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Abstract: Robust fast-response transient calorimeters with novel calorimeter elements have attracted
the attention of researchers as new synthetic materials have been developed. This sensor uses
diamonds as the calorimeter element, and a platinum film resistance is sputtered on the back to
measure the temperature. The surface heat flux is obtained based on the calorimetric principle.
The sensor has the advantages of high sensitivity and not being prone to erosion. However, non-ideal
conditions, such as heat dissipation from the calorimeter element to the surroundings, can lead to
measurement deviation and result in challenges for sensor miniaturization. In this study, a novel
transient calorimeter (NTC) with two different sizes was developed using air or epoxy as the
back-filling material. Numerical simulations were conducted to explain the complex heat exchange
between the calorimeter element and its surroundings, which showed that it deviated from the
assumption of an ideal calorimeter sensor. Accordingly, a dynamic correction method was proposed
to compensate for the energy loss from the backside of the calorimeter element. The numerical results
showed that the dynamic correction method significantly improved the measurement deviation, and
the relative error was within 2.3% if the test time was smaller than 12 ms in the simulated cases.
Detonation shock tunnel experiments confirmed the results of the dynamic correction method and
demonstrated a practical method to obtain the dynamic correction coefficient. The accuracy and
feasibility of the dynamic correction method were verified in a single detonation shock tunnel and
under shock tube conditions. The NTC calorimeter exhibited good repeatability in all experiments.

Keywords: calorimeter; shock tunnel; heat transfer measurement; hypersonic

1. Introduction

The accurate prediction of aerodynamic heating is important in the thermal and structural design
of hypersonic flight vehicles, and its prediction remains a difficult problem in modern computational
fluid dynamics. Experimental measurements still play an indispensable role in addressing this problem.
Although much progress has been made in improving the accuracy of heat transfer measurements in
recent decades, a difference of ±10% between the experimental and theoretical results is often observed,
e.g., for a sharp cone standard model [1]; the difference might be even larger at certain local regions
of more complex model shapes [2]. In addition, the measuring accuracy also depends on the test
conditions and the sensor type. Thus, it remains necessary to extensively develop new heat flux sensors
and investigate the factors influencing the heat transfer measurements before further progress can
be made.

Due to the high cost of flight tests, most aerodynamic heating experiments are performed in ground
facilities. And the development of experimental techniques has made it possible to achieve hypersonic
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flows ranging from 2.5 to 45 MJ/kg, which correspond to velocities from 2 to 10 km/s, respectively [3,4].
In such facilities, where the effective test time is on the order of milliseconds, the heat flux rate is derived
from the transient temperature monitored at selected points on the model with fast response testing
technology. Generally, the techniques can be divided into two categories; the first is based on heat
flux sensors, such as resistance thermometers [5–8], thermocouples [9–13], and calorimeters [14–17],
and the second is based on non-intrusive techniques such as temperature-sensitive paint [18,19] and
thermography [20,21]. However, each technique has its own benefits and challenges. For example,
non-intrusive optical measurements are a candidate for obtaining global temperature distribution
measurements and have temporal/spatial advantages. However, the calibration procedures are very
cumbersome, and the accuracy can be seriously affected by impurities of the flow field and vibration
of the model. Overall, this technique remains technologically immature. Because of these optical
drawbacks, point heat flux sensors, which are typically cylindrical in shape, are primarily used for
heat transfer measurements [22]. These sensors must have a sufficiently fast response to obtain enough
data and must withstand from thermal damage or rapid erosion due to fragments of the metallic and
plastic diaphragms that hit the models at high speeds.

Among point heat flux sensors, thin-film resistance gauges have very short rise times and high
electrical output per degree rise in temperature. However, they are limited to low-enthalpy flows
and are prone to thermal damage or rapid erosion under high-enthalpy flows. The lifetime of each
gauge is limited to one or two shots [23]. Thermocouples and calorimeters are relatively robust
gauges. However, the junction of a thermocouple is formed either by mechanical interference or
abrasion, which requires re-abrading or re-machining between shots due to damage from the flow.
There are also uncertainties associated with the junction structures [24]. Moreover, the sensitivity
of a thermocouple is relatively low at tens of microvolts per degree (about 61 µv/K for a type-E
thermocouple at 300 K [25]). Besides, both thin films and thermocouples can suffer from interference
from ionized flows due to exposed metallic elements [26], and insulating coatings to prevent this are
typically fragile or affect the performance. In contrast, in a calorimeter-style gauge, the temperature
sensing element can be shielded from direct contact with the erosive flows. This sensor also has the
advantages of straightforward production and low cost and is suitable for fabrication or modification
according to various requirements in the laboratory.

Calorimeter gauges are based on calculating the instantaneous heat transfer rate by measuring
the time rate of change of the thermal energy in a metal element. The thermal energy is determined
by obtaining a temperature measurement at the back surface of the element, and the rate of change
of the temperature provides the heat flux of the exposed surface. Different types of calorimeter
gauges, such as thin-wall calorimeters [14], slug calorimeters [27], and null-point calorimeters [28,29],
have been developed by researchers to address the requirements of unique testing environments.
Slug and null-point calorimeter gauges are generally developed for long test time measurements (such
as a plasma wind tunnel), whereas a thin-wall calorimeter is more suitable for transient hypersonic
facilities with testing durations on the order of milliseconds. Previous thin-wall calorimeters usually
have copper as the calorimeter material and a thermocouple on the back of the calorimeter to measure
the temperature rise. However, they have the same disadvantage—namely, low sensitivity—as coaxial
thermocouples. Ledford [30] proposed a new design method that used an aluminum sheet as the
calorimeter. In addition, the back was anodized for electrical insulation and plated with a platinum
film. The back temperature of the aluminum sheet was measured by the platinum film to improve
the output sensitivity of the calorimeter. However, this design was only reported in a few articles
in 1960s, and there is no literature of relevance in the following years. The main reason was that
cavities remained on the surface of the aluminum sheet after oxidation in the actual production process.
The secondary coating resulted in conduction between the platinum film and the base material, and the
platinum film did not provide insulation from the aluminum sheet. The thermal conductivity of the
aluminum oxide after oxidation was also poor, adversely affecting the heat flux measurements.



