (POD) F1 Score

1:1 0.9472 0.2308 0.7692 0.0593 0.0944
1:2 0.9782 0.0957 0.9043 0.0941 0.0949
1:3 0.9844 0.0534 0.9466 0.1291 0.0756
1:4 0.9865 0.0353 0.9647 0.1717 0.0586
1:5 0.9872 0.0283 0.9717 0.2128 0.0500
1:6 0.9876 0.0245 0.9755 0.2620 0.0448
1.7 0.9876 0.0245 0.9755 0.2837 0.0451
Rand 0.5000 0.0126 0.9874 0.5000 0.0246
W-rand 0.9751 0.0126 0.9874 0.0126 0.0126

We also compared our results with two versions of random prediction (see the two bottom rows
of Tables 11 and 12): one method called “Rand” evenly predicts the presence or absence of weather
phenomenon at random, and the other method called “W-rand” randomly predicts the presence or
absence of weather phenomenon with the weights according to the probability of actual observation of
weather phenomenon. We could clearly see that random forest with under-sampling is superior to
random prediction with respect to F1 score.
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4.4. Feature Selection

A large number of input features significantly increases the computation time of machine learning
algorithms and requires an enormous amount of training data to ensure sufficient training. There are
452 input features as shown in Table 9, and these need to be reduced. Figures 2 and 3 show the analyses
of denoised backscatter data from 1 January 2015 to 31 May 2016 for precipitation and visibility sensor
data, respectively. In Figure 2, “True’ indicates the case of precipitation, and ‘False” indicates the case of
non-precipitation. In Figure 3, “True’ indicates that the visibility sensor value is equal to or lower than
1000 m, and ‘False” indicates that the visibility sensor value is higher than 1000 m. The line indicates
the backscatter mean value according to height, and the colored part indicates the area of mean +
standard deviation. Above certain heights, it seems difficult to predict the weather phenomena using
backscatter data.
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Figure 2. Backscatter data with precipitation (True) and without precipitation (False).
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Figure 3. Backscatter data with low visibility (True) or without low visibility (False).

Therefore, we do not have to use all heights to detect weather phenomena. Random forest was
applied after categorizing the total height of 4500 m into 10-300 m, 10-600 m, ... , and 10-4500 m
while maintaining the under-sampling ratio at 1:2.

Tables 13 and 14 show that using all the height values ranging from 10 m to 4500 m for precipitation
produced satisfactory results. In the case of visibility sensor data, using heights that ranged from 10 m
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to 3300 m yielded better results than using all the heights that ranged from 10 m to 4500 m. Therefore,
the visibility sensor data could yield better results with smaller inputs.

Table 13. Results of precipitation detection according to feature selection. The bold number is the
best result.

Height Feature = Accuracy Precision FAR Recall (POD) F1 Score

Up to 300 m 0.8824 0.2398 0.7602 0.1243 0.1637
Up to 600 m 0.8978 0.3178 0.6822 0.1804 0.2301
Up to 900 m 0.9083 0.3651 0.6349 0.2230 0.2769
Up to 1200 m 0.9106 0.3920 0.6080 0.2385 0.2965
Up to 1500 m 0.9121 0.4144 0.5856 0.2501 0.3120
Up to 1800 m 0.9098 0.4344 0.5656 0.2490 0.3165
Up to 2100 m 0.9108 0.4506 0.5494 0.2564 0.3268
Up to 2400 m 0.9081 0.4591 0.5409 0.2509 0.3245
Up to 2700 m 0.9088 0.4613 0.5387 0.2535 0.3272
Up to 3000 m 0.9050 0.4873 0.5127 0.2498 0.3303
Up to 3300 m 0.9063 0.4852 0.5148 0.2429 0.3325
Up to 3600 m 0.9043 0.4960 0.5040 0.2501 0.3325
Up to 3900 m 0.9032 0.5075 0.4925 0.2503 0.3325
Up to 4200 m 0.9031 0.5131 0.4869 0.2512 0.3373
Up to 4500 m 0.9025 0.5172 0.4828 0.2507 0.3377

Table 14. Results of low visibility detection according to feature selection. The bold number is the
best result.

