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Abstract: The structural organization of peripheral nerves enables them to adapt to different body
postures and movements by varying their stiffness. Indeed, they could become either compliant
or stiff in response to the amount of external solicitation. In this work, the global response of
nerves to axial stretch was deterministically derived from the interplay between the main structural
constituents of the nerve connective tissue. In particular, a theoretical framework was provided to
explicitly decouple the action of the ground matrix and the contribution of the collagen fibrils on the
macroscopic stiffening of stretched nerves. To test the overall suitability of this approach, as a matter
of principle, the change of the shape of relevant curves was investigated for changes of numerical
parameters, while a further sensitivity study was performed to better understand the dependence
on them. In addition, dimensionless stress and curvature were used to quantitatively account for
both the matrix and the fibril actions. Finally, the proposed framework was used to investigate the
stiffening phenomenon in different nerve specimens. More specifically, the proposed approach was
able to explicitly and deterministically model the nerve stiffening of porcine peroneal and canine
vagus nerves, closely reproducing (R2 > 0.997) the experimental data.
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1. Introduction

Peripheral nerves are crucial to connect sensory and motor organs to the central nervous
system [1,2]. Motor nerves carry information towards organs, muscles, or other peripheral effectors,
and also, sensory nerves link sensory receptors to the brain [3]. These complex structures are
hierarchically organized: internal axons, together with Schwann cells, are protected by a loose
connective tissue (i.e., the endoneurium), which was found to be mainly composed by I and II type
collagen, macrophages, and mast cells and filled by endoneurial fluid [2,4,5]. Endoneurial components
are, in turn, enveloped in fascicles by the epineurial sheet, which is formed by layers of perineural
cells, I and II type collagen, together with elastic fibers [2,4,5]. Finally, fascicles are grouped together by
a further layer of connective tissue (i.e., the epineurium) mainly composed by I and III type collagen,
elastic fibers, and mast and fat cells [2]. Despite this richness of internal substructures, the main
constitutive components of the connective tissues of nerves are elastin and collagen, which were found
to be mainly axially oriented [4].

In addition, peripheral nerves are physical objects, which obey physical laws [6]. Indeed,
they react to external mechanical stimuli trough a specific mechanical response, increasing their stiffness
to keep axons’ integrity and to preserve endoneurial structures from longitudinal overstretch [7].
The knowledge and the prediction of this kind of response are important in medicine [8,9] and physical
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therapy [2,10,11], while they are strategic in modern and high-tech bioengineering fields, as in neural
interfaces design [12–14].

Although the anatomic path of nerves involves branching points, their mechanical response
to longitudinal stretch was closely related to the response of the rectilinear nerve trunks [7].
As a consequence, and for the sake of simplicity, different kinds of models were implemented to
predict the rectilinear nerve trunk response to external stimuli. Indeed, from one side, peripheral
nerves were modeled as isotropic materials, providing a deterministic elastic [15,16] or hyperelastic
response [17–21]. From the other side, a stochastic iterative fibril-scale mechanical model was
implemented to reproduce the straightening of wavy fibrils and to account for the effects of
interfibrillar crosslinks on the overall properties of the tissue [22,23]. Furthermore, recent studies
aimed at investigating the relationship between macroscopic tensile loading of nerves and micro-scale
deformations [24].

Nevertheless, a deterministic and explicit continuum model to explore the influence of the ground
matrix and collagen fibrils on the nerve stiffening is apparently not available in literature. As a
consequence, in this work, such a theoretical framework is provided to quantify the action of both the
ground matrix and collagen fibrils on the nerve stiffening.

In particular, the text is organized as follows: First, a closed-form strain energy function (SEF)
is proposed to account for the actions of the matrix and fibrils. Then, the change of the shape of
the stress/stretch curve is studied for variations of relevant numerical parameters, while a further
sensitivity study is performed. Finally, the proposed framework is used to investigate the stiffening
phenomenon in different nerve specimens coming from different animal models [19,25].

