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Featured Application: The potential applications of frame interpolation include frame rate up-
conversion, video compression, video streaming, and related video sequence processing.

Abstract: Frame interpolation, which generates an intermediate frame given adjacent ones,
finds various applications such as frame rate up-conversion, video compression, and video streaming.
Instead of using complex network models and additional data involved in the state-of-the-art
frame interpolation methods, this paper proposes an approach based on an end-to-end generative
adversarial network. A combined loss function is employed, which jointly considers the adversarial
loss (difference between data models), reconstruction loss, and motion blur degradation. The objective
image quality metric values reach a PSNR of 29.22 dB and SSIM of 0.835 on the UCF101 dataset,
similar to those of the state-of-the-art approach. The good visual quality is notably achieved by
approximately one-fifth computational time, which entails possible real-time frame rate up-conversion.
The interpolated output can be further improved by a GAN based refinement network that better
maintains motion and color by image-to-image translation.
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1. Introduction

Frame interpolation is a technique that generates intermediate frames between the adjacent ones
in a video sequence. In the dyadic case, given two frames xn−1 and xn+1, the frame interpolation
process predicts the frame xn and consequently doubles the frame rate of the output sequence.
Frame interpolation techniques based on deep learning has recently been considered [1–3]. The popular
network models include the convolution neural network (CNN) and generative adversarial network
(GAN), typically under the supervised learning framework.

A GAN comprises two adversarial parts, a generator and a discriminator. The generator manages
to generate a plausible output while the discriminator manages to distinguish the real data from that
fake output. GANs have shown promising results in various image processing applications including
frame prediction [4–6]. Most of the existing GAN based frame prediction methods use complicated
models in which each of them takes a different responsibility such as generation or rectification [7,8].
Those methods also require auxiliary data and long training time.

This study aims for an efficient GAN framework that produces high-quality interpolated frames
without intermediate data and complex network architecture. Motivated by the Deep Convolutional
Generative Adversarial Network (DCGAN) [4], one of the most popular GAN frameworks for random
image generation, we propose using a semi-supervised frame interpolation framework (Figure 1).
The generator encodes a pair of frames to produce the generated output, and the discriminator applies
several down-sampling operations on an input frame for classification. Furthermore, the generated
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output can undergo a refinement network that adopts the image-to-image translation to improve
motion and color of the generated output. Besides, a loss function that jointly combines the adversarial
loss and the reconstruction loss for pixel/structure-based similarity and motion blur degradation is
also proposed.
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Figure 1. The proposed framework, in which the framework derives the interpolated frame yn from
two given ones. Two given input frames xn−1 and xn+1 are fed into the generator network G for an
interpolated frame. The interpolated frame yn can go through the second generator with the refinement
network, denoted by G_RN, for further improvement. D and D_RN represent the discriminators of the
original network and refinement network, respectively.

The rest of the paper is organized as follows. In Section 2, we review the related work on GANs,
particularly in model design, image generation, and video frame generation. Section 3 describes the
proposed approach. Section 4 demonstrates the experiments which include qualitative and quantitative
evaluation of the proposed method and presents analyses. Finally, we conclude the paper in Section 5.

2. Related Works

2.1. Generative Adversarial Networks

A generative adversarial network (GAN) [9] is a machine learning framework for data generation,
which attempts to generate new data that follow similar distribution as those in the training sets.
A GAN includes two adversarial networks, the generator network and the discriminator network.
The generator strives to generate a plausible output to fool the discriminator while the discriminator
tries to classify generated outputs correctly, keeping from being fooled. Let x denote a source vector
from the true data source X, G(x) denote the generator’s output, and D(x) be the probability of x
coming from the true data source rather than the generated output. Goodfellow et al. [9] formulated
the adversarial loss V(G, D) of GANs as,

V(G, D) = Ex∼pdata [log D(x)] + Ex∼pg [log(1−D(x)] (1)
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The training of GANs is a minimax problem that finds D and G such that

max min V(G, D)

D G
(2)

That is, the generator G tries to produce samples that minimize log(1−D(x)), and simultaneously
the discriminator D aims to maximize the probability of assigning the correct label (to both true
samples and generated outputs of G). Following that strategy iteratively, both networks enhance
their performance in the training process and produce more and more desirable output. Since 2014,
the GAN has been used to solve various problems in image and video applications including image
deblurring [10], realistic visual manipulation [11] and video frame generation [12–14].

