
applied  
sciences

Article

Walnut and Hazelnut Shells: Untapped Industrial
Resources and Their Suitability in
Lignocellulosic Composites

Marius Cătălin Barbu 1,2 , Thomas Sepperer 1 , Eugenia Mariana Tudor 1,2,* and
Alexander Petutschnigg 1

1 Forest Products Technology and Timber Construction Department, Salzburg University of Applied Sciences,
Markt 136a, 5431 Kuchl, Austria; cmbarbu@unitbv.ro (M.C.B.); thomas.sepperer@fh-salzburg.ac.at (T.S);
alexander.petutschnigg@fh-salzburg.ac.at (A.P.)

2 Faculty of Wood Engineering, University of Transilvania in Brasov, Romania, Bld. Eroilor nr.29,
500036 Brasov, Romania

* Correspondence: eugenia.tudor@fh-salzburg.ac.at

Received: 24 August 2020; Accepted: 10 September 2020; Published: 11 September 2020
����������
�������

Abstract: Walnut and hazelnut shells are agricultural by-products, available in high quantities
during the harvest season. The potential of using these two agricultural residues as raw materials in
particleboard production has been evaluated in this study. Different panels with either walnut or
hazelnut shells in combination with melamine-urea formaldehyde or polyurethane at the same level
of 1000 kg/m3 density were produced in a laboratory hot press and mechanical properties (modulus
of elasticity, bending strength, and Brinell hardness) and physical properties (thickness swelling and
water absorption) were determined, together with formaldehyde content. Although Brinell hardness
was 35% to 65% higher for the nutshell-based panels, bending strength and modulus of elasticity
were 40% to 50% lower for the melamine-urea formaldehyde bonded nutshells compared to spruce
particleboards, but was 65% higher in the case of using polyurethane. Water absorption and thickness
swelling could be reduced significantly for the nutshell-based boards compared to the spruce boards
(the values recorded ranged between 58% to 87% lower as for the particleboards). Using polyurethane
as an adhesive has benefits for water uptake and thickness swelling and also for bending strength
and modulus of elasticity. The free formaldehyde content of the lignocellulosic-based panels was
included in the E0 category (≤2.5 mg/100 g) for both walnut and hazelnut shell raw materials and the
use of polyurethane improved these values to super E0 category (≤1.5 mg/100 g).
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1. Introduction

The continuous interest in the efficient use and reuse of resources in the wood and agricultural
sector for upcycled applications [1] is of great interest nowadays [2,3] in the context of the circular
economy [4].

Steered by the paucity of non-renewable resources, the interest for wood could exceed its
sustainable supply within the next few decades [5]. The wood demand has increased steadily, not
only in the industry or for energy production (more than 50%), while the supply of wood is limited in
specific regions of the world [6]. This leads to the need for substitutes for wood in engineered wood
products (e.g., particleboards, PB). A promising alternative for wood in composites is provided by
agricultural residues. A lot of research on agricultural waste has been carried out for PB based on
wheat straw [7,8], rice straw [9,10], rapeseed [11], hemp shives [12,13], cotton dust [14], or sunflower
stalks [15] and topinambour [16]. Brewer’s spent grain is also a raw material for PB [17] together
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with tree bark [18–20]. The advantages of these agricultural and forestry by-products include reduced
costs, ample availability, biodegradability, and renewability, followed by an enlarged flexibility and
sound insulation [21,22]. Some drawbacks in using agricultural residues in lignocellulosic composites
include unequal availability over the year, the manufacture of products with these raw materials
cannot run year-round, no industrialized processing yet, big storage facilities, and different necessary
pre-treatments [23–25]. Walnut and hazelnut shells are agricultural residues available in high quantities,
but despite their thermal utilization [26], with no industrial use yet. Nut shells can exhibit high
hardness and toughness [27]. Worldwide walnut production in 2019/2020 was roughly 965,400 tons
and 528,070 tons for hazelnut [28]. Taking in account that roughly 67 % of the total fruit weight is
comprised of the shell leads to 646,818 tons of walnut shells and roughly 353,807 tons of hazelnut shells
each year [29]. Especially in Iran and Turkey research on the solely use of nutshells and nutshells in
combination with wood has been done. The authors in [30] studied the properties of particleboard
from hazelnut husks and combined with European black pine (Pinus nigra Arnold) [31,32]. Walnut
shells were studied by [33,34]. Other research refers to particleboards manufactured with peanut hulls
mixed with European black pine [35], peanut shell flour [36], and almond shells [37–39].