2. Methods

The peripheral nerve was modeled as a three-dimensional continuum body (elliptic cylinder),
which was deformed into a final configuration Γ starting from a reference configuration Γr. The position
of each point of this solid was identified through the vectors X and x, respectively related to the
reference and the deformed configuration. As shown in Figure 1 below.
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Figure 1. (a) The reference configuration Γr. The nerve is modeled as a transverse isotropic cylindrical
body (ground matrix = white areas, collagen fibrils dark lines). In the reference configuration (t = 0,
non-stretched body), the coordinates of a solid point (red point) are identified through the vector X.
The cross-section WW shows how the internal volume of the specimen is filled by both the ground
matrix and collagen fibrils. Axons inside bundles are not shown. (b) After stretching, the axial length
of the cylinder is changed in L f , and the current coordinates of the solid point are identified through
the vector x.
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The deformation of the body was described through a time-dependent map x = β(X, t), where β

is an invertible and regular function. Unlike previous models [17–23], a unit vector field M(X) was
used to explicitly account for the presence of the collagen fibrils in the reference configuration Γr [26,27].
For the sake of simplicity, the collagen fibrils were modeled as axially oriented with no dispersion [4].

The response of the nerve was described through a strain energy function Ψ (per unit of volume),
which was affected by the initial fibrils’ direction, as well as by the strain measure. Therefore, the mean
Cauchy stress tensor within the nerve is written as:

σ = J−1F
∂Ψ(C, M⊗M)

∂F
(1)

where F = Gradx is the deformation gradient, J = det(F), and C = FTF is the right Cauchy–Green
strain tensor.

In particular, an invariant-based form of this energy is used:

Ψ = Ψ(I1, I2, I3, I4, I5) (2)

where, I1 = tr(C), I2 = 1
2 [I

2
1 − tr(C2)], I3 = det(C), I4 = M · (CM), I5 = M · (C2M). The Cauchy

stress tensor is, then, better specified as:

σ = J−1[2Ψ1B + 2Ψ2(I1B− B2) + 2I3Ψ3I + 2Ψ4m⊗m + 2Ψ5(m⊗ Bm + Bm⊗m)] (3)

where B = FFT is the left Cauchy-Green tensor, Ψi =
∂Ψ
∂Ii

, i = 1, 2, 3, 4, 5, m = FM. As in previous
literature [7,19–21], the nerve was considered incompressible (i.e., the nerve volume remained the same,
when the specimen underwent deformation), then I3 = det(C) = 1, and the pressure contribution
within the Cauchy stress tensor was made explicit. Thus, the stress is written as:

σ = −pI + 2Ψ1B + 2Ψ2(I1B− B2) + 2Ψ4m⊗m + 2Ψ5(m⊗ Bm + Bm⊗m) (4)

where p is the hydrostatic pressure, while I is the unit tensor. The physical behavior of the nerve was
assumed to result from the contribution of the main structural components of its connective tissue,
that is the elastin matrix and the collagen fibers. Therefore, to account for both their action, the strain
energy function is written as:

Ψ(I1, I4) = Ψmat(I1) + Ψ f ib(I4) (5)

where Ψmat(I1) is the energetic term due to the ground elastin matrix, while Ψ f ib(I4) is the energetic
term describing the collagen fibrils.

As a consequence, Ψ2 = Ψ5 = 0, since Ψ(I1, I4) is independent of I2 and I5, and the Cauchy stress
tensor is further simplified as:

σ = −pI + 2Ψ1B + 2Ψ4m⊗m (6)

More specifically, the energetic contribution of the matrix is written as [28]:

Ψmat(I1) =
U

∑
i=1

Ki(I1 − 3)i (7)

where U ∈ N. In contrast, the energetic contribution of the collagen fibrils is derived from:

Ψ f ib(I4, A, D) = A[µ(I4, D)− 1] (8)
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where µ(I4, D) = Θ[Dξ2(I4)] and ξ(I4) = (I4− 1). In addition, K1, A, D ∈ R are numerical parameters,
while Θ ∈ C(n), and (n ≥ 2) is a real function, a continuum with its n-th order derivatives. Here,
for the sake of simplicity, Θ(∗) = exp(∗) [29,30], and U = 1.