Various improvements and extensions have been made on GANs. One notable direction is the
introduction of nonrandom input models such as conditional GAN [15], StyleGAN [16], and SRGAN [17].
In contrast to the models with random inputs [4,18,19], nonrandom input models use labeled data or
real images instead of noise as in the input, which allows GANs to generate outputs of specific features.

2.2. Image Generation and Video Frame Generation

GANs have shown their efficiency in numerous image applications. In the beginning,
many researchers used GANs to generate images from scratch or simple labeled data. Later,
cross-domain GANs, which transform data from a domain to another, such as from sketch to
an image [11], from description text to image [20,21], and from photographs to painting [22],
were developed. Other applications of GANs in image processing include super-resolution [4],
image inpainting [23], image rendering [24], de-raining [25], and medical image processing [26].
Isola et al. [6] proposed a conditional GAN structure for image processing based on the
image-to-image translation.

Video frame generation is a technique that produces new frames based on the existing image
sequence with temporal semantics. There are two types of frame generation, frame extrapolation and
frame interpolation as shown in Table 1.

In this study, we focus on frame interpolation, where an intermediate frame is predicted from
adjacent frames. Traditional interpolation techniques are realized by estimating the relative motion of
pixels, blocks, or meshes. One classic pixel-based approach is the optical flow, however, which requires
heavy computation and performs poorly for videos containing abrupt changes in brightness or motion.
Consequently, gradient-based [27] and phase-based [28] approaches were proposed. Deep learning
based approaches, instead, directly synthesize the intermediate frame using neural networks and
generally provide more satisfactory results than conventional methods.

The networks considered in video frame generation include the convolutional neural networks
(CNNs) [32,33], recurrent neural networks (RNNs), long short term memory networks (LSTM),
and GANs. Niklaus et al. [1] designed a fully-convolutional CNN and estimated pairs of 1D kernels for
all pixels to produce the interpolated frame. Bao et al. [34] proposed a video frame interpolation method
based on the bi-directional optical flow and depth maps estimation. Meyer et al. [35] proposed a
phase-based deep learning method that predicts the interpolated frame level by level with a phase-based
loss function. For GAN-based approaches, Kwon and Park [14] proposed using the retrospective
cycle GAN framework to predict a future frame by four previous frames. Santurkar et al. [7] used a
DCGAN based approach for frame interpolation to enhance video compression performance. In their
work, the authors used a feed-forward network to predict a latent vector as the input for the generator
and produced interpolated frames based on the linear interpolation in latent space. Wen et al. [8]
concatenated two GANs to generate the intermediate frames between keyframes, in which the first
generator learns motions, and the second one adds more details into the first network’s output. In that
work, the authors also enhanced the input data with new frames that were obtained by pixel-wise linear
interpolation. The method, application, dataset, and result of deep learning-based frame interpolation
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are summarized and listed in Table 1. Although the deep learning based approaches generally achieve
good performance, most of them use complex networks and auxiliary data and therefore a long time
for training and processing is required. Moreover, many GAN based approaches still have difficulties
in characterize irregular motion and image details.

Table 1. Deep learning-based approaches for frame interpolation.

Author Method Application Dataset Result

Santurkar et al. [7] Process data in the
z-domain with a CNN
based network and a
GAN. The framework
also transmits every

N-th frame for further
improvement.

Image/video compression. For Mcode (video
compression

framework): the KTH
actions dataset.

The videos reach
PSNR/SSIM of 22.85

dB/0.611 while skipping
the alternate frame in

compression.

Wen et al. [8] Concatenate two GANs
for generation with the
additional input data
obtained by the linear

interpolation operation.

Generate N frame(s)
between given ones (N ≥ 1).

The KTH actions dataset;
the UCF101 dataset; he
Google Robotic Push

dataset.

Generate seven frames
between two given ones
from the UCF101 dataset

with the PSNR in the
range of 28 dB to 30 dB.

Koren et al. [29] Utilize CNN and GAN
for generation and

refinement, respectively.

Generate a frame in-between
two given ones.

Xiph.org Video Test
Media: ‘Bus’, ‘Football’,

‘News’, and ‘Stefan’.

Correct in structure and
most of the details, but
not close to the ground

truth, particularly
motion.

Amersfoort et al. [30] Propose a multi-scale
GAN that includes a
multi-scale residual

estimation module and a
CNN based refinement

network.