Appl. Sci. 2020, 10, 6143 3 of 22

The above improved design of the calorimeter can greatly improve the output sensitivity of the
calorimeter, but it is necessary to find a new calorimeter material with high thermal conductivity and
resistance. The thermal conductivity of natural diamonds is about 2200 W/m K, which is five times that
of copper. Additionally, the resistivity is more than 1014 Ω·cm, which meets the requirements of high
thermal conductivity and resistance. Thus, diamonds may be an ideal calorimetric material. Natural
diamonds are expensive, but chemical vapor deposition (CVD) diamonds are relatively mature due to
the development of synthetic materials [31]. Although the thermal conductivity of CVD diamonds
does not reach the level of natural diamonds, it is still much higher than that of conventional metals,
and the production cost is much lower. If CVD diamonds can be used to fabricate a calorimeter,
the thermal response would be very fast because of the high thermal conductivity of CVD diamonds.

Due to the advantages of this new type of transient calorimeter, researchers investigated potential
applications. Rowland [32] fabricated a diamond calorimeter heat transfer gauge with a diameter of
3.9 mm. The filling material of the bottom lining was glue, and experiments were conducted in an X2
expansion wind tunnel. Zhang [33] used CVD diamonds to create a novel heat transfer calorimeter
with a diameter of 20 mm and air as the bottom lining material. The author performed validation
experiments in a shock wind tunnel. Rowland and Zhang obtained promising results. However,
the effective test time in the X2 expansion tube was short (in the order of microseconds), and the heat
dissipation effect may not be serious. Although Zhang used air as the back-filling material to reduce the
heat dissipation effect, the sensor size was large, which was not conducive to easy installation. As the
sensor scale was reduced, the effects of transverse heat transfer and bottom heat dissipation due to the
structure of the calorimeter could not be ignored, which would lead to the measurement deviation.
Few studies have investigated these problems. Thus, it is necessary to perform more in-depth research.

In this study, a robust fast-response transient calorimeter using diamonds as the calorimeter
element was developed for heat transfer measurements. The platinum film resistance is attached to the
back of the diamond as the sensitive temperature measurement element, which significantly improves
the signal output sensitivity. The temperature distribution within the gauge is then examined by
solving the two-dimensional heat conduction equations numerically. Non-ideal effects of heat loss
to the surrounding back-material are discussed. Further, the gauge is fully tested under three types
of test conditions, exhibiting excellent performance in all these cases. In all, this developed gauge
extends and supplements the high-enthalpy shock tunnel heat transfer measurements performed by
other techniques.

2. Novel Transient Calorimeter (NTC)

2.1. Principe and Characteristic of the Novel Transient Calorimeter

The structural diagram of the novel transient calorimeter (NTC) is shown in Figure 1. CVD diamond
is selected as the calorimeter element. Firstly, the platinum film resistance is sputtered on the back
of the diamond as the sensitive temperature measurement element. Subsequently, the calorimeter
element is attached to the sensor base. The platinum film wire extends from the back of the calorimeter,
and the bottom is filled with air or insulation material, which is usually epoxy.
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Figure 1. Structural diagram of the NTC heat flux sensor (not to scale).

The measurement principle of the transient calorimeter assumes that the back and side of the
calorimeter element are adiabatic; namely, there is no heat loss from the calorimeter element. Thus,
the heat introduced into the calorimeter element at certain time intervals should be equal to the heat
accumulated by the calorimeter element:

q =

∫ L

0
ρc
∂T
∂t

dx (1)

where ρ and c are the density and specific heat of the calorimetric element material (CVD diamond
in the present study), respectively; L is the thickness of the calorimetric element. As the density and
specific heat are assumed constant, the following equation can be obtained:

q = ρcL
∂Ta

∂t
(2)

where Ta is the average temperature of the calorimetric element. The heat flux can be obtained
by measuring the average temperature change rate of the calorimeter. In practical measurement,
the average temperature of the calorimeter is difficult to measure. Thus, the back temperature is
generally measured. Instead of using thermocouples to measure the temperature in traditional
calorimeters, the new transient calorimeter uses the platinum film resistance to measure the back
temperature of the CVD diamond with relatively high output sensitivity.

The thermal response time of the calorimeter element is mainly related to the thermal response
characteristics of the calorimeter material. The response time tR of the calorimeter was calculated as
follows by Hightower [34]:

tR =
L2

απ2 ln

 2

1− qb
q0

 (3)

where qb is the heat flux calculated by the back temperature of the calorimeter element; q0 is the heat
flux loaded on the surface, and α = k/ρc is the thermal diffusion coefficient of the calorimeter material.
Table 1 shows the thermal physical parameters of a natural diamond, CVD diamond, and copper, which
is the common calorimetric material. The physical parameters of the CVD diamond are determined
by the Physical Property Measurement System (PPMS) of the diamond film used in this design.
The physical parameters of other materials, which will be used in subsequent numerical calculations,
are also listed here.
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Table 1. Thermo-physical parameters of different materials at 300 K [25,35].