Since the nerve was axially stretched, its lateral surface was stress-free, and σxx = σyy = 0.
Therefore, the contributions of the axial Cauchy stress due to the matrix and to the fibrils are written
as σzzmat(λ) and σzz f ib(λ), respectively. However, in the following, these contributions will be simply
written as σmat(λ) and σf ib(λ), dropping the zz index related to the direction of stretch (z axis). Similarly,

in the following, the longitudinal stretch is λ =
L f
L0

, where L0 is the initial length of the specimen,
while L f is the final length of the nerve after the axial stretching. Recalling this notation, the axial
stress due to the action of the matrix is:

σmat(λ) = 2K1(λ
2 − 1

λ
) (9)

while the axial stress due to the fibrils’ action is:

σf ib(λ) = 4ADχ(λ)[ω(λ, D)− 1] (10)

where χ(λ) = λ2 − 1 and ω(λ, D) = exp[Dχ2(λ)]. Similarly, their rates of change with stretch are:

∂λσmat(λ) = 2K1

(
2λ +

1
λ2

)
(11)

∂λσf ib(λ) = 8ADλ{[1 + 2Dχ2(λ)]ω(λ, D)− 1} (12)

while their second derivatives with respect to λ are:

∂2
λσmat(λ) = 4K1

(
1− 1

λ3

)
(13)

∂2
λσf ib(λ) = 8AD{[2Dχ(λ)P(λ, χ(λ), D) + 1]ω(λ, D)− 1} (14)

where P(λ, χ(λ), D) = 4Dλ2χ2(λ) + χ(λ) + 6λ2. As a consequence, the total amount of stress within
the nerve, together with its derivatives, are written as:

σtot(λ) = σmat(λ) + σf ib(λ) (15)

∂λσtot(λ) = ∂λσmat(λ) + ∂λσf ib(λ) (16)

∂2
λσtot(λ) = ∂2

λσmat(λ) + ∂2
λσf ib(λ) (17)

Furthermore, the partial amount of nerve stiffening due to each component (matrix and fibrils),
as well as the total amount of nerve stiffening were measured through the extrinsic curvature of each
stress/stretch curve. In particular, the dimensionless extrinsic curvature due to the matrix-derived
stress/stretch curve, accounting for the stiffening due to the ground matrix action, is written as:

κ̂mat(λ) =
∂2

λσ̂mat

[1 + (∂λσ̂mat)2]3/2 (18)
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where:

σ̂mat =
σmat

6K1
. (19)

In contrast, the extrinsic curvature of the fibril-derived stress/stretch curve was studied through
two different formulas. The first one is written as:

κ̃ f ib(λ) =
∂2

λσ̃f ib

[1 + (∂λσ̃f ib)2]3/2 (20)

where:

σ̃f ib =
σf ib

A
(21)

and accounts for the nerve stiffening due to the collagen fibrils’ action, while the second one is written as:

κ̂ f ib(λ) =
∂2

λσ̂f ib

[1 + (∂λσ̂f ib)2]3/2 (22)

where:

σ̂f ib =
σf ib

6K1
(23)

and measures the amount of the nerve stiffening due to the collagen action with reference to the
stiffening due to the matrix action. In addition, the total dimensionless stress in the nerve is written as:

σ̂tot =
σmat + σf ib

6K1
(24)

while the total dimensionless curvature of the stress/stretch curve, accounting for the coupled action
of matrix and fibrils, is defined as:

κ̂tot(λ) =
∂2

λσ̂tot

[1 + (∂λσ̂tot)2]3/2 (25)

Once having defined the previous theoretical framework, the range of variation of Equations (9) and (10)
was explored by changing their main numerical parameters (i.e., K1, A, D) through the auxiliary set
Q = {0, 0.1, 0.5, 1, 5, 10, 50}, to test their suitability for reproducing the classic evolution of the stress/stretch
curve [2,7]. Moreover, to assess their quantitative dependence on the numerical parameters, a sensitivity study
was performed through the index [31,32]:

s[q(λ), pi] =
qout(λ)− qre f (λ)

qout(λ)
(26)

where q is the studied quantity, qout is the output value of q derived from the variation of the chosen
parameter pi, while qre f is the reference value, when all the parameters are set to 1. The further the
resulting value of Equation (26) was far from zero, the more the effects of the studied parameter
affected the quantity q.

Finally, theoretical predictions were compared to experimental data collected from five consecutive
extensions of a porcine peroneal nerve [19] and for one extension of a canine left vagus nerve [25].
More specifically, Equation (15) was used to reproduce the experiments, while numerical parameters
were optimized through a non-linear procedure (quasi-Newton algorithm, Scilab; Scilab Enterprises
S.A.S 2015), allowing the R2 statistic to be maximized and residual plots minimized for each extension.



