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Abstract: To accurately estimate the state of charge (SOC) of lithium-ion power batteries in the event
of errors in the battery model or unknown external noise, an SOC estimation method based on the
H-infinity filter (HIF) algorithm is proposed in this paper. Firstly, a fractional-order battery model
based on a dual polarization equivalent circuit model is established. Then, the parameters of the
fractional-order battery model are identified by the hybrid particle swarm optimization (HPSO)
algorithm, based on a genetic crossover factor. Finally, the accuracy of the SOC estimation results
of the lithium-ion batteries, using the HIF algorithm and extended Kalman filter (EKF) algorithm,
are verified and compared under three conditions: uncertain measurement accuracy, uncertain
SOC initial value, and uncertain application conditions. The simulation results show that the SOC
estimation method based on HIF can ensure that the SOC estimation error value fluctuates within
±0.02 in any case, and is slightly affected by environmental and other factors. It provides a way to
improve the accuracy of SOC estimation in a battery management system.

Keywords: lithium-ion power batteries; fractional-order model; state of charge estimate; H-infinity
filter; hybrid particle swarm optimization algorithm

1. Introduction

The state of charge (SOC) estimation is the most basic function of battery status monitoring.
SOC represents the remaining power of the battery, and accurate SOC estimations are of great
significance in improving the battery efficiency and safety performance [1,2]. Currently, domestic and
foreign scholars have been researching different SOC estimation methods for lithium-ion batteries,
which can be divided into four major categories [3]: estimation methods based on characteristic
parameters of lithium-ion batteries, estimation methods based on ampere-hour integration, data-driven
estimation methods, and model-based estimation methods.

The derivation process of SOC estimation for lithium-ion batteries involves many characteristic
parameters, such as open circuit voltage (OCV), residual capacity, and electrochemical impedance.
There is a certain mapping relationship between these characteristic parameters and SOC. The latter
can be estimated by establishing this mapping relationship. The method of obtaining the battery
residual capacity by a discharge test is considered to be the most direct method to determine the SOC
value of lithium-ion batteries [4]. In addition to using the current residual capacity as a parameter,
M. Einhorn et al. [5] used a linear interpolation method to estimate the battery’s SOC based on the
functional relation curve between the SOC and OCV. However, this type of method can only be
applied under specific environmental constraints, such as laboratories, since it is impossible to carry
out long-term constant current discharges or static states during the motion of electric vehicles.
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Therefore, characterization parameters such as residual capacity and OCV cannot be determined [6,7].
A. J. Salkind et al. [8] optimized the parameters of the established fuzzy model through experimental
data. This fuzzy model can fit the relationship between the battery charge state and electrochemical
impedance spectroscopy (EIS) values, and the estimated error of the SOC can be controlled within
5%. However, online measurement of EIS is not easy, and varies with battery type and experimental
conditions. The exact relationship between EIS and SOC and the repeatability of the online measurement
of EIS needs to be studied further.

The ampere-hour integration [9], also known as the coulomb counting method, incurs a low
calculation cost, as well as enables fast calculation. It is the estimation method of the SOC currently
adopted by most electric vehicles. However, the estimation method based on ampere-hour integration
requires high accuracy requirements from the initial parameters of the battery model. It is difficult to
meet the sampling accuracy and frequency requirements of the sensor during the actual application of
the battery.

Data-driven estimation methods can be divided into three categories according to different
algorithms: support vector machine (SVM) [10], neural network (NN) [11], and the fuzzy control
method [12]. These methods are similar to the black box model in the battery modeling process.
In order to achieve high estimation accuracy and strong adaptability, a large amount of data is usually
required for training. Moreover, the selection of training data is very strict, while requiring high
precision in data fitting, as well as meeting the applicability of non-linear models. The data that does
not meet the requirements will make it difficult to train the model, which will affect the accuracy and,
consequently, the SOC estimation to a great extent.