Materials Natural
Diamond

CVD
Diamond Copper Air Epoxy Fiber-Reinforced

Plastic
Stainless

Steel

ρ, kg/m3 3515 3200 8920 1.177 1060 1400 7930
c, J/(kg·K) 510 620 386 1006 1960 531 500
k, W/(m·K) 2220 725 398 0.026 0.20 1.85 17

(ρck)0.5, s0.5/(m2
·K) 63,085 37,926 37,018 5.5 645 1173 8210

α × 106, m2/s 1238 365 116 22 0.0963 2.49 4.29

The response time tR0.99 (99%) is selected as the characteristic response time of the sensor, which
means that the heat flux at the back of the calorimeter element reaches 99% of the surface heat flux
loading. Figure 2 shows the relationship between the characteristic response time and the thickness
of the calorimeter element. It is observed that the characteristic thermal response time of the natural
diamond is the fastest at the same thickness, followed by the CVD diamond and copper. At a thickness
of 0.2 mm, the characteristic response time of copper is 186 µs, whereas that of the CVD diamond is
only 59 µs. Although the response time of the natural diamond is faster (21 µs at 0.2 mm), its cost is
much higher. However, the CVD diamond meets the response time requirement at a relatively low cost.
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Due to the high resistivity of diamonds, the platinum film can be directly plated on the back
of the calorimeter element without special insulation between them. The platinum film resistance
is hidden on the back of the calorimeter element, thus protecting it from disturbances or erosion of
the high-velocity gas flow. Therefore, unlike a thin-film resistance heat flux sensor, the resistance
value of the NTC remains unchanged before and after the experiments, thereby ensuring the reliability
and repeatability of the heat flux measurements. Additionally, the diamond element has a strong
anti-erosion ability. The most significant advantage of the NTC heat flux sensor is the high signal
output sensitivity compared with the coaxial thermocouple, which also has excellent response time
and anti-erosion ability. The comparison of the output voltage signal versus the temperature of the
NTC heat flux sensor and type-E coaxial thermocouple is shown in Figure 3. The loading current at the
ends of the NTC platinum film is 10 mA. The Type-E thermocouple is commonly used for heat flux
measurements in transient test facilities. The output signal of the NTC heat flux sensor is significantly
higher than that of the type-E thermocouple, thereby increasing the signal-to-noise ratio and improving
the accuracy.
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2.2. Influence of Non-Ideal Heat Conduction

Equation (1) is applied with the assumption that the heat loss from the CVD element can be
assumed to be negligible. However, the calorimeter element must be fixed and sealed during sensor
manufacturing. Thus, the measurement is affected because the packaging causes heat loss of the
calorimeter element, which leads to inaccuracy. Numerical simulations were conducted to understand
the heat exchange between the CVD diamond and its surroundings due to the straightforward
operation and detailed information. The governing equation is the axisymmetric unsteady heat
conduction equation:

∂T(r, z, t)
∂t

=
ki
ρici

(
∂2T
∂r2 +

1
r
∂T
∂r

+
∂2T
∂z2

)
·(i = 1, 2, 3, 4) (4)

where r and z are the radial and axial directions of the calculation model, respectively; the subscripts
1, 2, 3, and 4 represent the CVD diamond, air/epoxy insulation, fiber-reinforced plastics (FRP sensor
base), and stainless steel (test model), respectively, as shown in Figure 4. Equation (4) is solved using
the finite difference method for spatial discretization and a fourth order Runge-Kutta method for time
integration [36].
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Since the thickness of the platinum film on the back of the CVD diamond is only about 0.2 µm,
and the diameter of the platinum film lead line is only 0.1 mm, the heat dissipation by the platinum film
and lead line on is ignored in this calculation. Due to the axial symmetry of the computational model,
only half of the geometry is considered, as shown in Figure 4. In the present calculation, the CVD
diamond thickness is fixed at L = 0.2 mm, which is used in the author’s home-made calorimeters;
the radius is r0 = 2.5, 5 and 10 mm, respectively; the radius of the back-filling material is r1 = r0 − 0.5;
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the outer diameter of the FRP support is r2 = r0 + 0.2, and the outer diameter of the stainless steel
model is r3 = r2 + 5.

The initial temperature of the calculation model is set to T∞ = 293 K for the calculation. A constant
uniform heat flux (q0 = 1.0 MW/m2) is loaded on the top surface. Thus, the boundary conditions at the
top surface are as follows: (

∂T
∂z

)
z=0

=
q0

ki
(i = 1, 3, 4) t > 0 (5)

Other boundary conditions are shown in Figure 4. In addition, the temperature and heat flux
satisfy the continuity condition at the interface between the two different materials.

It also needs to be noted that the back-filling material is air or epoxy insulation, both of which have
very low heat conductivity and reduce the heat loss from the CVD to its surroundings. These materials
are commonly used in calorimeters, where epoxy can be used to enhance the strength of the sensor.
The model material here is made of stainless steel, which is commonly used in shock tunnel experiments;
and its physical parameters are shown in Table 1.