Appl. Sci. 2020, 10, 6372 6 of 14

Once having obtained the relevant parameters (K1, A, D) for the real experiments, Equations (18)–(25)
were used to explore the action of the ground matrix and the collagen fibrils on the stiffening of the
nerve during axial stretch.

3. Results

To explore whether, as a matter of principle, the previous framework was able to reproduce the
classic evolution of the nerve stiffening phenomenon, the range of variation of the main theoretical
curves was studied. First, the range of variability of Equation (9), accounting for the stress due to the
matrix contribution (Figure 2a), was investigated for increasing values of K1. In particular, the values
of σmat(λ, 1 + ∆K1) were computed for ∆K1 ∈ Q. For a small stretch (i.e., λ→ 1), Equation (9) reduced
to σmat = 6K1(λ− 1), so the initial slope of the curve was ∂λσmat(1, K1) = 6K1.
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Figure 2. (a) Steepening of the slope of σmat for increasing values of K1 (arrow). (b) Evolution
(logarithmic scale) of σf ib for increasing values of A (see legend) and D = 1. (c) Evolution (logarithmic
scale) of σf ib for increasing values of D (see legend) and A = 1. (d) Dimensionless extrinsic curvature
of σ̂mat, all curves are superimposed. (e) Dimensionless curvature of σ̃f ib for D = 1, all curves are
superimposed. (f) Dimensionless curvature of σ̃f ib for increasing values of D (see legend) and A = 1.

Then, Equation (10), accounting for the stress derived from the collagen fibrils’ contribution,
was investigated for D = 1 and A = 1 + ∆A, ∆A ∈ Q. Larger values of A resulted in larger
values of σf ib(λ, A, 1) (as shown in logarithmic scale in Figure 2b), while for λ → 1, its slope was
∂λσf ib(λ, A, 1) = 0, ∀A ∈ R. The contribution of fibrils was also investigated for A = 1 and for
different values of D = 1+∆D, ∆D ∈ Q, through the evolution of the natural logarithm of σf ib(λ, 1, D)

(Figure 2c). More specifically, the larger the value of D was, the more the value of fibril stress increased,
while for λ→ 1, its slope was ∂λσf ib(λ, 1, D) = 0, ∀D ∈ R.
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In addition, Equation (18), accounting for the stiffening due to the matrix action κ̂mat(λ),
monotonically increased for 1 ≤ λ ≤ 1.54, while after a maximum κ̂mat(1.54) = 0.133, it monotonically
decreased for 1.54 ≤ λ ≤ 2 (Figure 2d). For λ→ 1, its slope was ∂λκ̂mat(1) = 2−1/2.

Similarly, Equation (22), accounting for the stiffening due to the action of fibrils, for D = 1
(i.e., κ̃ f ib(λ, 1)), had a fixed bell-like shape (Figure 2e), with a maximum κ̃ f ib(1.06, 1) = 11.317. Its full
width at half maximum was FWHM(κ̃ f ib) ' 0.082, while for λ → 1, its slope was ∂λκ̃ f ib(1) = 192.
On the contrary, the same Equation (22) for different values of D = 1 + ∆D, ∆D ∈ Q (i.e., κ̃ f ib(λ, D)),
had a variable bell-like shape (Figure 2f). The larger the value of D was, the more the value
of the peak increased, while the more the value of the FWHM(κ̃ f ib) decreased. In other words,
for D → ∞, max{κ̃ f ib(λ, D)} → ∞, while FWHM(κ̃ f ib) → 0. However, these curves had the

following characteristic: limλmax→∞
∫ λmax

1 κ̃ f ib(λ, D)dλ = 1, ∀D ∈ R. Furthermore, for λ→ 1, its slope
quadratically increased with D, since it was ∂λκ̃ f ib(D) = 192D2.

To better quantify the influence of each parameter, a sensitivity study was also performed on
each contribution. More specifically, the sensitivity of σmat with respect to changes in K1 was tested in
Figure 3a. Since it was found that s(σmat, K1) =

K1−1
K1 , the larger the value of K1 = 1 + ∆K1 (∆K1 ∈ Q)

was, the more the value of its value converged towards one.
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Figure 3. (a) Sensitivity of σmat with respect to increasing values of K1. The function converged towards
one (black arrow). (b) Sensitivity of σf ib with respect to increasing values of A. The function converged
towards one (black arrow). (c) Sensitivity of σf ib with respect to increasing values of D. The function
converged towards one (black arrow). (d) Sensitivity of κ̃ f ib with respect to increasing values of D.
The function diverged (black arrow).