The aim of this study was to compare and evaluate the influence of the nutshell type (hazelnut
and walnut) and resin (bonded with melamine urea formaldehyde (MUF) and polyurethane (PUR) 10%
each) on the mechanical and physical properties and on the free formaldehyde content of particleboards
produced solely from the above-mentioned nutshells. Other studies have dealt with PB bonded only
with UF, so this study brings a novel process of gluing the nut shell panels with MUF and PUR as the
properties of these boards including the Brinell hardness and formaldehyde content have not been
reported yet.

2. Materials and Methods

The raw materials used for the particleboard production consisted of walnut and hazelnut shells.
The hazelnut (Corylus avellana L.) shells were provided by the Faculty of Forestry at the University
of Zagreb (Croatia). The walnut (Juglans regia L.) shells were provided by a family-owned walnut
cracking company in Carinthia (Maria Rojach, Austria). Melamine urea formaldehyde (MUF) resin
(Prefere 10G268) was provided by metaDynea (Krems, Austria) and polyurethane (PUR 501.0) was
provided by Kleiberit Klebchemie (Kleiberit Klebchemie M. G. Becker GmbH & Co. KG, Weingarten,
Germany).

A total of 40 kg walnut shells and 30 kg hazelnut shells were available for the project. The shells
were at first manually cleaned from impurities and afterward shredded in an R40 industrial four shaft
shredder at Untha Company (Kuchl, Austria) using an 8-mm screen. The shredded nutshells were
dried in a Brunner-Hildebrand High VAC-S, HV-S1 (Hannover, Germany) kiln dryer for three days
to reach a moisture content of about 5%. After drying, the particles were sorted into three main size
classes (fine-grained, middle-grained and coarse-grained) using a sieve shaker Retsch AS 200 (Haan,
Deutschland). Particles in the middle-sized (3–6 mm) and fine (<3 mm) fraction were used for the
board production. The percentage of particles in each group and nutshell type is listed in Table 1.

Table 1. Weight distribution according to the fraction size of the raw material.

Raw Material % Fine-Grained % Middle-Sized Grained % Coarse-Grained

Hazelnut 13.4 67.1 19.5
Walnut 12.4 73.4 14.2

A total of twelve boards (two for each group) was produced, of which the compositions are listed
in Table 2.
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Table 2. Manufacturing parameters of particleboards made from hazelnut, walnut, and spruce.

Board Adhesive Raw Material Density (kg/m3) Press Time (min) Press Temp. (◦C)

A MUF Hazelnut 1000 6 160
B MUF Walnut 1000 6 160
C MUF Spruce 1000 6 160
D PUR Hazelnut 1000 20 60
E PUR Walnut 1000 20 60
F UF Spruce 700 6 180

The 320 mm × 320 mm boards were produced with a thickness of 10 mm and a density of
1000 kg/m3 for nutshells and 700 kg/m3 for the spruce control boards. The density of 1000 kg/m3

could not be reached with wood particles due to the technical limitations of the hydraulic press
Höfer HLOP 280. The walnut and hazelnut boards were composed of 70% middle-sized and 30%
coarse-grained particles.

For all panels, the particles were mixed with resin manually and then formed into a mat and
pre-compressed. This mat was pressed afterward in a hydraulic laboratory press (Höfer HLOP 280,
Taiskirchen, Austria) with a pressure of 3 N/mm2. For the UF and MUF bonded boards, 10% resin
based on weight was used including 1% ammonium sulfate as a hardener. These boards (Figure 1)
were pressed at 160 ◦C for 6 min. The PUR bonded boards were also produced with 10% adhesive, but
these were pressed at 60 ◦C for 20 min. After pressing, the panels were conditioned at 20 ◦C and 65%
relative air humidity for one week before cut to test specimen size, which was done according to [40].
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Figure 1. Hazelnut and walnut 10 mm thick samples bonded with PUR; 1000 kg/m3 density; composition:
70% fine-grained particles (<3 mm) and 30% coarse-grained particles (3–6 mm).

In terms of mechanical properties, bending strength (MOR) and modulus of elasticity (MOE)
according to [41] and Brinell Hardness [42] were tested.

For the bending properties [41], the three-point bending test was employed.
The physical properties such as thickness swelling and water absorption after 24 h water

immersion [43] and density [44] were also measured.
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To determine the formaldehyde content of the panels, 250 mm × 250 mm boards with fine-grained
particles (<3 mm) and 10 mm thickness and a density of 1000 kg/m3 were manufactured with walnut
and hazelnut shells. Moisture content (m.c.) was measured for each type of board (Table 3).

Table 3. Moisture content of the nutshell boards prior to determining the formaldehyde content with
the perforator method.