The equations were solved by our developed C++ program in this study and structured grids
of 250 × 300 are applied. The zones inner the calorimeter and the calorimeter/back-filling material
interface are incorporated with clustered points to provide good spatial resolution. The temperature
distribution in the calculation model at different times were output during the calculation process
to understand the heat transfer inside the senor. Temperature distributions were generated by the
software Tecplot 360 as shown in Figure 5.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 22 
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Figure 5 shows the simulated temperature distribution inside the calculation model for r0 = 2.5 mm
at the moment of t = 12 ms; Figure 5a shows the results for the air as back-filling material, and Figure 5b
depicts the result of using epoxy. As expected, a more complicated heat conduction process occurs
around the CVD diamond. First, the temperature on the top surface of the computing model is not
constant, and the smaller ρck value of the FRP results in a higher surface temperature than that of the
CVD diamond and the stainless-steel model. However, air or epoxy has a lower temperature than
the CVD diamond at the backside (around z = −0.2 mm in Figure 5). Thus, the thermal environment
around the CVD diamond is complex; heat is absorbed laterally from the FRP at the surface region,
but energy is dissipated to the bottom substrate. This result disagrees with the assumption of no heat
loss from the CVD diamond element due to the different thermo-physical parameters of the CVD,
FRP, air/epoxy, and the test model. However, this study did not specifically focus on the details of the
thermal environment; instead, the performance of the sensor was analyzed by comparing the heat flux
monitored at the back center of the CVD diamond (qb), as described by the nondimensional form of
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qb/q0, where the heat transfer rate q0 represents the heat flux applied to the model surface. Results for
qb/q0 that are greater than one indicates larger measuring results, and vice versa. Values of qb/q0 that
are closer to one indicate a smaller influence on the measurement results and vice versa.

Figure 6 shows the heat flux calculation of the NTC sensor with different back-filling materials and
different sensor sizes. Since the effective test time of impulse high-enthalpy faculties is usually very
short, in the order of several microsecond. The discussion is mainly focused on 30 ms. For the sensor
with air back-filling, the larger the sensor diameter, the larger qb/q0 is, and the smaller the influence on
the heat flux measurements is. The size of the sensor with epoxy back-filling has little influence on the
measurement deviation; all cases have lower values of qb/q0 than that of the air back-filling case duo
the larger ρck of epoxy. For the sensor with air back-filling, at t = 30 ms, the heat flux error at the center
position is 3.2% for r0 = 10 mm, and the errors are 7.4% and 16.9% for r0 = 5 mm and r0 = 2.5 mm
respectively. The deviation is about 30% at t = 30 ms for all epoxy back-filling sensors. The main reason
is the heat dissipation effect of the mounting base of the calorimeter. Due to the mounting structure,
this measurement deviation is difficult to avoid. Unfortunately, all deviations increase with increasing
time. Thus, a correction or calibration is needed to obtain high-accuracy heat transfer measurement
results, especially for sensors with high ρck values.
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3. Theory of Dynamic Correction

According to the numerical calculation results, the heat flux loss on the back of the calorimeter
increases over time. Thus, a dynamic correction is necessary to obtain accurate measurement results.
Only the heat flux loss from the bottom of the CVD diamond was considered in the present corrections,
and the heat exchange in the lateral direction was ignored. However, it will become evident in
the following discussion that the lateral heat exchange does not have a significant influence on
the corrections.

The heat dissipation effect of the back-filling material is simplified as a one-dimensional heat
conduction problem of two different materials, as shown in Figure 7, where ρ1, c1, and k1 are the
density, the specific heat, and the thermal conductivity of the calorimeter element (CVD diamond in
the present study). ρ2, c2, and k2 are the density, the specific heat, and the thermal conductivity of
the backing material (air or epoxy). According to reference [14], the calculation formula of the heat
penetration depth for the lining material is as follows:

x = 4
√
αt (6)



Appl. Sci. 2020, 10, 6143 9 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 22 

The heat dissipation effect of the back-filling material is simplified as a one-dimensional heat 
conduction problem of two different materials, as shown in Figure 7, where ρ1, c1, and k1 are the 
density, the specific heat, and the thermal conductivity of the calorimeter element (CVD diamond in 
the present study). ρ2, c2, and k2 are the density, the specific heat, and the thermal conductivity of the 
backing material (air or epoxy). According to reference [14], the calculation formula of the heat 
penetration depth for the lining material is as follows: 

4x tα=  (6) 

The effective test time of transient facilities is typically in the order of milliseconds. The heat 
penetration depth of epoxy would only be 0.4 mm at a longer test time of 100 ms. Thus, the backing 
material can be regarded as a one-dimensional semi-infinite body, where the surface temperature is 
monitored using the platinum thin-film resistance, which is labeled Tb in Figure 7. 

 
Figure 7. The simplified one-dimensional heat transfer model between the calorimeter element and 
the back-filling material. 

The heat conduction equation for a two-layer semi-infinite system as shown in Figure 7 is 
defined as 

2
1 1

2
1

1T T
tx α

∂ ∂
=

∂∂
, 

2
2 2

2
2

1T T
tx α

∂ ∂
=

∂∂
 (7) 

where subscript 1 is the calorimeter element and subscript 2 is the substrate. Their boundary 
conditions are as follows 

1
1 0

1 2
1 2 1 2

2

0

,

0

Tx k q
x
T Tx l k k T T
x x

x T

∂
= − =

∂
∂ ∂

= − = =
∂ ∂

= ∞ =

 (8) 

Thus, by taking the Laplace transforms, the temperature at the back of the calorimeter element 
or the surface of the substrate is obtained by solving Equations (7) and (8) [14]: 

( ) ( )1 1

0 1

3
2

1

2

1 1
L P PL L

a a

q
T

k P a e a e

α
−

=
 
 + − −
  

 
(9) 

Figure 7. The simplified one-dimensional heat transfer model between the calorimeter element and the
back-filling material.

The effective test time of transient facilities is typically in the order of milliseconds. The heat
penetration depth of epoxy would only be 0.4 mm at a longer test time of 100 ms. Thus, the backing
material can be regarded as a one-dimensional semi-infinite body, where the surface temperature is
monitored using the platinum thin-film resistance, which is labeled Tb in Figure 7.