Again, the effects of the changes in A or D were investigated on the stress functions due to the
collagen fibrils. In this case as well, it was found that s(σf ib, A) = A−1

A , (Figure 3b), for different
values of A = 1 + ∆A, ∆A ∈ Q. Thus, the larger the value of A was, the more the value of s(σf ib, A)

converged towards one. Similarly, the evolution of s(σf ib, D) is shown in Figure 3c for different values
of D = 1 + ∆D, ∆D ∈ Q. The larger the value of D was, the quicker the value of s(σf ib, D) converged
towards one. On the contrary, the larger the value of D was, the quicker the function ln[s(κ̃ f ib, D)]

diverged, as shown in Figure 3d.
Once having tested the suitability of the provided framework, Equation (15) was used to study the

experimental response of a porcine peroneal nerve (five consecutive elongations up to λ = 1.08) [19].
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Stress data are reported as a function of stretch (Figure 4) and quantitatively compared to theoretical
predictions through the R2 statistic and the computation of residuals (∆σ). This comparison resulted
in R2 = 0.9979 for the first elongation (Figure 4a), R2 = 0.9976 for the second one (Figure 4b),
R2 = 0.9987, 0.9989, 0.9989 (Figure 4c–e). Similarly, residuals ranged between−0.056 kPa and 0.091 kPa
for the first elongation (Figure 4f), while they ranged between −0.105 kPa and 0.086 kPa for the
second one (Figure 4g). Moreover, residuals spanned from −0.078 kPa to 0.078 kPa (Figure 4h),
from −0.077 kPa to 0.083 kPa (Figure 4i), and from −0.074 kPa to 0.108 kPa (Figure 4j), for the third,
fourth, and fifth elongation, respectively. Finally, relevant quantities (mean ± standard deviation)
in Equation (15) were quantified and resulted in K1 = 3.018± 0.130 kPa, A = 0.014± 0.001 kPa,
and D = 66.893± 1.527.
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Figure 4. Peroneal nerve: comparison between experimental data and predicted values. Experimental
data (squares) are plotted in orange (see electronic version of the manuscript), while theoretical
predictions are in black solid line. The R2 index is reported on the left column for each theory-data
comparison, while the residual plots are on the right column. (a) Theoretical prediction of the first
elongation (R2 = 0.9979). (b) Theoretical prediction of the second elongation (R2 = 0.9976). (c)
Theoretical prediction of the third elongation (R2 = 0.9987). (d) Theoretical prediction of the fourth
elongation (R2 = 0.9989). (e) Theoretical prediction of the fifth elongation (R2 = 0.9989). (f) Plot of
residuals related to the first elongation. (g) Plot of residuals related to the second elongation. (h) Plot
of residuals related to the third elongation. (i) Plot of residuals related to the fourth elongation. (j) Plot
of residuals related to the fifth elongation.

Moreover, the dimensionless stress and curvature were investigated. In particular, the dimensionless
stress due to the matrix contribution (σ̂mat) monotonically increased from zero (λ = 1) to 0.080
(λ = 1.08, Figure 5a). The slope of σ̂f ib was (mean ± standard deviation) 13.011± 1.797 for λ = 1.08,