The model-based SOC estimation method is self-adjusted by the difference between the battery’s
measured voltage and the model’s output voltage. This is done to overcome the error caused due to
uncertainty, and achieve the purpose of improving the estimation accuracy of the SOC. It is a robust
closed-loop estimation algorithm. Common methods include the impedance method [13], particle filter
(PF) [14], Kalman filter (KF) [15], and improved algorithm [16–18]. Among them, the PF algorithm can
provide better results in a non-Gaussian white noise system, but its operation intensity is higher than
that of the KF algorithm. The KF algorithm is widely used, because it can find the optimal solution for
a linear Gaussian system. A simple linear system can use the ordinary KF algorithm [19], whereas
for complex nonlinear models, the extended Kalman filter (EKF) algorithm has been studied and
applied extensively [20–22]. Based on the equivalent circuit model, Plett [23,24] used Kalman filter
series algorithms (KF, EKF, unscented Kalman filter (UKF)) to achieve the identification of model
parameters and SOC estimation at the same time. Sun et al. [25] improved the traditional EKF algorithm,
and realized that when the input and output of the system changed, the noise covariance matrix in
the algorithm responded accordingly to self-correct the noise. Thus, the influence of noise on the
accuracy of the traditional EKF algorithm is overcome; however, the EKF algorithm requires that the
input noise of the model be white noise with known statistical characteristics. It is greatly affected
by the measurement accuracy of the sensor during vehicle operation, and has not been applied in
real vehicles.

To solve the above problems, the H-infinity filter (HIF) algorithm based on the minimum-maximum
criterion is adopted in this study instead of the traditional EKF algorithm. This algorithm takes into
account the time-varying element of battery parameters, and does not require the details of process noise
and measurement noise. Therefore, the HIF can expand the scope of application of the SOC estimation
algorithm and improve the robustness of the algorithm under real vehicle operating conditions.
Chen et al. [26] used the HIF algorithm to estimate the SOC of lithium-ion batteries, and the method
was tested by real-time experimental data of batteries. However, it ignores the measurement noises
and random disturbances. Shu et al. [27] proposed an adaptive H-infinity filter (AHIF) algorithm to
predict the SOC of lithium-ion batteries. The proposed algorithm is comprehensively validated within
a full operational temperature range of battery, and with different aging status. Even so, it ignores
the effects of application conditions on SOC estimation. In [28–30], the HIF is also applied to the
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model parameters identification and state estimation. The results show that it has better performance
than UKF and EKF. However, none of the above algorithms comprehensively analyze the influence
of various uncertain factors (i.e., noises, SOC initial value, and application conditions) on the SOC
estimation results of lithium-ion batteries.

To explore the influence of different uncertainties (i.e., noises, SOC initial value, and application
conditions) on the estimation results when HIF is used for SOC estimation, the following chapters
of this paper are arranged as follows. In the second part, a fractional-order battery model of the
lithium-ion battery is established. The hybrid particle swarm optimization (HPSO) algorithm based on
a genetic crossover is used to identify the parameters of the built model to obtain the initial values of
the model parameters. The accuracy of the model parameter identification under different working
conditions is also verified. In the third part, the HIF based on the minimum-maximum criterion is
proposed to estimate the SOC of the lithium-ion battery. The robustness of the algorithm is verified
under three conditions: uncertain measurement accuracy, uncertain initial value of SOC, and uncertain
application conditions. Hereafter, we compared the SOC estimation results obtained using the EKF
algorithm. The fourth part presents the conclusion of the article.

2. Establishment of Fractional-Order Model and Parameter Identification

The establishment of an effective battery model is the premise and foundation for studying battery
SOC. Lower model accuracy will directly reduce the precision of the SOC estimation algorithm, and
even directly lead to the divergence of the estimation algorithm in serious cases. From the perspective
of EIS, a circuit composed of fractional components can better fit the impedance characteristics of
the battery, so that they can be applied in battery principle analysis, model establishment, and state
estimation [31].