The heat conduction equation for a two-layer semi-infinite system as shown in Figure 7 is defined as

∂2T1

∂x2 =
1
α1

∂T1

∂t
,
∂2T2

∂x2 =
1
α2

∂T2

∂t
(7)

where subscript 1 is the calorimeter element and subscript 2 is the substrate. Their boundary conditions
are as follows

x = 0 −k1
∂T1
∂x = q0

x = l −k1
∂T1
∂x = k2

∂T2
∂x , T1 = T2

x = ∞ T2 = 0
(8)

Thus, by taking the Laplace transforms, the temperature at the back of the calorimeter element or
the surface of the substrate is obtained by solving Equations (7) and (8) [14]:

TL =
2q0
√
α1

k1P
3
2

[
(1 + a)e

L
√

P
a1 − (1− a)e

−L
√

P
a1

] (9)

where a =
√
ρ2c2k2
ρ1c1k1

is the ratio of the back-filling material to calorimetric element material; P is

the Laplace operator. Subsequently, the heat flux loss to the substrate is obtained by TL and the
one-dimensional semi-infinite heat conduction theory:

qloss =

√
ρ2c2k2

π

Tb(t)
√

t
+

∫ t

0

Tb(t) − Tb(τ)

(t− τ)
3
2

dτ

 (10)

By combining Equations (9) and (10), the following expression is obtained using the Taylor
expansion and the inverse Laplace transform:

qloss

q0
=

2a
1 + a

∞∑
n=0

( 1− a
1 + a

)n
er f c

(
(2n + 1)L

2
√
α1t

)
(11)

where α1 is the thermal diffusion coefficient of the calorimeter element. Detailed processes of the above
derivation can be found in [14,36].

Figure 8 shows the relationship between qloss/q0 and time for three commonly used back-filling
materials, where the calorimeter element is CVD diamond; its thermal diffusion coefficient can be
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found in Table 1. The larger the value of a, the larger the value of qloss/q0, and qloss/q0 increases over
time. Of course, air is the best back-filling material of the calorimeter element, and its largest deviation
is less than 0.3% (at 30 ms). However, the pressure resistance is poor when air is used as the back-filling
material, which limits the application range of the sensor. This is especially the case in high-enthalpy
flows, where small particles of metallic or nonmetallic materials exist. Epoxy is commonly used as a
filling material for calorimeters to enhance the strength. Unfortunately, its heat flux loss is much higher
than that of air, and qloss/q0 is more than 10% for a test time of 3 ms. Thus, corrections are needed if
high-accuracy heat flux results are expected.
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According to the energy conservation law, the loaded heat flux on the surface q0 has the
following relationship with the absorbed heat flux of the CVD diamond qb and the heat flux loss to its
surroundings qloss:

q0 = qb + qloss (12)

In actuality and for simplicity, qb is the heat flux value calculated by Equation (2) from the sensor
output temperature signal. Additionally, qloss is the heat flux transferred from the calorimeter element
to the backing material, namely, the heat flux rate lost from the CVD diamond. qloss is calculated from
Equation (11) and is brought into Equation (12). We also define the correction coefficient ξ of the
transient calorimeter as:

ξ(a, t) =
2a

1 + a

∞∑
n=0

( 1− a
1 + a

)n
er f c

(
(2n + 1)L

2
√
α1t

)
(13)

Then, Equation (12) can be rewritten as

q0 =
qb

1− ξ(a, t)
(14)

where ξ is a function of the effusivity ratio a and time t for a specific calorimeter. The dynamic
correction of the calorimeter measurement results can be made using Equation (14) if the thermal
diffusion coefficient of the back-filling material can be obtained.

The parameters of epoxy in the simulation in Section 2.2 can be obtained from Table 1. The dynamic
correction in Equation (14) was first used to correct the simulated results. The calorimetric element
radius of r0 = 2.5 mm is used as an example; the calculation result in Figure 6 was modified using
Equation (14), and the results are shown in Figure 9. The error before the correction is 33% at 30 ms,
and the overall error after the correction is within 7.8%. This deviation is within 2.3% if the test time is
smaller than 12 ms. Although only one-dimensional heat conduction is considered in the modification,
it is found that the lateral heat flux loss from the CVD diamond can be ignored. The results are
considered excellent for heat flux measurements.
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It is observed that the measurement error of the transient calorimeter can be reduced to acceptable
deviation level after the dynamic correction (Equation (14)) since the thermal diffusivity of the backing
material is known. During the manufacturing process of the sensor, the epoxy is attached to the back
of the calorimetric element by potting and subsequently solidifies. However, the epoxy is a compound,
and the physical parameters are difficult to determine. Meanwhile, the potting quality is difficult
to maintain, and the physical parameters of the bottom lining materials are quite different in actual
sensors. Therefore, it is necessary to calibrate the physical parameters of the back-filling material
before applying the dynamic correction of the NTC calorimeter. Subsequently, the dynamic correction
coefficient of each sensor can be obtained. Similarly, other types of sensors, such as thin-film resistance
thermometers and thermocouples, need to be calibrated before application to obtain high-accuracy
experimental results.

4. Experiments Results and Discussion

The above analysis provides theoretical evidence for the dynamic correction of the transient
calorimeter under non-ideal conditions. Further, the correction method is verified through aerodynamic
heating measurement experiments. Since the dynamic correction coefficient is related to the test time,
different test time conditions were chosen to fully test the correction method and the sensor performance.