Figure 4. Peroneal nerve: comparison between experimental data and predicted values. Experimental
data (squares) are plotted in orange (see electronic version of the manuscript), while theoretical
predictions are in black solid line. The R2 index is reported on the left column for each theory-data
comparison, while the residual plots are on the right column. (a) Theoretical prediction of the
first elongation (R2 = 0.9979). (b) Theoretical prediction of the second elongation (R2 = 0.9976).
(c) Theoretical prediction of the third elongation (R2 = 0.9987). (d) Theoretical prediction of the fourth
elongation (R2 = 0.9989). (e) Theoretical prediction of the fifth elongation (R2 = 0.9989). (f) Plot of
residuals related to the first elongation. (g) Plot of residuals related to the second elongation. (h) Plot
of residuals related to the third elongation. (i) Plot of residuals related to the fourth elongation. (j) Plot
of residuals related to the fifth elongation.
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Moreover, the dimensionless stress and curvature were investigated. In particular, the dimensionless
stress due to the matrix contribution (σ̂mat) monotonically increased from zero (λ = 1) to 0.080
(λ = 1.08, Figure 5a). The slope of σ̂f ib was (mean ± standard deviation) 13.011± 1.797 for λ = 1.08,
while it was zero by definition at λ = 1 (Figure 5b). Similarly, the slope (mean ± standard deviation)
of the total dimensionless stress σ̂tot was 14.017± 1.797, at λ = 1.08, while, by definition, the slope
was one at λ = 1 (Figure 5c). The dimensionless curvature κ̂mat monotonically increased from zero
(λ = 1) up to 0.048 (λ = 1.08) with a slope of about 0.59 (Figure 5d). On the contrary, the dimensionless
curvature due to the fibrils’ action κ̂ f ib had a bell-like shape (Figure 5e). In particular, this curve reached
its maximum value (mean± standard deviation) 28.771± 0.727 at λ = 1.035± 0.001. The median,
maximum, and minimum values of max{κ̂ f ib} were, respectively 29.085, 29.141, 27.471, as shown in
Figure 5f, together with the shape of their distribution. Finally, κ̂tot is studied in Figure 5g. In this
case as well, the curve had a bell-like shape and reached the maximum value of 6.840± 0.176 at
λ = 1.035± 0.002. The median, maximum, and minimum values of max{κ̂tot} were respectively
6.953, 6.970, 6.568, as shown in Figure 5h, together with their distribution shape.

  

b
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Figure 5. Peroneal nerve (data for five axial elongations): (a) Dimensionless stress derived from the
energetic contribution due to the matrix action. (b) Dimensionless stress derived from the energetic
contribution due to the fibrils’ action. (c) Evolution of the total dimensionless stress. (d) Evolution of
the dimensionless extrinsic curvature of the matrix stress. (e) Evolution of the dimensionless curvature
of the fibrils’ stress. (f) Distribution of max{κ̂ f ib}. (g) Evolution of the dimensionless curvature related
to the total stress. (h) Distribution of max{κ̂tot}.
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The proposed framework was also used to explore experimental data derived from the axial
stretching of a canine left vagus nerve [25]. In this case, Equation (15) with K1 = 9.731 kPa,
A = 5.277 kPa, D = 10.171, was able to closely reproduce the experiments (R2 = 0.9998, Figure 6a),
while residuals (∆σ) spanned from −0.316 to 0.165 (Figure 6b). The dimensionless stress due to the
action of the matrix linearly increased from zero (λ = 1) to 0.088 (λ = 1.089), and the slope of this curve
was 58.39 for λ → 1, as shown in Figure 6c. On the contrary, the dimensionless stress due to fibrils
increased in a non-linear way from zero to 0.089, and the slope of this curve increased from zero (λ = 1)
to 4.676 (λ = 1.089) (Figure 6d). Similarly, the total dimensionless stress increased in a non-linear
way from zero to 0.177, and its slope spanned from 1.000 (λ = 1) to 12.384 (λ = 1.089), as shown in
Figure 6e. Furthermore, the dimensionless curvature κ̂mat monotonically increased from zero (λ = 1)
up to 0.052 (λ = 1.089) (Figure 6f), while the dimensionless curvature due to the fibrils’ action κ̂ f ib had
a bell-like shape (Figure 6g). In this case, the maximum value of the curve was max{κ̂ f ib} = 25.732,
which was reached at λ = 1.0565. Finally, κ̂tot was studied. This curve had a bell-like shape, and the
maximum value was max{κ̂tot} = 6.183 at λ = 1.058, as shown in Figure 6h.
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4. Discussion

To tackle nerve neuropathies deriving from different kinds of pathologies (i.e., diabetes,
scleroderma) [33], dietary deficiency, or exposure to ionizing radiation (e.g., neuromalacia) [34],
an explicit understanding of the main features of the peripheral nerve response to stretch is
needed. In particular, a computationally light and physically-based theoretical approach, linking
in a deterministic and explicit way the main physical constituents of the connective tissue to the
macroscopic response of the peripheral nervous tissue, could be strategic to make quantitative and
reliable predictions.