Height Feature Accuracy Precision FAR Recall (POD) F1 Score

Up to 300 m 0.9655 0.0836 0.9164 0.0405 0.0546
Up to 600 m 0.9771 0.0663 0.9337 0.0630 0.0646
Up to 900 m 0.9798 0.0717 0.9283 0.0854 0.0780
Up to 1200 m 0.9818 0.0812 0.9188 0.1175 0.0960
Up to 1500 m 0.9832 0.0725 0.9275 0.1315 0.0935
Up to 1800 m 0.9830 0.0635 0.9365 0.1150 0.0818
Up to 2100 m 0.9825 0.0729 0.9271 0.1180 0.0901
Up to 2400 m 0.9822 0.0781 0.9219 0.1193 0.0944
Up to 2700 m 0.9819 0.0762 0.9238 0.1138 0.0913
Up to 3000 m 0.9812 0.0846 0.9154 0.1128 0.0967
Up to 3300 m 0.9803 0.0912 0.9088 0.1088 0.0993
Up to 3600 m 0.9801 0.0866 0.9134 0.1023 0.0938
Up to 3900 m 0.9797 0.0891 0.9109 0.1014 0.0948
Up to 4200 m 0.9791 0.0949 0.9051 0.1008 0.0978
Up to 4500 m 0.9782 0.0957 0.9043 0.0941 0.0949

In the case of precipitation, the number of input features was not reduced by feature selection,
and in the case of visibility sensor, the number of input features was reduced to 332, which is not small
enough. To train SVM and ANN, we did not use all the heights of the backscatter data. In the case of
precipitation, the height intervals of input features were changed from 10 m to 100 m. In other words,
we used the backscatter data at 10 m, 110 m, 210 m, ..., and 4410 m. For visibility sensor, we used the
backscatter data at 10 m, 110 m, ..., and 3210 m. Therefore, 47 input features were used to predict
precipitation and 35 features to predict fog.

With our final model of random forest preprocessed by under-sampling and feature selection,
we provide some observation of representative cases for precipitation and fog in Appendix B.

Tables 15 and 16 show the results of SVM and ANN. ANNT1 is an MLP with one hidden layer
whose number of nodes is half of that of the input layer. ANN2 is an MLP with two hidden layers,
and the number of nodes at each hidden layer is half that of its input layer. For both precipitation and
fog, random forest best classified the weather phenomena, yielding the highest F1 score.
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Table 15. Results of precipitation detection according to other ML techniques.

Method  Accuracy Precision FAR Recall (POD)  F1 Score

SMO 0.8777 0.3649 0.6351 0.1606 0.2230
ANN; 0.8848 0.2122 0.7878 0.5147 0.3005
ANN, 0.8644 0.5340 0.4660 0.1849 0.2747

Table 16. Results of low visibility detection according to other ML techniques.

Method  Accuracy Precision FAR Recall (POD)  F1 Score

SMO 0.8528 0.2404 0.7596 0.0203 0.0374
ANN; 0.8867 0.2820 0.7180 0.0311 0.0560
ANN, 0.8575 0.2334 0.7666 0.0204 0.0376

5. Concluding Remarks

In this study, we made the first attempt to detect weather phenomena using raw backscatter
data obtained from a lidar ceilometer. For weather detection, various machine-learning techniques
including under-sampling and feature selection were applied to the backscatter data. The AWS provided
observational data for precipitation and the visibility data from PWD20 provided observational data
for fog.

Our prediction results were not noticeably good, but if we consider the hardness of weather
prediction/detection in the literature (e.g., precision and recall are about 0.5 and 0.3 for heavy rainfall
prediction, respectively [13], and they are about 0.2 and 0.5 for lightning forecast, respectively [31]),
our prediction results showed potential for precipitation detection (in which precision, recall, and F1
score are about 0.5, 0.2, and 0.3, respectively), but fog detection (in which precision, recall, and F1 score
are all about 0.1) was found to be very difficult although it was better than random prediction.

In future work, we expect to improve the accuracy of planetary boundary layer height (PBLH)
measurements by classifying backscatter data according to precipitation occurrences.
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Appendix A Details of the Used Backscatter Coefficients

In this appendix section, we provide some details of the used backscatter data related to denoising
and weather phenomenon, through some representative cases. Figure Al shows an example of
raw backscatter data and their denoised ones which were observed at a moment. We can see that
noises are successfully removed. Figure A2 shows an extended time-height plot of raw backscatter
data and their denoised ones which had been observed for one day (specifically on 18 March 2015
when daily precipitation was 61 mm). Figure Al can be understood as a cross section at a point of
Figure A2. For Figure A2, we chose a day during which both of precipitation and non-precipitation
occurred while clouds are presented in both. In the right side of the figure, a gray box means a period
that it rains continuously. We could find clear difference between each box boundary point and its
adjacent one, but it does not seem easy to distinguish the two phenomena only by the values themselves.
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Figure Al. Example data of backscatter coefficients at a moment ((left): raw backscatter data and
(right): denoised backscatter data).
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Figure A2. Example time-height plotting of backscatter coefficients on 18 March 2015, when both
of precipitation and non-precipitation are mixed: a gray box means a precipitation period ((left):
raw backscatter data and (right): denoised backscatter data).

