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Abstract: The recent increase in earthquake activities has highlighted the importance of predicting
the seismic response of structures. Damage to civil infrastructure, particularly bridges, can cause
considerable human and property losses. The seismic performance of a structure should be evaluated
based on the characteristics of structures and earthquakes. For this, this study defined the two
main factors of ground motion and structural system that affect the seismic response of a structure.
Ground motions, which are mainly dependent on the distance from the epicenter, were defined
as near-fault and far-fault ground motions. Near-fault ground motion includes the characteristics
of forward directivity and fling step. In addition to ground motion, the aspect ratio of the pier,
as a representative factor of a structural system, influences the seismic behavior of bridges. Thus,
this study assessed the seismic response of bridges with various aspect ratios under the near-fault
and far-fault ground motion conditions. Nonlinear static analysis was first performed to evaluate
the seismic capacity of the pier. Then modal and dynamic analyses were carried out to examine the
effects of the aspect ratio and ground motion on the displacement and force response and the change
in the natural frequency of the bridge.

Keywords: bridges; seismic response; ground motion; far fault; near fault; forward directivity; fling step;
aspect ratio; nonlinear dynamic analysis

1. Introduction

In recent years, seismic activities have sharply increased around the world [1]. The increase in the
strength and number of seismic activities requires predicting the seismic performance of structures to
ensure their stability during earthquakes [2–4]. The seismic performance of a structure depends on the
characteristics of ground motion and the structural elements of the structure. Single-degree-of-freedom
(SDOF) structures have a relatively small number of factors to account for in the response of the structures
in an earthquake [5]. On the other hand, the seismic response of multi-degree-of-freedom (MDOF)
structures, which are composed of various structural elements, cannot be easily evaluated. This is
because MDOF structures are not dominated by a specific factor in seismic analysis [6,7]. Furthermore,
the nonlinear behavior of materials and components, which would occur under an earthquake load,
makes predicting the seismic response of MDOF structures more difficult [8]. The seismic response of a
structure is also affected by the characteristics of ground motion [9,10]. Therefore, for bridges composed
of various structural components, such as piers, bearings, and girders, this study examined the effects of
ground motion and aspect ratio on the seismic performance of a bridge structure.

Ground motions can be divided into near-fault and far-fault ground motions, depending on
the distance from the epicenter and the characteristics of each ground motion. Recent studies have
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analyzed the effects of near-fault ground motion on architectural and civil structures, such as nuclear
power plants, dams, bridges, and buildings [11–14]. Near-fault ground motion generally shows strong
and narrow-band pulses for a short period in spectral accelerations [15–17]. Therefore, structures with
a short period of vibration are mostly affected by near-fault ground motion [18,19]. On the other hand,
far-fault ground motion, which has long-period characteristics and relatively small response pulses
as it travels over long distances, influences structures with a long natural period [20,21]. Therefore,
this study evaluated the effects of near-fault and far-fault ground motions on the seismic performance
of bridge structures. In particular, near-fault ground motions were selected to have the characteristics
of forward directivity and fling step. A total of 14 ground motions were involved in the study (i.e.,
seven seismic waves for each ground motion based on recent ground activities).

In addition to seismic ground motions, the seismic behavior of bridge structures is significantly
affected by the height of the bridge [22]. That is, the bridge column is one of the most vulnerable
parts of a bridge when subjected to ground motion, which requires accurate modeling and seismic
analysis [23]. The height of a pier can be defined as the aspect ratio of the pier, which is the ratio of
the length of the pier to the diameter of the cross section. In the design process of a bridge, shear and
flexural failures are strongly dependent on the aspect ratio of the pier. In general, as the aspect ratio
increases, the failure of a bridge changes from shear to bending mode. The seismic performance of
the entire bridge can also be affected by the aspect ratio of the pier [24]. Some recent studies [25,26]
analyzed the effect of the aspect ratio of a pier on the seismic response of a bridge and showed that the
displacement and shear force of the pier increased with an increasing aspect ratio but decreased after a
certain aspect ratio. Studies on seismic response with respect to aspect ratio in a bridge system are still
limited. Therefore, various aspect ratios of piers were considered to investigate the seismic behavior of a
structural bridge system under near-fault and far-fault ground motions. The bridge considered in the
study is a prestressed concrete (PSC) I-type bridge. Numerical modeling was performed using detailed
drawings of a real bridge. The analysis accounted for nonlinear materials and the behavior of the bridge.