Board Glue m.c. (%) Particle Size (mm)

Walnut UF 1.79 <3 mm
Walnut PUR 5.25 <3 mm

Hazelnut UF 2.28 <3 mm
Hazelnut PUR 6.28 <3 mm

Each board was cut into 2.5 × 2.5 mm samples after cooling. The test specimens were placed in
airtight bags and delivered to the Kaindl Company, Wals, Salzburg, Austria, where formaldehyde
content was measured according to [45]. This method is recommended for nonlaminated and uncoated
wood-based panels.

3. Results

For all boards described earlier, the mechanical and physical properties were evaluated according
to the corresponding standard and statistically analyzed using mean separation tests and ANOVA.

3.1. Mechanical Properties

In terms of mechanical properties, MOE, MOR and Brinell hardness have been evaluated. The mean
value, standard deviation, and minimal and maximal values are listed in Table 4. Results of ANOVA
are indicated by letters a–e and u–z. The first letter refers to the different raw material (for values
with the same letter, the raw material has no significant influence), the second letter refers to the used
adhesive (again, and for values with the same letter, the adhesive has no influence).

Table 4. Mechanical properties of the hazelnut, walnut, and spruce particle boards.

Properties Board Mean Std. Dev. Min Max

MOE [GPa] A 1.13 a,u 0.42 0.73 1.79
B 1.15 b,v 0.29 1.20 1.96
C 2.57 c,w 0.36 2.12 3.00
D 1.32 d,u 0.30 0.92 1.60
E 1.30 d,x 0.44 0.68 1.70
F 0.86 e,y 0.13 0.65 1.00

MOR [N/mm2] A 4.25 a,u 1.21 2.55 5.47
B 5.20 a,w 1.02 3.79 6.53
C 13.26 b,y 2.04 11.09 16.26
D 7.43 c,v 1.34 5.36 8.65
E 8.86 c,x 2.75 5.35 12.18
F 5.47 d,z 0.75 4.33 6.32

Brinell hardness [N/mm2] A 62.50 a,u 12.55 39.95 82.65
B 43.70 b,v 7.07 36.57 57.72
C 28.00 c,x 5.48 22.26 35.39
D 53.90 d,u 12.70 27.82 70.59
E 55.50 d,w 8.51 37.30 63.89
F 18.00 e,y 3.08 15.26 22.82

a,b,c,d,e values with the same letter were not significantly different (raw material),u,v,w,x,y,z values with the same letter
were not significantly different (adhesive).



Appl. Sci. 2020, 10, 6340 5 of 11

3.1.1. MOE and MOR

For the MUF bonded boards, the walnut shell ones (B) performed better in terms of MOE (1.51 GPa)
and a MOR of 5.20 N/mm2 compared to boards made from hazelnut shells (A) with an MOE of 1.30 GPa
and a MOR of 4.25 N/mm2 (Table 4). Although ANOVA showed that the material had a statistically
significant influence in terms of MOE, it did not have an influence on the MOR. When PUR was used
as an adhesive, it did not make a difference whether the boards were made of hazelnut (D) or walnut
(E) shells. MOE was roughly 1.3 GPa for both, MOR 7.43 and 8.86 N/mm2 for hazelnut and walnut
shell boards, respectively. Furthermore, ANOVA showed that for walnut shell boards, it did not make
a difference if MUF or PUR (both at a concentration of 10 w.t. %) was used as an adhesive when it
came to MOE, while it did influence the MOR. When hazelnut shells were used as a raw material, the
adhesive had a statistically significant influence on both MOE and MOR. The reference boards made
from spruce and MUF (C) achieved the highest values for MOE and MOR (2.57 GPa and 13.26 N/mm2,
respectively). Surprisingly, the PUR bonded spruce boards (F) performed weaker than the nutshell
panels (0.87 GPa for MOE and 5.47 N/mm2 for MOR). The results for both hazelnut and walnut panels
bonded with PUR were similar to the values obtained by [34], namely a MOR between 6 and 9 N/mm2

and an MOE between 0.8 and 1.3 GPa. When the same amount of hazelnut shells was mixed with
wood particles (50% + 50%), the values of the MOE and MOR increased significantly [32].

In terms of MOE (Table 4), the walnut shell boards showed higher values than the ones produced
by [46], which reached 1.15 GPa on average compared to 1.51 GPa and might have been caused by
the adhesive used. The study by [46] applied UF, while for these boards was utilized a less brittle
MUF [47]. Another reason might be that [46] produced boards with a density of 700 kg/m3 while those
boards had a target density of 1000 kg/m3 [48].