Figure A3 shows an example of the denoised backscatter data of CL51 and observation range
data of PWD20 which had been observed for one day (specifically on 31 March 2015). For the figure,
we chose a day during which both of low visibility and not-low visibility occurred while clouds are
presented in both. In the left side of the figure, a gray box means a period that visibility is continuously
low (i.e., less than 1000 m). Similar to the precipitation case of Figure A2, it is hard to distinguish the
two phenomena only by the values themselves. Moreover, we can see that in the middle period it is
not easy even to find some difference between the box boundary point and its adjacent one.
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Figure A3. Example time-height plotting of backscatter coefficients on 31 March 2015, when both
of low visibility and not-low visibility are mixed: a gray box means a low visibility period ((left):
denoised backscatter data and (right): visibility data).

Appendix B Case Observation

Figure A4 shows an example of detecting precipitation through backscatter data using random
forest. In the case of the left side, the observed weather phenomenon at 15:09:36 (hh:mm:ss) on
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21 January 2015 is precipitation and the predicted weather phenomenon is also precipitation. In
the case of the right side, the observed weather phenomenon at 23:16:48 on 21 January 2015 is
non-precipitation, and the predicted weather phenomenon is precipitation. The blue line indicates the
mean value of backscatter data according to the observation value, and the colored part is a section
where the standard deviation was added or subtracted from the mean. The distributions of backscatter
data are generally similar regardless of precipitation. Since the input of our machine learning model is
only backscatter data, it seems natural for the model to output the same prediction result for both cases
with similar distribution. Hence, this supports the hardness of predicting precipitation.

OBS :True, Predict : True OBS :False, Predict : True

Height (km)
Height (km)

T

0 500 1000 1500 2000 o 0 500 1000 1500 2000
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—_— uUxg — 2015-01-21 15:09:36 — uxg — 2015-01-21 23:16:48

Figure A4. Example of backscatter data predicted as precipitation by machine learning ((left): actual
precipitation and (right): actual non-precipitation).

Figure A5 shows an example of detecting non-precipitation from the backscatter data using
random forest. In the case of the left side, the observed weather phenomenon at 23:55:12 on is
non-precipitation and the predicted weather phenomenon is also non-prediction. In the case of the
right side, the observed weather phenomenon at 15:55:48 on 21 January 2015 is precipitation and the
predicted weather phenomenon is non-precipitation. Likewise, the distributions of backscatter data
are clearly similar regardless of precipitation. As mentioned above, naturally the machine learning
model seems to output the same prediction result for both cases. This also supports that it is difficult
to predict non-precipitation.
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Figure A5. Example of backscatter data predicted as non-precipitation through machine learning ((left):
actual non-precipitation and (right): actual precipitation).

Figure A6 shows an example of detection through the backscatter data using random forest when
the visibility sensor value is equal to or less than 1000 m. In the case of the left side, the observed and



Appl. Sci. 2020, 10, 6452 13 0f 15

predicted visibility sensor values at 01:01:46 are both equal to or lower than 1000 m. In the case of the
right side, the observed visibility sensor value at 00:46:46 on 22 January 2015 is greater than 1000 m
and lower than 20,000 m, and the predicted value is equal to or lower than 1000 m. It is not easy to find
clear difference between both cases.
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Figure A6. Example of backscatter data predicted as low visibility by machine learning ((left): actual
low visibility and (right): actual not-low visibility).

Figure A7 shows an example of detection from backscatter data using random forest when the
visibility sensor value is greater than 1000 m and lower than 20,000 m. In the case of the left side,
the observed and predicted visibility sensor values at 00:35:23 on 22 January 2015 are both greater than
1000 m and lower than 20,000 m. In the case of the right side, the observed visibility sensor value at
00:00:00 on 22 January 2015 is 1000 m or lower and the predicted value is greater than 1000 m and
lower than 20,000 m. Analogously to the above, we cannot see distinct difference between both cases.
It hints that it is very hard to differentiate fog phenomenon by using only backscatter data.
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Figure A7. Example of backscatter data predicted as not-low visibility by machine learning ((left):
actual not-low visibility and (right): actual low visibility).
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