4.1. Experimental Facility

The calibration experiments were conducted in a shock tube/tunnel that uses detonation driving.
The facility is located in the Laboratory of High-Temperature Gas Dynamics (LHD) at the Institute of
Mechanics, Chinese Academy of Sciences, Beijing, China. A schematic of the shock tunnel is shown in
Figure 10a. The system consists of a dump section, a driver section, a driven section, a hypersonic
nozzle, and a test section. The dump, driver, and driven sections are 3, 15, and 11 m in length,
respectively, and they have the same inner diameter of 224 mm. The test section is 10 m long and
1.2 m in diameter. The nominal Mach number of the nozzle is 5.5, and the nozzle exit diameter is
300 mm. Both the main and auxiliary diaphragms are flat-scored metal diaphragms. Different depths
of the grooves are designed to ensure that they will not fail during initial pressure differences across
the diaphragms before igniting the flammable gases. An ignition tube is placed close to the main
diaphragm in the driver tube. The mixture in the ignition tube is initially ignited by electrical sparks.
A high-temperature jet is formed and propagates into the driving section, thereby igniting the detonable
gas directly. This leads to a stable detonation wave traveling upstream in the detonation tube, behind
which a Taylor wave follows; the products have high temperature and pressure. Using detonation as
the driving method, the facility can provide high-temperature gas conditions for hypersonic flight.
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board, which are integrated into an equipment by Donghua software, INC (Taizhou, Jiangsu, China). 
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As a supplement to extend the capabilities of the facility, it can be re-arranged to operate
under other types of test conditions. One is called the single detonation shock tunnel, which has
a longer test time; the schematic of the facility is shown in Figure 10b. Then the main diaphragm
is removed, and the detonation wave propagates to the left side as it is ignited close to the nozzle
throat. The high-temperature and high-pressure gas source behind the Taylor wave are used as
the experimental gas; namely, the experimental gas composition represents the detonation product.
Another test condition is obtained using the detonation-driven shock tube, as shown in Figure 10c.
Compared to the detonation shock tunnel (Figure 10a), the nozzle is removed, and the test model is
placed at the exit of the driven section.

In the present study, we use these three types of operations to fully validate our new calorimeters.
All the tests in the present study were conducted at room temperature. The measurement system used
in this experiment mainly include a conditioner and a data acquisition board, which are integrated into
an equipment by Donghua software, INC (Taizhou, Jiangsu, China). Before the experiment, a constant
of 10 mA current provided by the conditioner was loaded on each sensor. The voltage at the ends
the platinum film resistance were also amplified by the conditioner at a gain factor of 100. All signals
from the sensors were acquired by the data acquisition board and were processed on a PC-based data
acquisition system at a sampling rate of 1 MHz. The measured voltage signals were converted into
temperature signal according to the temperature coefficient of the sensors which had been statically
calibrated before the experiment. Besides, the measurement system was also calibrated and the overall
measurement deviation was found to be 0.15%. The other details of the facility, the pressure/incident
shock speed measurement method or position, and the free-stream parameter calculation method are
available in reference [36].

4.2. Test Model and Sensor Arrangement

For the comparative experiments, two types of NTC sensors are designed in the present study.
One has a radius of 10 mm and a back-filling material of air (NTC-10), and the other miniaturized
sensor has a radius of 2.5 mm and a bottom liner filled with epoxy (NTC-2.5). Figure 6 shows that the
sensor NTC-10 obtains excellent heat flux results even without corrections. However, the epoxy in the
sensor NTC-2.5 leads to heat flux dissipation so that dynamic corrections are necessary. It should be
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noted that the radius used here represents the dimension of the CVD diamond, and the radius of the
entire sensor is 0.2 mm larger, i.e., 10.2 and 2.7 mm for the NTC-10 and NTC-2.5, respectively.

Two types of typical models were selected in the present study, a flat plate and an R20 sphere.
The flat plate was used in the shock tunnel, and the sphere was used in the shock tube. The flat plate,
which is a 17◦ angle wedge model, is shown in Figure 11. In this design, the flat plate on the wedge
model can be replaced. Due to the relatively large size of the NTC-10, two flat plates are designed.
In flat plate 1, three NTC-10 sensors (No. C01–C03) are evenly installed at 150, 200, and 250 mm
from the apex along the axis. In flat plate 2, three NTC-2.5 sensors (No. C04–C06) are installed at the
corresponding positions. On both sides of C05, two NTC-2.5 sensors (No. C07, C08) are installed at a
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For the R20 mm sphere model, only two NTC-2.5 calorimeters (No. C05–C06) were installed,
as shown in Figure 12. The test model was placed 50 mm downstream of the open end of the driven
tube to avoid disturbances caused by the interaction between the detached shock wave and the inside
wall of the tube to the flow field around the test model.
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4.3. Results and Discussion

4.3.1. Results of the Detonation Shock Tunnel Test

In the detonation shock tunnel, a mixture of 2H2 + O2 + 2N2 was used as the initial driver gas,
and air was used as the initial test gas in the driven section. The initial pressure values were 0.27 MPa
and 3800 Pa, respectively. The test parameters are listed in Table 2; the total pressure was 1.22 MPa,
and the temperature was 3570 K. The reservoir pressure was measured using pressure transducers
mounted at the end of the shock tube. The other reservoir parameters were computed using the
measured shock tube filling pressure, shock speed, and nozzle reservoir pressure. The stagnation
pressure history is shown in Figure 13. The plateau pressure is maintained for about 14 ms. Based on
the reservoir conditions, the free-stream was subsequently determined by numerically rebuilding the
nozzle flow [37].

Table 2. Test parameters in the detonation shock tunnel.