2.1. Establishment of Fractional-Order Model

According to the detailed analysis of EIS in [32], this study established the fractional-order
equivalent circuit model of a lithium-ion battery, as shown in Figure 1. R0 represents the Ohmic internal
resistance of the battery, R1 and R2 are the pure resistive impedance, CPE stands for the constant phase
element, and W represents the Warburg element. The terminal voltage and OCV of the battery are
represented by Ud and Uocv, respectively, and I is the current value of the circuit.
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In this circuit, the impedance of the fractional-order element can be described by the
following equation: 

ZCPE1 = 1
C1sα

ZCPE2 = 1
C2sβ

ZW = 1
Wsγ

(1)

where, C1, C2, and W indicate the parameters of fractional-order elements; α and β represent the
fractional order of CPE1 and CPE2 components. γ is the fractional order of the Warburg components.

The fractional differential equation of the parallel circuit of CPE and resistance can be expressed as:

DαUCPE1(t) = −
1

R1C1
UCPE1(t) +

1
C1

I(t) (2)

DβUCPE2(t) = −
1

R2C2
UCPE2(t) +

1
C2

I(t) (3)

The fractional differential equation of the Warburg element is shown in Equation (4):

DγUW(t) = −
1
W

I(t) (4)

According to the definition, the system state of the SOC as a fractional-order model is presented
in Equation (5) as follows:

D1SOC(t) = −
η

Cn
I(t) (5)

where Cn is the battery rated capacity, η is the coulombic efficiency, and η is desirable 1 for
lithium-ion batteries.

According to Kirchhoff’s law of current and voltage, we obtain

Ud = Uocv − I(t)R0 −UCPE1 −UCPE2 −UW (6)

where Uocv is the OCV of the battery, which is a monotonic function of the SOC.
In summary, the fractional-order equivalent circuit model of a lithium-ion battery can be established

by Equations (1)–(6). A complex lithium-ion battery system can be described by the simple structure
and limited parameters of the model. The parameters to be identified in the fractional model are shown
in Equation (7), below:

θ = [R0 R1 C1 R2 C2 W α β γ] (7)

2.2. Lithium-Ion Battery Test Experiment

Battery test experiments are the premise of battery model establishment and state estimation, and
are an indispensable step in battery research. In this paper, the battery test system is shown in Figure 2.
The test object is a universal A123, ternary lithium-ion soft packet battery cell. The main parameters
are listed in Table 1.
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Table 1. Main performance parameters of universal A123 battery.

Nominal
Capacity (Ah)

Nominal
Voltage (V)

Charging Cut-Off
Voltage (V)

Discharge Cut-Off
Voltage (V)

Charging Cut-Off
Current (A)

28 3.7 4.2 2.5 1.25

In order to identify the model parameters, a series of experiments on lithium-ion batteries were
conducted with reference to relevant national standards and the USABC Electric Vehicle Battery Test
Procedures Manual. The battery test flow chart of the relevant experiments is shown in Figure 3.
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According to the experimental data obtained by the double-pulse test, the relationship curve
between OCV and SOC can be obtained by [33] using the empirical Equation (8), as shown in Figure 4.

UOCV(SOC) = C0 + C1SOC + C2
1

SOC
+ C3 ln(SOC) + C4 ln(1− SOC) (8)
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2.3. Model Parameter Identification Based on HPSO

The parameter identification link is very important before the model is successfully applied.
The parameter identification results directly affect the accuracy of the model. Because of the obvious
time-varying non-linear and complex structure of the lithium-ion battery system, there are many
parameters involved in operation, and most parameter values cannot be directly measured. Therefore,
parameter identification is a difficult problem in the battery modeling process. For high-dimensional
complex optimization problems, this paper proposes an HPSO algorithm based on a genetic cross
factor. The flowchart of the algorithm is shown in Figure 5.