Frame interpolation. Collection of 60 fps
videos from Youtube-8m.

Achieve visual quality
comparable to SepConv
[1] at x47 faster runtime.

Meyer et al. [31] Use a phase-based deep
learning method that
consists of a neural
network decoder.

Frame interpolation for
challenging scenarios,

coping with large motion
(larger than existing

methods).

DAVIS video dataset. Produce preferable
output in challenging

cases containing motion
blurs and brightness

changes. May produce
more disturbing artifacts.

3. The Proposed Method

3.1. Network Architecture

This research is targeted at an effectual GAN-based frame interpolation framework without
creating auxiliary data. As is illustrated in Figure 1, the proposed frame interpolation network G takes
two input frames xn−1 (previous frame) and xn+1 (future frame) to derive yn as a good estimate of
the current frame xn. Each frame is a two-dimensional image with three color channels (red, green,
blue). The proposed discriminator D reports a classification value in the range of 0.0 and 1.0 for yn,
which indicates the confidence of yn for being a real frame. Motivated by the DCGAN [4], our networks
are fully convolutional, composed of 2D convolutional layers, 2D transposed convolutional layers,
batch normalization layers, and Leaky Rectification Linear Unit (LeakyReLU) layers.

The complete frame interpolation process is separated into two phases, analysis and synthesis,
as shown in Figure 2. The analysis phase extracts a feature map from the given input frames, while the
synthesis phase produces an output frame from the feature map. No pooling function is involved in
our approach. Instead, we use strides in convolutional layers to control the size of the feature map.
The discriminator uses down-sampling processes to generate the classification result. The essential
parameters of the proposed generator network and discriminator network are in Tables 2 and 3,
respectively. Specific values of the coefficients involved in the network are obtained through the
training process.
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Figure 2. The model of the proposed generator network. The network takes two 3 × 64 × 64 matrices
and uses the previous and the future frames as the input. The details of the parameters are listed in
Table 2.

Table 2. Proposed generator network’s structure.

Layers Details Output Size

1 Conv2d(3, 128, stride = 1) BatchNorm2d LeakyReLU 128 × 64 × 64
2 Conv2d(4, 128, stride = 2) BatchNorm2d LeakyReLU 128 × 32 × 32
3 Conv2d(4, 256, stride = 2) BatchNorm2d LeakyReLU 256 × 16 × 16
4 Conv2d(4, 512, stride = 2) BatchNorm2d LeakyReLU 512 × 8 × 8
5 TransposedConv2d(4, 256, stride = 2) BatchNorm2d LeakyReLU 256 × 16 × 16
6 TransposedConv2d (4, 128, stride = 2) BatchNorm2d LeakyReLU 128 × 32 × 32
7 TransposedConv2d (4, 64, stride = 2) BatchNorm2d LeakyReLU 64 × 64 × 64
8 TransposedConv2d (3, 3, stride = 1) tanh 3 × 64 × 64

Table 3. Proposed discriminator network’s structure.

Layers Details Output Size

1 Conv2d(4, 64, stride = 2) LeakyReLU 64 × 32 × 32
2 Conv2d(4, 128, stride = 2) BatchNorm2d LeakyReLU 128 × 16 × 16
3 Conv2d(4, 256, stride = 2) BatchNorm2d LeakyReLU 256 × 8 × 8
4 Conv2d(4, 512, stride = 2) BatchNorm2d LeakyReLU 512 × 4 × 4
5 Conv2d(4, 1, stride = 1) Sigmoid 1 × 512 × 512

To further improve the interpolated frame, particularly the motion and color, the proposed
framework applies a refinement network proposed in [6]. This network is the image-to-image
translation network that includes a generator network G_RN and a discriminator network D_RN.
The generator G_RN translates an input frame similar to the ground truth, particularly in motion area.

3.2. Loss Functions

The training process of GAN-based networks relies on the loss function that measures the
discrepancy between the generated model (or data) and the true model (or data). In this paper,
the similarity of a generated frame is judged by a combination of two types of losses, which include
the adversarial loss and the reconstruction loss. The overall loss function is expressed as follows,

L
(
X, X̂

)
= λ1 × Ladv

(
X, X̂

)
+ λ2 × L2

(
X, X̂

)
+ λ3 × LMS_SSIM

(
X, X̂

)
+ λ4 × LGDL

(
X, X̂

)
. (3)
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where X and X̂ denote the original frame (ground truth) and the reconstructed frame, respectively,
Ladv indicates the adversarial loss, i.e., the difference between the probability distributions and the
other three terms L2, LMS_SSIM and LGDL refer to the reconstruction data losses, as explained below.
The coefficients λ1, λ2, λ3, and λ4 are non-negative weights for each of the loss terms.