The results for MOE and MOR of the nutshell boards were expected to range below the results of
spruce particleboards. This can be traced back to the fact that the mechanical properties are strongly
influenced by different properties of the raw material like density, chemical composition, and particle
size. A low-density raw material allows a higher compression in the panel, leading to improved
performance in bending tests [49]. Given that the density of the used nutshells was very high (between
700 and 1030 kg/m3 depending on the fraction) and spruce particles have a density of 450 kg/m3, the
lower performance of the MUF bonded nutshell boards can be traced back to a lower compression
rate [50]. The weak behavior of the PUR bonded spruce boards can be traced back to unsatisfying
bonding, caused by an insufficient moisture content of the raw material (3%) for the adhesive to
react [51].

3.1.2. Brinell Hardness

Boards made from hazelnut shells and MUF (A) showed the highest average Brinell hardness
with 62.5 N/mm2 while the lowest hardness value was achieved by PUR bonded spruce particles with
only 18 N/mm2 (Table 4). The highest value was achieved by hazelnut with 82.6 N/mm2 while the
lowest for those panels was 39.9 N/mm2. The big difference between the highest and lowest value
and the high standard deviation can be explained as a result of the different measuring spots and the
manual scattering of raw material in the press mold. This showed that the hardness was very high
when measured on a big piece of the nutshells, while it was much lower when determined on the
fine-grained particles that are filling the gaps between the coarse ones. This was not only valid for
MUF, but also for PUR. The highest Brinell hardness value for a hazelnut board glued with PUR (D)
was 70.59 N/mm2 while the lowest was 27.82 N/mm2. The mean was determined at 54 N/mm2. Walnut
panels showed similar results this time, PUR bonded boards (E) performed a little better with an
average Brinell hardness of 55.5 N/mm2, while MUF boards (B) only reached 43.7 N/mm2. The highest
value for the walnut boards was 63.9 N/mm2 for those produced with PUR. ANOVA showed that
when it came to PUR bonded boards, the nutshell type had no influence. There was also no statistically
significant difference for hazelnut boards concerning the adhesive. Compared to spruce particleboards
that showed an average result of 18 N/mm2 for PUR and 28 N/mm2 for MUF, the nutshells were much
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harder. However, the results for the wood-based boards were closely distributed to the mean value,
with a standard deviation of only 3 N/mm2. This means that the spot where the force is applied is less
relevant compared to the nutshell boards.

3.2. Physical Properties

In terms of physical properties, thickness swelling (TS) and water absorption (WA) both after 24 h
water immersion were evaluated.

Thickness swelling after 24 h water immersion for MUF bonded hazelnut husk panels (A) was
determined with 17.5% while it was a little lower for walnut shells (B) with 13.2% (Table 5). Compared
to the spruce reference board (C) with an average of 52%, the increase in thickness was much lower.
The results for hazelnut (A) glued with MUF were a little better compared to those obtained by [31]
and [35] (29.3% TS with a standard deviation of 3.5%), while the results for walnut (B) were higher
compared to [34], who evaluated the thickness swelling with 10.2%.

Table 5. Physical properties of the hazelnut, walnut, and spruce particle boards.

Properties Board Mean Std. dev. Min Max

TS 24 h [%] A 17.47 a,u 2.88 13.56 21.91
B 13.23 b,w 1.35 10.98 15.21
C 52.09 c,y 7.84 42.69 64.84
D 9.66 d,v 1.48 8.33 12.66
E 8.37 d,x 1.26 6.48 10.29
F 44.48 e,z 11.01 30.92 64.39

WA 24 h [%] A 26.96 a,u 2.96 23.32 32.54
B 24.54 a,w 3.55 19.29 28.78
C 64.00 b,y 9.64 45.24 75.02
D 12.44 c,v 2.05 9.60 15.28
E 11.49 c,x 2.56 7.40 14.40
F 89.99 d,z 7.04 81.49 104.09

a,b,c,d,e values with the same letter were not significantly different (raw material), u,v,w,x,y,z values with the same letter
were not significantly different (adhesive).

Thickness swelling after 24 h was significantly reduced when PUR was used to produce the
boards. This means that it was only 9.7% for hazelnut (D) and 8.4% for walnut (E). The spruce boards
showed an increase in thickness of nearly 52% for MUF and still 44.5% for PUR. The nutshells in
combination with PUR performed better compared to the spruce particles. It was found that when
MUF was used as the adhesive, there was a significant difference between the walnut and hazelnut
shells, while the material did not have a big influence when bonded with PUR.