Referring to the genetic algorithm (GA), the genetic crossover factor is introduced into the classic
particle swarm optimization (PSO). After sorting the fitness of the particles from high to low, it is used
to select the particles with the fitness of the top half in each generation. As part of the next generation
of updated particle swarms, the particles in the second half of fitness are paired as crossover factors.
The position of the exchange between the particles is called the intersection, which is randomly set.
At the intersection point, the particles pair and exchange with each other to produce two completely
new offspring. By comparing the fitness of the offspring particles with that of their parent particles
and sorting them, the top half of the particles with high fitness values are selected to enter the next
generation of updated particle swarm so as to realize the update of the particle swarm. The introduction
of genetic crossover factors enriches the diversity of population particles, solves the problem that
the classical PSO algorithm is prone to fall into the local optimality, improves the global searching
capability of the parameter identification algorithm, and further improves the fitting degree of the
battery model.



Appl. Sci. 2020, 10, 6371 7 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 18 

Calculate particle fitness

Sort the fitness of the 
particles

Half-fit particles The latter half of the less fit 
particles

Randomly set intersection 
points, cross pairing

New progeny 
particles

New progeny 
particles

Select the first half of 
particles with good fitness

Calculate the 
fitness of the 

parent particles

The updated new 
particle swarm

Compare 
with the 
parent

Regroup for 
updates

G
o 

di
re

ct
ly

 to
 th

e 
up

da
te

d 
pa

rt
ic

le
 sw

ar
m

Y N

 170 
Figure 5. Flow chart of hybrid particle swarm filtering algorithm. 171 

Referring to the genetic algorithm (GA), the genetic crossover factor is introduced into the 172 
classic particle swarm optimization (PSO). After sorting the fitness of the particles from high to low, 173 
it is used to select the particles with the fitness of the top half in each generation. As part of the next 174 
generation of updated particle swarms, the particles in the second half of fitness are paired as 175 
crossover factors. The position of the exchange between the particles is called the intersection, which 176 
is randomly set. At the intersection point, the particles pair and exchange with each other to produce 177 
two completely new offspring. By comparing the fitness of the offspring particles with that of their 178 
parent particles and sorting them, the top half of the particles with high fitness values are selected to 179 
enter the next generation of updated particle swarm so as to realize the update of the particle swarm. 180 
The introduction of genetic crossover factors enriches the diversity of population particles, solves the 181 
problem that the classical PSO algorithm is prone to fall into the local optimality, improves the 182 
global searching capability of the parameter identification algorithm, and further improves the 183 
fitting degree of the battery model. 184 

2.4. Fractional-Order Model Accuracy Analysis 185 
In this selection, the dynamic stress test (DST) condition test data of the universal A123 battery 186 

at 25 °C ambient temperature is used as training data to identify the parameters of the established 187 
fractional-order model. Through different identification methods and different simulation 188 
conditions, the accuracy and robustness of the fractional-order model are analyzed. 189 

The identification results obtained using the classical PSO algorithm are shown in Table 2. 190 

Figure 5. Flow chart of hybrid particle swarm filtering algorithm.

2.4. Fractional-Order Model Accuracy Analysis

In this selection, the dynamic stress test (DST) condition test data of the universal A123 battery
at 25 ◦C ambient temperature is used as training data to identify the parameters of the established
fractional-order model. Through different identification methods and different simulation conditions,
the accuracy and robustness of the fractional-order model are analyzed.

The identification results obtained using the classical PSO algorithm are shown in Table 2.

Table 2. Parameter recognition results of ordinary particle swarm algorithm.

R0 R1 C1 R2 C2 W A β γ

0.003 0.0001 960 7.12 1112 500 0.61 0.13 0.64

The identification results obtained using the HPSO algorithm are shown in Table 3.

Table 3. Parameter recognition results of hybrid particle swarm algorithm.

R0 R1 C1 R2 C2 W α β γ

0.001 0.05 5431 5.31 4758 2122 0.59 0.22 0.12
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According to the identification results of the above two algorithms, the model accuracy is simulated
and verified under the three working conditions of the dynamic stress test (DST), federal urban driving
schedule (FUDS), and hybrid pulse power characteristic (HPPC). The simulation results are shown in
Figures 6–8. It can be seen from Figures 6–8 that, under different operating conditions, the voltage error
value output by the fractional-order model fluctuates slightly around zero. When the input current
has a large mutation, the voltage error value is large, but can also be controlled at approximately
0.05 V. Therefore, the improved fractional-order model is more accurate and suitable for different
working conditions.
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Figure 8. Model voltage and simulation error under hybrid pulse power characteristic
(HPPC) conditions.