Parameters Value

Reservoir
P0, MPa 1.22

T0, K 3570

Freestream

T∞, K 749
ρ∞, kg/m3 3.05 × 10−3

u∞, m/s 2933
P∞, Pa 663
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Figure 14 shows the temperature curve obtained from the NTC-10 in flat plate 1 and the
corresponding calculated heat flux curve. As shown in Figure 14b, the variation of the heat flux over
time reflects the stages of flow field starting and stability processes. The heat flux is relatively stable
during the effective test time, and the steady flow duration lasts about 14 ms.
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Since the free-stream flow parameters are known (Table 2), the surface heat flux of the flat plate
can be obtained theoretically. The reference enthalpy method [38] is used to calculate the theoretical
heat flux:

qw = 0.332ρeuePr−2/3Re−0.5
x

√
ρ∗µ∗

ρeµe
(haw − hw) (15)

where ρ*, µ* are the gas parameters corresponding to the reference temperature; haw is the adiabatic
wall enthalpy, namely the recovery enthalpy; hw is the wall enthalpy; ρe, µe are the incoming flow
parameters from the outer edge of the boundary layer, i.e., the gas parameters after the oblique shock
wave for the wedge model.

The repeatability of the experiments and the measurements was investigated. Figure 15 shows
the obtained heat flux histories of C01 (NTC-10) for three measurements for the same nominal test
conditions. The value between 15 ms and 25 ms in Figure 15 is used as the experimental heat flux.
The relative standard deviation of the heat flux in the three tests is about 1.7%. The average heat flux
amounts to 0.192 MW/m2. Table 3 summarizes the results of heat flux values obtained from the three
NTC-10 sensors and the theoretical value. The experimental value is slightly lower than the theoretical
value, which is due to the heat flux loss from the CVD diamond. The measurement deviations between
the experimental and theoretical values are within 6%, and the relative standard deviations of all
sensors are within 2%. Thus, the results show that the NTC sensor with air as a backing material
provides acceptable results even without corrections, and the results correspond to the simulated
results, as shown in Figure 6.
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Table 3. Comparison of the experimental results of the NTC-10 sensors with the theoretical value.

Sensor No.
Run 1 Run 2 Run 3 Average Value Theoretical Value Relative Error

MW/m2 %

C01 0.190 0.190 0.197 0.192 0.196 −2.02
C02 0.163 0.162 0.170 0.165 0.170 −2.79
C03 0.141 0.140 0.148 0.143 0.152 −5.81

Figure 16 shows the comparison of the three heat flux measurement results of the sensor C05
(NTC-2.5) in plate 2, and the sensor C02 (NTC-10) at the same position in plate 1. The results of the
NTC-2.5 sensor are about 30% lower than the theoretical value. This result is expected, since the
epoxy in the NTC-2.5 absorbs a considerable amount of energy from the CVD diamond, resulting
in deviations, as calculated in Section 2.2. However, the repeatability of the NTC-2.5 sensor is also
very good.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22 
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The corrections of the results of the NTC-2.5 in Figure 16 are performed using Equation (14).
However, the ρck value of the epoxy needs to be obtained. Since the physical parameter of the epoxy
has large deviations due to the manufacturing processes, the ρck of the epoxy in the present sensors
is calibrated using a comparison to the theoretical heat values instead of using the data in Table 1.
Different ρck values of the epoxy are tested in Equation (14) to correct the results of the NTC-2.5 sensors;
the ρck value that achieves the best agreement between the corrected and theoretical values is used.
Figure 17 shows the heat flux curves of C05 (NTC-2.5) with/without corrections. The corrected result
agrees well with the experimental results and the results of the C02 (NTC-10) sensor. The ρck values of
epoxy for the five NTC-2.5 sensors are shown in Table 4; the relative standard deviation between the
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values is about 11%, which is attributed to an error in the production process. Although this deviation
may be improved, a calibration of each sensor is needed if high accuracy heat transfer measurements
are desired. This applies also to other sensors since the ρck values of Type-E thermocouples also require
detailed calibration.
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Figure 17. Heat flux curves of C02 (NTC-10) and C05 (NTC-2.5) with/without corrections; the data of
C05 before the correction is the average of three test runs.

Table 4. The effusivity calibration results of the NTC-2.5 sensors.