The results for water absorption after 24 h water submersion were similar to those for thickness
swelling after 24 h (Table 5). This means that the nutshell boards glued with MUF had a higher water
uptake, namely 27% for hazelnut (A) and 25% for walnut (B), compared to the PUR bonded ones with
12.5% (D) and 11.5% (E), respectively. The values were much lower compared to the results of spruce
particles with 64% for MUF (C) and almost 90% for PUR (F). Regarding water uptake over 24 h, there
was no influence of the used nutshell type in combination with either MUF or PUR.

The same trend of blocking and reduction of TS and WA was observed in the case of using
hazelnut shells combined with wood particles [32], with a mean of 20% for TS and 70% for WA and
from [34], in the case of walnut shells with the same value for TS as reported by [32] and lower WA
of 37%.

It was expected that thickness swelling and water absorption will be lower, compared to the
spruce particleboards. The water uptake of lingo-cellulosic materials is strongly influenced by the
number of free hydroxyl groups where water is bonded to. These hydroxyl groups are mainly present
in the natural polymer cellulose. Hemicellulose is amorphous and has a hydrophilic character that is
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additionally increasing the water uptake. Lignin, however, is totally hydrophobic, which means that
water cannot be absorbed within [52]. The high amount of lignin in the walnut shells (49.1%) compared
to roughly 35% in softwood indicated a decreased amount of water absorption. Furthermore, hazelnut
husks contain almost 42% of lignin and only 55% of holocellulose compared to 65% in softwood.

PUR is more hydrolytically stable than MUF, which explains the big differences for thickness
swelling and water absorption when these two adhesives are compared. The high value for water
absorption for the PUR glued spruce particleboards was again caused by the low (3%) moisture content
of the raw material and a non-complete reaction of the adhesive.

3.3. Formaldehyde Content

The corrected values of free formaldehyde content varied depending on the type of adhesive
formulation for the board (Figures 2 and 3).
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Figure 3. Free formaldehyde content measured according to EN 120:2011 of 10 mm walnut and hazelnut
panels bonded with UF and MUF and compared with the values of larch bark boards glued with the
same adhesives from [53].
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The values for walnut and hazelnut shell panels were compared with similar 10 mm boards
manufactured with the same adhesives reported by [53]. The lowest formaldehyde content of 0.07
mg/100 g oven dry was measured for the board with larch bark bonded with PUR (PUR_bark). This
is included in the super E0 classification (≤1.5 mg/100 g). In the same category were comprised the
values of the walnut (PUR_WN) and hazelnut (PUR_HN) shell boards glued with PUR and the larch
bark board bonded with UF. To the E0 class (≤2.5 mg/100 g) belonged the values for the nutshell
boards bonded with UF (UF_HN and UF_WN). These results are consistent with those obtained by [54]
regarding formaldehyde release from low-emission wood-based panels using the perforator method,
which ranged from 0.71 to 2.99 mg/100 g and was slightly lower than that of [34].

The role of bark to decrease the formaldehyde content of wood-based composites was also studied
by [55,56]. It was expected that the level of free formaldehyde content of the panels glued with PUR
would be significantly lower than that of the boards bonded with UF, but the combination of both
adhesives and raw materials resulted in panels that reached at least the E0 classification.

4. Conclusions

This study has shown that the nutshells can be used for the manufacture of PBs with improved
performances in terms of physical properties (dimensional stability), but also with higher Brinell
hardness compared to the spruce particleboards.

MOR and MOE are lower by roughly 50% and cannot meet the requirements for P1 or P2 PBs,
according to EN 310:2005. Future research should consider the improvement potentials by choosing
the proper percentage of nutshells chips, combining the coarse-grained particles with the fine-grained
ones, in order to fill voids in-between, combined with a proper bonding system.

This study has also shown that, when MUF is used to bond the boards, the raw material has
no influence on MOR and water absorption, when PUR is used, the raw material has no influence
on MOE, but with an improvement in terms of MOR (35% higher compared to spruce particles),
Brinell hardness (up to 67%), thickness swelling (65–75% lower), and water absorption (58–87% lower).
There is no statistically significant influence of the adhesive for hazelnut shells in terms of MOE and
Brinell hardness.

The values of the formaldehyde content are all included in the E0 emission class. In the case of
the panels bonded with PUR, the measured values were less than 1.5 mg/100 g, which means that the
super E0 category was reached. All these perforator results for the panels manufactured with hazelnut
and walnut shells recommend them as low-emissions lignocellulosic composites.

The nutshells, utilized only for energy purposes [57], could be considered as a raw material in
particleboard production. Further research can focus on the properties of improved formulations
for adhesives and lignocellulosic particles, eventually with reinforcements [58] to achieve similar
properties to P1 and P2 [59].
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