Table 4 shows the root mean square error (RMSE) value of the model output voltage corresponding
to the classical PSO algorithm and the HPSO algorithm under different working conditions. It can
be seen from Table 4 that the parameter identification method based on the HPSO algorithm further
improved the accuracy of the fractional model.

Table 4. Root mean square error under different working conditions.

RMSE HPPC DST FUDS

PSO 0.0061 0.0050 0.0057
HPSO 0.0036 0.0022 0.0035

3. SOC Estimation Based on the HIF Algorithm

The Kalman series of filtering algorithms have been supported, widely researched and applied
owing to their high accuracy, low computational complexity, and good robustness. However, they have
two limitations that are difficult to overcome: (1) It is necessary to ensure that the input noise is white
noise, and the statistical characteristics of the noise are approximately known. In practice, the noise
is often not a white noise that satisfies the Gaussian distribution, and the statistical characteristics
are difficult to obtain. (2) The accuracy of the estimation is very dependent on the accuracy of the
established model. When the accuracy of the model is insufficient or the accuracy of the model
gradually decreases with the dynamic changes of the working process, the filtering error becomes
increasingly larger.

To overcome the Kalman series filtering algorithm’s requirements for white noise and its
dependence on accurate modeling, an HIF with poor model accuracy, uncertain SOC initial value,
and stronger robustness of various colored noise interference is introduced.

3.1. State Space Equation of the Lithium-Ion Battery

The establishment of system state space equations is the basis for controlling the parameters
of dynamic systems in modern control theory. Establish a mathematical model that reflects the
internal structure of the system and characterizes the system through the state equation and the output
equation. Owing to the time-varying non-linearity of the battery system, its state space equation can
be expressed as:

xk+1 = Akxk + Bkuk +ωk (9)
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yk = Ckxk + Dkuk + υk (10)

This is the first step in the derivation of the state space equation of a lithium-ion battery to
determine the relevant variable parameters of the battery system. According to the established battery
model, the state variable of the system is set as xk = [VCPE1,k VCPE2,k VW,k SOCk]. The input of the
system is u = Ik, which is the current state of the battery. The output is y = Ud,k, which is the terminal
voltage of the battery.

After determining the parameters, according to the fractional-order model established in Section 2.1,
the state space equations of Equations (8) and (9) are derived, where Ak, Bk, Ck, and Dk are defined
as follows:

Ak =


α− Tα 1

R1C1
0 0 0

0 β − Tβ 1
R2C2

0 0
0 0 γ 0
0 0 0 1

 , Bk =


Tα
C1
Tβ
C2

−
Tγ
W
−
ηT
Cn


Ck = [−1 − 1 − 1 d f (SOCk)

dSOC ] , Dk = −R0

(11)

The implementation of SOC estimation is to design the corresponding filter algorithm based
on the above-mentioned state space equations to eliminate the effects of noise ωk and υk as much
as possible. With improvements in the accuracy of the system state estimation, the SOC estimation
achieves the desired effect.

3.2. SOC Estimation Based on HIF Algorithm

To judge the accuracy of the estimated object xk, the HIF algorithm defines a cost function J:

J =

N−1∑
k=0
‖xk − x̂k‖

2
Sk

‖x0 − x̂0‖
2
P−1

0
+

N−1∑
k=0

(‖ωk‖
2
Q−1

k
+ ‖υk‖

2
R−1

k
)

(12)

The matrices P0, Qk, Rk, and Sk in the equation are all symmetric positive definite matrices,
which are set by the designer for specific problems. Designers use these matrices to reflect the degree
to which different types of noise affect the system. In general, we expect to perform similar processing
on the weights of different types of noises to avoid the impact on the accuracy of estimation when a
certain type of noise is ignored.