Since peripheral nerves are anatomically complex (i.e., they have branching points), but their
overall response is closely related to the response of their main rectilinear tract (which is the main
structural segment), in this work, they were modeled as continuum rectilinear transverse isotropic
bodies. Indeed, although peripheral nerves are hierarchically organized, ultrastructural studies
revealed that the main constituents of the connective tissue are a ground matrix of elastin and a
longitudinally-oriented fibrous network of collagen [4]. As a consequence, the strain energy function,
ruling the nerve behavior, was dominated by Ψmat and Ψ f ib, that is by the energetic contributions of
the matrix and fibrils, respectively.

In particular, the energetic contribution of the elastic ground matrix was modeled through a
first order Yeoh-like strain energy function [28], while the energetic contribution of the collagen
fiber network was modeled through Equation (10), where, for the sake of simplicity, the function
ω(λ, D) was a convex energy function, traditionally used to model the behavior of soft tissues [29,30].
The superimposition of these energetic contributions was able to closely reproduce the experimental
evolution of the mean Cauchy stress.

First, to qualitatively test the suitability of the provided approach, changes in numerical
parameters (K1, A, D) were investigated with respect to their effectiveness in reshaping both the
σmat and σf ib curves. In particular, with reference to σmat, the more K1 increased, the steeper the stress
curve was, due to the action of the ground matrix. Similarly, the steepness of σf ib increased in a linear
way by increasing the A value, since it resulted in a proportional magnification of the curve. On the
contrary, D affected σf ib in a highly non-linear way.

In the same way, the dimensionless extrinsic curvature κ̂mat showed that the contribution of the
ground matrix to the nerve stiffening was limited with stretch, while κ̃ f ib heavily affected the stiffening
process. As a consequence, three parameters were enough to provide a variety of shapes, allowing
experimental trends to be correctly reproduced by theoretical predictions, while in the literature,
more parameters were needed to account for the collagen action through an iterative and probabilistic
approach [22,23].

In addition, the sensitivity of σmat and σf ib and κ̃ f ib towards changes in numerical parameters
was explored. In particular, the sensitivity of the matrix stress function to the variation of K1 and the
sensitivity of the fiber stress function to the variation of the A parameter (with respect to the unit
values of the other constants) converged towards zero for increasing values of K1 and A. On the
contrary, the sensitivity of the fibril stress function (σf ib) to the variation of the D parameter quickly
reached the steady value of one. The higher the value of D was, the faster the steady state was reached.
As a consequence, the parameter D affected σf ib more extensively than the parameter A. In contrast,
A affected σf ib exactly as K1 affected σmat. The sensitivity of κ̃ f ib to variations of the parameter D
resulted in a highly non-linear and diverging line. The more the value of D increased, the more the
line diverged. In other words, the value of D heavily affected the curvature of the stress due to the
collagen action.

The parameter K1 was, then, physically related to the apparent stiffness of the nerve for small
strain (in this case, the Young modulus was 6K1), while the parameter A controlled the linear part of
stress increment due to the collagen action. Furthermore, the parameter D affected the curve steepness
and controlled both the delay (with respect to the reference configuration) and the velocity of the nerve
stiffening process. Therefore, it was shown, as a matter of principle, that the proposed deterministic
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and explicit framework, exploiting closed-form equations with three main parameters, was able to
reproduce the classic nerve stiffening behavior [2,7].

As a consequence, first, this framework was used to explore the stiffening behavior of real
specimens. Indeed, with reference to the porcine peroneal nerve, theoretical predictions were able
to closely reproduce the experiments (R2 ≥ 0.997), while residual plots were analyzed to avoid
numerical bias (e.g., over-fitting) keeping the value of the R2 statistic artificially high. All residuals
(∆σ), between theoretical predictions and experimental values, were within 0.1 kPa; that is, the error
was about 2.5% in the worst case, confirming that experiments were reproduced with confidence.
To further explore the response of the porcine nerve, dimensionless stress and curvature were used,
since the dimensionless stress was able to quantify the evolution of stress with respect to the stiffness
of nerve for small strain, while the dimensionless curvature was used to measure the nerve stiffening,
since it mapped where and how much the dimensionless stress evolved non-linearly because of the
action of collagen fibrils.