We have explained the general adversarial loss Ladv in Section 2.1. Specifically in our work,
the Binary Cross Entropy (BCE) loss function (Equation (4)), which measures the binary cross-entropy
between the classification result D(x) and the target value y, is adopted.

Ladv(D(x), y) = LBCE(d, y) = −
1
N

N∑
n=1

(yn log(dn) + (1− yn) log(1− dn)) (4)

The target value yn represents the expected label data between 0 (false) and 1 (true) and d is the
discrimination value for the frame x.

This study falls into the category of nonrandom input approaches. The errors (reconstruction data
losses) between the generated output and ground truth can be calculated for the training set. The first
term is the L2 loss (mean square error, MSE)

L2(x, y) =
1
N

N∑
n=1

(xn − yn)
2, (5)

where x and y are the generated output and the ground truth, respectively, and N is the number of pixels
within a frame. The L2 loss function performs the pixel-by-pixel comparison and helps to sharpen the
output image. The second term is multi-scale SSIM (MS_SSIM), suggested by Zhao et al. [36] for image
restoration, as defined in Equation (6).

LMS_SSIM(x, y) = 1−MS_SSIM(x, y) (6)

MS_SSIM well preserves the structural similarity in different scales and facilitates smoother output.
Third, we apply the gradient difference loss (GDL) function [12] for combating the motion blur.

The GDL loss, which considers the relative difference of neighboring pixels between the generated
output x and ground truth y, is calculated as follows

LGDL(x, y) =
∑
i, j

∣∣∣∣∣∣xi, j − xi−1, j
∣∣∣− ∣∣∣yi, j − yi−1, j

∣∣∣∣∣∣α + ∣∣∣∣∣∣xi, j − xi, j−1
∣∣∣− ∣∣∣yi, j − yi, j−1

∣∣∣∣∣∣α, (7)

where α is an integer greater or equal to 1 and we set α to two in our implementation.

4. Experimental Results and Analyses

4.1. Dataset

The UCF101 dataset [37] is a large diversified video dataset, which includes 13,320 realistic
videos from 101 action categories with various moving objects in static and dynamic environments.
The videos in the UCF101 dataset have a fixed frame rate of 25 FPS (frames per second) and a resolution
of 320 × 240 pixels. Soomro et al. [37] divided these videos into five types, Body-Motion Only,
Human-Human Interaction, Human-Object Interaction, Playing Musical Instrument, and Sports.

In our experiment, we use a part of Body-Motion Only videos for both training and testing.
The training dataset includes 377 videos, while the testing dataset comprises 59 videos. These videos
come from the following action categories: BabyCrawling, BlowingCandles, BodyWeightSquats,
HandstandWalking, JumpingJack, PullUps, RopeClimbing, Surfing, Swing, TrampolineJumping,
and WallPushups. The selected videos cover a wide range of scenes with diverse motion and
texture characteristics.
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We also perform the outside test by using the pre-trained model on other datasets, such as other
types in the UCF101 dataset, the CUHK dataset [38], and the high-speed Sintel (Sintel) dataset [39].
The CUHK dataset contains 150 FPS videos of resolution of 640 × 360 pixels, while the Sintel dataset
includes 1080 FPS videos of resolution of 2048 × 872 pixels.

4.2. Implementation and Training

We group every three consecutive frames as a patch in sliding windows as shown in Figure 3.
The generator network takes the first and third frames from the patch to derive the output (interpolated
second frame), while the discriminator network compares the generated output and genuine second
frame. The proposed framework takes 32 patches for every training interval and uses the mini-batch
gradient descent algorithm to train the network. The input to the network is cropped into blocks of
64 pixels by 64 pixels. It was observed that this size was large enough to capture motions of videos
and suitable for training. Cropping positions are randomly chosen to produce diversity.
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We use PyTorch for implementing the proposed method. To train the GAN, we use the Adam
optimizer [40] with a decay of the first-order momentum of the gradient of 0.5, and a decay of the
second-order momentum of the gradient of 0.999 [4]. A learning rate of 0.0002 is chosen for training.
A summary of parameters and the corresponding values used in implementation is listed in Table 4.
Besides, the selected values of λ1, λ2, λ3, λ4 in the loss function (3) are 0.05, 1.0, 6.0, 1.0. The proposed
network is trained on a single NVIDIA GeForce GTX 960 GPU for 400 epochs.