It can be seen from Equation (11) that the cost function of HIF is a relative proportional value,
and its numerator and denominator are related to the estimated value error and the overall noise of the
system. The significance of establishing the cost function is to reflect the proportional relation between
the estimation error and the noise interference. In order to meet the design requirements, the cost
function has an upper bound, which satisfies the following condition:

J < 1/θ

To solve the above optimization process, the algorithm designer must find a suitable xk method to
minimize the denominator of the cost function J. However, the reality is contrary to the designer’s
goal; it hopes to produce a specific special initialization state x0, noise ωk, and υk, so as to maximize the
cost function J.

Therefore, this problem becomes a maximum-minimum problem, that is, when ωk, υk, and x0

make the cost function J maximum, the appropriate xk should be selected to minimize the cost function
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J. By re-integrating Equations (11) and (12) and combining it with the output Equation (9) of the state
space, Equation (13) can be obtained:

−
1
θ
‖x0 − x̂0‖

2
P−1

0
+

N−1∑
k=0

[
‖xk − x̂k‖

2
Sk
−

1
θ
(‖ωk‖

2
Q−1

k
+ ‖yk −Ckxk −Dkuk‖

2
R−1

k
)
]
< 0 (13)

By solving the maximum-minimum problem of the cost function, a recursive relation satisfying
Equation (12) can be obtained, as shown below:

Kk = AkPk(I − θSkPk + CT
k R−1

k CkPk)
−1CT

k R−1
k

x̂k+1 = Akx̂k + Bkuk + Kk(yk −Ckx̂k −Dkuk)

Pk+1 = AkPk(I − θSk + CT
k R−1

k CkPk)
−1AT

k + Qk

(14)

Similar to the KF algorithm, in order to facilitate calculation and application of the SOC estimation
method based on the HIF, the recursive relation (Equation (14)) is divided into two stages: prediction
and update. The specific calculation process is shown in Table 5.

Table 5. Battery SOC estimation algorithm based on H∞ filter algorithm.

The Specific Calculation Process Is as Follows:

Building a nonlinear system:
{

xk = f (xk−1, uk−1) +ωk−1
yk = g(xk, uk) + υk

Initialization: x̂0 = E(x0), P+
0 = E

[
(x0 − x̂0)(x0 − x̂0)

T
]

When k ∈ {1, 2, . . . ,∞}, calculation
First step: prediction stage
System status estimation: x̂−k = f (x̂+k−1, uk−1)

Error covariance prediction: P−k = Ak−1P+
k−1AT

k−1 + Qk−1
Second step: update stage
Innovation matrix: ek = yk − g(x̂−k , uk)

Gain matrix: Kk = AkP−k (I − θSkP−k + CT
k R−1

k CkP−k )
−1CT

k R−1
k

System state correction: x̂+k = x̂−k−1Kkek

Error covariance correction: P+
k = AkP−k (I − θSk + CT

k R−1
k CkP−k )

−1AT
k + Qk

3.3. SOC Estimation Accuracy Verification

After describing in detail the principle of the HIF and the specific calculation process, in order to
verify the robustness of the algorithm under the three conditions of uncertain measurement accuracy,
initial SOC value uncertainty, and uncertain application conditions, this section uses a file in MATLAB
software to write the HIF and EKF running procedures, and carries out simulation operations in
Simulink. Based on the obtained experimental data, accuracy verification and comparative analysis
are conducted on the estimation results of the SOC of the lithium-ion battery using HIF and EKF.

In the current literature, the reference values used for battery SOC estimation algorithm verification
are all obtained by the ampere-hour integration method [34]. In order to eliminate the measurement
error of the current sensor as far as possible, a high-precision battery testing equipment with a stability
of 0.1% of FS is adopted, and the battery is fully placed before the test. Therefore, this study uses
the approximate SOC calculation value obtained by the ampere-hour integration method as the real
SOC value.

3.3.1. Uncertainty of Measurement Accuracy

Owing to the limitation of sensor acquisition accuracy, there are some acquisition errors in the
current and voltage data acquired during vehicle driving. At present, the acquisition error of the
mainstream current sensor is within 1%, and the voltage acquisition accuracy is within ±5 mV. In order
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to fully ensure the reliability of the verification, this study evaluates the estimation effect of the HIF
in the event of inaccurate measurement by adding colored noise interference to the current and
voltage data.