More specifically, the slope of σ̂tot at λ = 1.08 was on average 14 times greater than the slope
at the reference configuration (i.e., at λ = 1), while the slope of σ̂mat was practically constant.
In addition, κ̂mat was small with respect to κ̂ f ib (i.e., max{κ̂ f ib}/ max{κ̂mat} ' 599.39). These results
not only suggested that the stiffening process was dominated by the action of the collagen fibrils,
confirming previous literature [2,7,24], but also provided a quantification of the amount of the stiffening
phenomenon (i.e., through the change of the slope by 14 times), as well as a quantification of how
much the fibrils’ action was able to overcome the contribution of the ground matrix (i.e., about two
orders of magnitude). On the contrary, the maximum dimensionless curvature of σ̂tot was lower than
the maximum curvature of σ̂f ib (i.e, max{κ̂ f ib}/ max{κ̂tot} ' 4.21). This result suggested a possible
lowering action of the ground matrix on the huge stiffening action of the collagen fibrils.

Furthermore, since the proposed framework was not intrinsically connected to any kind of animal
or human model, it is, as a matter of principle, suitable to explore any kind of nerve. To show this,
a different specimen, coming from a different animal model, was investigated. Indeed, with reference
to a canine left vagus nerve, theoretical predictions were able to closely reproduce the experiments
(R2 ≥ 0.999), while all residuals were within 0.32 kPa; that is, the error was less than 1.5%. Furthermore,
the slope of σ̂tot at λ = 1.08 was on average 12 times greater than the slope at the reference state
(i.e., at λ = 1), while the slope of σ̂mat was practically constant. In addition, κ̂mat was small with
respect to κ̂ f ib (i.e., max{κ̂ f ib/}max{κ̂mat} ' 494.84). Therefore, again, these results were able to
quantify the stiffening phenomenon in a canine vagus nerve (change of the dimensionless total stress
slope of about 12 times) and showed that the action of collagen fibrils dominated the nerve stiffening
phenomenon (of about two order of magnitude). Moreover, since κ̂tot was lower than κ̂ f ib and there
was max{κ̂ f ib}/ max{κ̂tot} ' 4.16, also in this case, a lowering action of the matrix with respect to the
stiffening action of the collagen fibrils was suggested.

Curiously, for both specimens max{κ̂ f ib}/ max{κ̂tot} ' 4, indicating the existence of common
features between different species. More specifically, the analysis of dimensionless stress suggested
that collagen fibrils were the main common structural features supporting the strain stiffening behavior.
On the contrary, the analysis of the dimensionless curvature suggested a kind of common lowering
action of the ground matrix on the huge stiffening due to the collagen fibrils’ action. In addition,
although the model made abstraction of the real location of the collagen inside the nerve, it supported
the hypothesis that the main structural contribution was performed by connective tissues in epineurium
and perineural sheets [7].

Finally, since the provided model was general, it was able to investigate the mechanical response
of different nerves coming from different animal models (i.e., suine peroneal and canine vagus nerves).
In both cases, the experimental evolution of stretch was closely reproduced (R2 ≥ 0.99) with small
residuals. In other words, the provided framework was predictive, by definition, for the tested
specimens, since R2 statistics were high and residuals small. However, it seems to be predictive also
for human cadaveric specimens [7] and for nerves coming from other animal species (i.e., rabbit [35],
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lobster, aplysia, [19,36]), since the evolution of stress with stretch (or strain) is similar to the evolution
of the studied specimens. In addition, the main theory was derived from biomechanical considerations;
thus, the model seems to have also explanatory power with reference to a possible mechanism of
action of elastin and collagen fibers.

5. Conclusions

In this work, an explicit and deterministic approach was provided to investigate the stiffening
phenomenon in axially stretched nerves. Although the complex nature of nerves was simplified using
continuum, transverse isotropic, incompressible, elliptic cylinders, stretching experiments, involving
porcine peroneal and canine vagus nerves, were closely reproduced. Moreover, since the presented
approach was computationally light, explicit, and deterministic, it may be easily used as a further
tool to investigate the variations of the nerve response due to any change in the content or nature
of elastin and collagen. As a consequence, like previous implicit and probabilistic studies [22,23],
it could be used to study pathologic states of peripheral nerves (e.g., due to diabetes). Furthermore,
this framework, coupled to in vitro, in vivo, and human studies, could be used to better explore the
effects of environmental cues on the nerve regeneration in peripheral nerve-gap lesions [37,38].
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