For the refinement network, we adopt the implementation of the pix2pix model of Isola et al. [6].
The source code is shared on GitHub under the BSD license [41]. Our implementation that includes all
networks is also published on GitHub [42]. The activity diagrams of our implementations are provided
in the Appendix A for reference.
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Table 4. Configuration parameters.

Parameters Values

Number of epochs 400
Batch size 32
Size of input image 64
Input’s channels 3
Learning rate 0.0002
Adam: β1 0.5
Adam: β2 0.999

4.3. Objective Evaluation

In our evaluation, two widely used metrics for video quality, peak signal to noise ratio (PSNR) and
structural similarity index (SSIM) [43], are adopted for objective evaluation. The objective performance
of the proposed method is shown in Table 5. Higher PSNR but lower SSIM is achieved with refinement.
The proposed method is first compared with the MCode framework, a frame interpolation approach
proposed by Santurkar et al. [7]. Tested on the KTH (hand-waving) dataset [44], the MCode gives an
average PSNR of 22.85 dB and SSIM of 0.609 for the interpolated frames. The proposed method, on the
other hand, provides a much higher average PSNR of 33.18 dB and SSIM of 0.919. The p value of the
associated statistical hypothesis test equal to 0.01 substantiates the significantly better performance of
the proposed framework.

Table 5. Objective evaluation on various datasets for the proposed method.

Proposed Method
(without Refinement)

Proposed Method
(with Refinement)

Dataset PSNR SSIM PSNR SSIM

UCF101:Body Motion Only 28.97 0.827 29.52 0.809
UCF101:Human-Human Interaction 27.50 0.789 27.60 0.762
UCF101:Human-Object Interaction 31.37 0.867 31.72 0.832
UCF101:Playing Musical Instrument 32.54 0.881 32.48 0.852
UCF101:Sport 29.10 0.821 29.42 0.797
CUHK 32.63 0.935 32.20 0.910
Sintel 32.64 0.914 33.11 0.912

The proposed method is further compared with [1] (SepConv, the state-of-the-art-solution), and the
performance is shown in Table 6. All the approaches have comparable quality metrics, while the
proposed approaches have more stable performance (less standard deviation in PSNR and SSIM),
and the proposed method (without refinement) has a slightly higher SSIM. This framework also
requires less time (80 h) for training, wherein contrast SepConv requires 216 h. The computation
complexity of the proposed method (network) is 0.78 GFLOPs (without refinement) and 1.08 GFLOPs
(with refinement) for processing 64-by-64-pixel block(s). Additionally, without applying the refinement
step, our pre-trained framework takes approximately 60 ms to process a frame that has a resolution
of 320-by-240 from the UCF101 dataset, which is much less than that of SepConv. As a consequence,
more than 16 frames can be generated in a second, and the frame rate up-conversion for 320-by-240
videos from 15 fps to 30 fps can be achieved. Figure 4 illustrates a good performance achieved by the
proposed method in terms of the quality (PSNR/SSIM) and complexity (time) relationship.
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Table 6. Comparisons of the proposed method and SepConv [44] on UCF101 1,2. The best value of each
column is in bold.

Approach
Training

Time
(Hours)

Processing
Time
(ms)

PSNR SSIM

Min Max Avg Stdev Min Max Avg Stdev

SepConv [1] 216 340 12.53 43.44 30.16 5.90 0.161 0.998 0.829 0.136
Ours (w/o refinement) 80 60 12.60 39.83 29.22 4.97 0.170 0.984 0.835 0.126
Ours (with refinement) 167 160 12.61 44.67 29.84 5.58 0.169 0.972 0.816 0.120

1 Categories action from the UCF101_Body Motion Only dataset. 2 The videos have a resolution of 320-by-240-pixel.

4.4. Subjective Results

Examples of the generated frames are shown in Figures 5–7. It can be observed that the proposed
method maintains correct motion and most textural details in the scene. Besides, the inclusion of
the refinement network derives the motion areas more favorably. For a better point of view on the
similarity between the ground truth and the generated frames, the histograms of pixels are graphed in
Figure 8, which illustrate their similarity. The correlation coefficients between the histograms confirm
the accuracy of the proposed method and the advantage of incorporating the refinement process.
In Figure 9, we compare the generated outputs of the proposed method with SepConv [1]. It can be
seen that the proposed approach keeps more structural details of the objects in the scene. Besides,
the refinement process improves the estimation of color and motion (Figure 7).