Figure 9 shows that when colored noise is added to the current and voltage data, the SOC
estimation results obtained by HIF and EKF have different degrees of deviation. Since the robustness
of HIF algorithm is better than EKF, the SOC estimation results based on HIF are slightly better than
that based on EKF. The estimation error of the former is within ±0.02, while that of the latter is within
±0.04.
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Figure 9. Comparison of SOC estimation results and errors based on DST conditions (colored noise
added to current and voltage).

3.3.2. Uncertainty of SOC Initial Value

In actual use, it is difficult to obtain an accurate initial SOC value. Therefore, the algorithm should
have the ability to track the system state when the initial SOC value is inaccurate, and correct the initial
SOC value. To evaluate the convergence ability of the HIF under uncertain initial values, the initial
value of the SOC is set to 0.7 (the exact initial value of the SOC is 1), and the results of its convergence
curve and error are shown in Figure 10.

Figure 10 shows that in the case of the inaccurate initial SOC value, the SOC values estimated by
the two algorithms can quickly converge to the accurate value after algorithm calculation. However,
for the convergence rate, HIF needs approximately 1.5 s to make the SOC converge to the initial value,
which is 50% higher than the 3 s of the EKF algorithm. Moreover, the estimated error of HIF fluctuates
within ±0.02 after convergence, which proves that the algorithm is not sensitive to the setting of the
initial value of SOC, can calculate the true value recursively, and has relatively better robustness.
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3.3.3. Uncertainty of Application Conditions

The applicability of the HIF algorithm under different operating conditions was evaluated using
DST, FUDS, and HPPC conditions. It can be seen from Figures 11 and 12 that under DST and FUDS
conditions, the current and voltage fluctuations are relatively severe. The noise interference of the
battery model in this case is obvious, and it no longer exhibits the characteristics of zero mean.
In addition, the model parameters change to a large extent with the current mutation. Figures 13 and 14
show that the EKF algorithm is used to estimate the battery SOC under the DST and FUDS conditions.
The simulated output voltage of the battery model deviates greatly from the real voltage value, so that
when the current pulse is large, the SOC estimation accuracy is not high, and fluctuates within ±0.04.
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It can be seen from Figures 15 and 16 that the HPPC operating conditions are constant current
pulse discharges, and the current fluctuates periodically. The HPPC condition is relatively stable,
compared with the above two conditions, so the SOC estimation accuracy is relatively high. The SOC
estimation error based on the EKF can be controlled within ±0.02, and the SOC estimation error based
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on the HIF can be controlled within ±0.01, which further verifies the applicability of the HIF algorithm
under different working conditions.
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4. Conclusions

Aiming at the SOC estimation problem of electric vehicle power lithium-ion batteries, this paper
proposes an SOC estimation method based on the HIF algorithm. Firstly, based on the EIS of the
lithium-ion battery, a fractional-order model based on the dual polarization equivalent circuit model
was established. Without reducing the accuracy of the model, it not only simplifies the model structure,
but also reduces the amount of calculation. Then, the parameters of the fractional-order battery model
are identified by the HPSO algorithm based on the genetic crossover factor. It solves the problem
that the classic PSO algorithm easily falls into the local best, improves the global search ability of
the parameter identification algorithm, and further improves the fitting degree of the battery model.
Finally, the accuracy of the SOC estimation results of lithium-ion batteries using HIF and EKF are
verified and compared under three conditions: uncertain measurement accuracy, uncertain SOC initial
value, and uncertain application conditions. The simulation results show that the SOC estimation
method based on HIF can ensure that the SOC estimation error value fluctuates within ±0.02 in any
case, and is slightly affected by environmental factors and other factors. It provides a way to improve
the accuracy of SOC estimation in a battery management system.
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HIF H-infinity filter
HPSO hybrid particle swarm optimization
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