Sensor No. C04 C05 C06 C07 C08

a 0.038 0.035 0.030 0.040 0.041

4.3.2. Results of the Single Detonation Shock Tunnel Test

For the validation of the proposed NTC sensors, the flat plate with the two types of NTC sensors
was tested in the single detonation shock tunnel, where the test time is much longer than that of the
detonation shock tunnel. The detonation section was filled with a mixture of 2H2 + O2 + 1.25N2 at a
pressure of 0.12 MPa. The total pressure was about 0.725 MPa, and the temperature was about 2862 K.
The stagnation pressure history is shown in Figure 18 for a test time of about 30 ms. Six experimental
runs were conducted in the single detonation operation mode, with three test runs for plates 1 and 2,
respectively. The sensor installations were the same as those in the detonation shock tunnel experiments.
The free-stream parameters are not displayed here since theoretical methods are not available to obtain
the heat flux on the flat plate for the combustion products of 2H2 + O2 + 1.25N2.
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Figure 19 shows the heat flux curves of NTC-10 and NTC-2.5. Both sensors underwent three test
runs. The repeatability of both sensors is good. The heat flux curve of NTC-10 shows a downward
trend with time, which is attributed to the continuous decrease in stagnation pressure, as shown in
Figure 18, rather than a sensor problem. Besides, the heat flux obtained from the NTC-2.5 is smaller
than that of the NTC-10 and shows the same regularity, as shown in Figure 16, in the detonation shock
tunnel experiments. This result is attributed to the much greater heat loss from the CVD diamond
to the epoxy than to the air. Since the test time is much longer in the single detonation shock tunnel,
it is obvious to find that the difference between these two sensors increases over time, which also
corresponds with the simulated results shown in Figure 6.
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Subsequently, the heat flux curve of C05 in Figure 19 is corrected by Equation (14), and the results
are shown in Figure 20. It should be noted here that the value of a is the value obtained from the results
in Section 4.3.1. The corrected/uncorrected results of C05 are shown in Figure 20. The corrected results
of C05 agree well with the heat flux of C02, which has a small deviation from the real heat flux loading,
as discussed in Section 4.3.1. Thus, the dynamic correction method for the NTC sensors shows good
performance, even for a test duration as long as 30 ms.Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 22 
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Here ρ, μ, and h are the gas density, viscosity, and enthalpy, respectively, and Pr is the Prandtl 
number. The subscripts w and e denote the conditions at the wall and the outer edge of the boundary 
layer, respectively. (du/dx)0 is the velocity gradient at the outer edge of the boundary layer. The 
subscripts 1 and 2 in Table 5 denote the test gas in front and behind the incident shock wave, 
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(NTC-2.5); (b) Comparison of C03 (NTC-10) and C06 (NTC-2.5).

4.3.3. Results of the Detonation Shock Tube Test

Since the shock tube allows for more quantitative studies than the other tests and the free-stream
flows can be accurately obtained through the shock tube theory, the calibration of the sensors was
also conducted using the detonation shock tube. However, the test time in the shock tube is much
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shorter than that of the other tests. Due to the test space limitation of the shock tube, only two NTC-2.5
sensors (C05 and C06) were installed on two R20 spheres; the sensor arrangement is shown in Figure 12.
Five tests were conducted. The measured heat flux curves for C05 are shown in Figure 21, where the
heat flux of NTC-2.5 is corrected in the same manner as described in Section 4.3.2. However, since the
test time was less than 1 ms, the corrections were also very limited, and the discrepancy was 6% at
most, as shown in Figure 8. The heat flux curves show excellent repeatability, similar to the other tests.
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The value between 9.8 and 10.4 ms in Figure 21 is used as the experimental heat flux. The heat
flux results are summarized in Table 5, including the theoretical results obtained using the Fay-Riddle
formula and the test flow in the shock tube. According to the Fay-Riddle formula, the heat flux at the
stagnation point is [39]:

qw = 0.763Pr−0.6(ρeue)
0.4(ρwuw)

0.1

√(
du
dx

)
0
(he − hw) (16)

Here ρ, µ, and h are the gas density, viscosity, and enthalpy, respectively, and Pr is the Prandtl number.
The subscripts w and e denote the conditions at the wall and the outer edge of the boundary layer,
respectively. (du/dx)0 is the velocity gradient at the outer edge of the boundary layer. The subscripts 1
and 2 in Table 5 denote the test gas in front and behind the incident shock wave, respectively. Ms is the
incident shock Mach number. The experiment in the detonation shock tube was conducted under the
following conditions: a mixture of 2H2 + O2 + 1.5N2 and a pressure of 0.08 MPa in the driving section.
The shock tube was filled with air at a pressure of 5000 Pa.

Table 5. Experimental conditions and heat flux values in the shock tube.

Runs Ms
ρ2

(kg/m3)
p2

(kPa)
u2

(m/s)

Theoretical
Heat Flux
(MW/m2)

Measured Heat
Flux (MW/m2) Relative Error (%)

Sensor
C05

Sensor
C06

Sensor
C05

Sensor
C06

1 4.26 0.308 109.2 1187 2.25 2.02 2.07 −10.1 −7.8
2 4.31 0.309 109.7 1188 2.20 2.10 2.04 −4.5 −7.3
3 4.26 0.307 107.1 1173 2.28 2.06 2.09 −9.7 −8.4
4 4.29 0.308 108.7 1182 2.22 2.08 2.08 −6.1 −6.0
5 4.30 0.309 109.2 1185 2.30 2.15 2.12 −6.7 −8.0

It is observed that the measured heat fluxes with corrections are, on average, 7.5% lower than the
theoretical results, and the maximum deviation is 10.1%. The main reason is that the sensor is too large
for the spherical model; the curvature of the stagnation point is changed, resulting in lower heat flux.
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Nevertheless, the overall repeatability is excellent, and sensors with smaller size are being developed
to obtain the heat flux at a location with small curvature.

5. Conclusions

In this study, we examined the measurement performance of a robust fast-response transient
calorimeter by solving the two-dimensional heat conduction equation and conducting verification tests
in a transient facility with three test conditions to fully validate the new calorimeters. The following
conclusions were drawn from the experimental and numerical results. First, the non-ideal thermal
environment of the NTC calorimeter (heat exchange with the surroundings) resulted in a smaller
measured heat flux than the loaded heat flux. The larger the effective thermal effusivity of the
back-filling material, the larger the heat energy loss from the CVD diamond was, and the larger the
measurement deviation was. Accordingly, a dynamic correction method was developed to compensate
for the energy loss from the backside of the calorimeter element. Finally, the experimental results of
the NTC calorimeters in the transient facilities exhibited good repeatability, and the corrected results of
the NTC-2.5 sensors showed good agreement with the theoretical heat flux.

Currently, work in this area is still in progress, and additional experimental studies using different
sensor diameters and different back-filling materials are necessary for demonstrating and improving
the construction technique. However, the preliminary results are encouraging, and the NTC gauges
can be used to extend and supplement heat transfer measurements made by other techniques.
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