We do an ablation study on the loss functions. Using a combination of the adversarial loss, L1 loss,
and GDL yields a PSNR of 27.97 dB and SSIM of 0.816. Using a combination of the adversarial loss,
L2 loss, and GDL yields a PSNR of 27.84 dB and SSIM of 0.746. The proposed combination of four loss
functions, including the MS-SSIM loss, yields PSNR of 28.62 dB and SSIM of 0.810. Figure 10 shows
the generated frames. The proposed method creates frames that keep more details.

In summarization, our method interpolates a frame from two given inputs within a short time.
Moreover, the output is correct in motion, details, and color. Without the refinement, our framework
produces preferable frames in human vision. The refinement network improves the output frame in
the similarity to the ground truth, although it may reduce the frame’s quality in some cases. Hence,
each approach is suitable for different kinds of applications. The proposed method may not be able to
capture irregular motion correctly. More training sequences or a conditional GAN model will be tested
in the future.
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Figure 6. Experimental results on the Sintel datasets. The figures are demonstrated in two rows: (a) The
full ground truth, (b) the ground truth, (c) the output of the proposed method without refinement
(PSNR = 27.96, SSIM = 0.860), (d) the output of the proposed method with refinement (PSNR = 29.08,
SSIM = 0.871).
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Figure 7. Experimental results on cross-domain action categories from the UCF101 dataset. For each
group, the ground truth is shown in the first row, and the generated output of the proposed method is
shown in the second row, in which the left one is the output without refinement, and the right one is
the refinement output. Quality metrics for the generated output: (a) w/o refinement: PSNR = 30.56,
SSIM = 0.834; with refinement: PSNR = 30.16, SSIM = 0.782; (b) w/o refinement: PSNR = 27.85,
SSIM = 0.856; with refinement: PSNR = 28.51, SSIM = 0.852; (c) w/o refinement: PSNR = 30.68,
SSIM = 0.849; with refinement: PSNR = 32.78, SSIM = 0.839; (d) w/o refinement: PSNR = 34.03,
SSIM = 0.896; with refinement: PSNR = 34.39, SSIM = 0.845.
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Figure 8. Histogram comparison between the ground truth (black line), the output without refinement
(blue line), and the output with refinement (green line) on cross-domain action categories from
the UCF101 dataset. Each diagram corresponds to a same-label-group in Figure 7. The correlation
coefficient between the histograms of two pairs of frames, which are the ground truth-the output
without refinement and the ground truth-the output with refinement, are (a) 0.6855 and 0.8886, (b) 0.8731
and 0.9609, (c) 0.5298 and 0.8933 and (d) 0.7996 and 0.9767.
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Figure 10. Comparison of various combination of loss functions on the proposed frame interpolation
network and the UCF101 dataset. The proposed loss function output is preferable output in human
vision. The figures are demonstrated in four columns. From left, they are (a) the ground truth, (b) the
combination of the adversarial loss, L1 loss, and GDL, (c) the combination of the adversarial loss,
L2 loss, and GDL, and (d) the proposed combination of loss function.
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5. Conclusions

We have presented a lightweight GAN for frame interpolation. The proposed method neither
involves complex networks and nor requires auxiliary data. A suitable loss function is designed, and the
ablation study on the loss functions indicates that our choice can increase PSNR and keep more details
for the generated frames. The experimental results substantiate a favorable visual quality given by the
proposed method as compared to the state-of-the-art approaches, both objectively and subjectively,
with a more stable performance. Among the investigated methods, the proposed method without
refinement achieves a high average SSIM value of 0.835 with the shortest training time and encoding
time. The pre-trained framework in our experiment takes approximately 60 ms to derive a frame
from the UCF101 dataset videos with our experiment environment. The PSNR versus time diagram
substantiates the advantage of the proposed method. We also investigate the use of a GAN-based
refinement process, which is found to improve the estimation of color and motion.
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