2. Near-Fault and Far-Fault Ground Motions

2.1. Collection of Ground Motions

This study collected actual near-fault and far-fault ground motions from the NGA-West2
(Next Generation Attenuation-West2) database of the PEER Center (Pacific Earthquake Engineering
Research Center) and KIK-net (Kiban Kyoshin network) for the nonlinear dynamic analysis of
bridges [27,28]. Tables 1 and 2 summarize the information on a total of seven near-fault and far-fault
ground motions, respectively, to use the actual ground motions. Near-fault and far-fault ground
motions were basically classified according to the distance from the epicenter: less than 10 km for the
near-fault ground motion and 90 km or more for the far-fault ground motion [29,30]. When selecting
the ground motions, the magnitude and shear wave velocity were based on the ground and rock
conditions of the target site of this study. Therefore, the ground motions measured at the station were
defined to have a magnitude ranging from around 5 to 8 M and a shear wave velocity higher than
600 m/s. In particular, near-fault ground motions were selected by accounting for forward-directivity
and fling-step characteristics that can cause severe damage to structures [31].

The forward-directivity effect is generated by the velocity of a fault rupture, which is similar to the
velocity of shear wave propagation. Forward directivity produces ground motion with a short duration
and large amplitude. Fling step occurs due to permanent deformation of the ground induced by the
structural transformation of the fault rupture during seismic activity. The fling-step effect generates a large
velocity amplitude on one side, which shows monotonic behavior in the displacement time history [32].
Figure 1 shows the recorded time histories of the near-fault and far-fault ground motions. Compared with
the far-fault ground motion, the near-fault ground motion with forward directivity shows a high amplitude
up to approximately 150 m/s in a short duration, as shown in Figure 1a. The fling-step ground motion
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produces a maximum displacement of approximately 600 mm and a permanent displacement movement
to the negative side of the displacement time history, as shown in Figure 1b.

Table 1. List of near-fault ground motions.

Name Country Year Magnitude
(M)

Distance
(km)

PGA
(g)

Mean
Period (s)

Vs30
(m/s)

Type of
Effect

Gyeongju Korea 2016 5.8 9.1 0.41 0.15 610 FD
Pohang Korea 2017 5.4 9.5 0.27 0.48 750 FD

Northridge America 1994 6.69 5.92 0.43 0.15 628.99 FD
Sierra
Madre America 1991 5.61 10.36 0.28 0.25 680.37 FD

Chi-Chi Taiwan 2016 7.62 11.48 0.44 0.18 665.2 FS
Loma
Prieta America 1989 6.93 12.69 0.26 0.49 671.77 FS

Kocaeli Turkey 1999 7.4 3.2 0.63 0.26 691.34 FS

FD: Forward-directivity effect; FS: Fling-step effect.

Table 2. List of far-fault ground motions.

Name Country Year Magnitude
(M)

Distance
(km)

PGA
(g)

Mean
Period (s)

Vs30
(m/s)

EHMH01010324 Japan 2001 6.4 119 0.098 0.12 743
Big Bear-01 America 1992 6.46 95.94 0.035 0.44 624.01

Chi-Chi Taiwan 1999 7.62 109.27 0.080 0.97 856.38
Hector Mine America 1999 7.13 96.91 0.033 0.62 642.83

Denali America 2002 7.9 239.52 0.0094 0.96 708.02
Tottori Japan 2000 6.61 101.82 0.078 0.15 677.44
Niigata Japan 2004 6.63 100.45 0.031 0.11 849.01Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 17 

 

(a) Forward directivity 

 

(b) Fling step 

 

(c) Far fault 

Figure 1. Typical time histories of the near-fault ground motion with forward-directivity and fling-
step effects and the far-fault ground motion: (a) Near-fault ground motion with forward directivity; 
(b) near-fault ground motion with fling step; (c) far-fault ground motion  

2.2. Ground Motions with Soil Conditions 

The selected ground motions were revised to match the design response spectrum in the entire 
period. In this study, spectrum matching was performed for a period of 0.02 to 10 sec using the 
algorithm of Alatik and Abrahamson [33]. Ground response analysis was then performed according 
to the site condition of a target bridge to revise the ground motions. The local site condition is 
essential in the seismic response of a structure. Table 3 lists the site classifications specified in several 
main design standards: EC 8 (Eurocode 8) [34], UBC 97 (Uniform Building Code) [35], KDS (Korean 
Design Standard) [36], and RPA 99/2003 (Regles Parasismiques Algeriennes) [37]. Eurocode 8 and 
UBC 97 define the site classifications based on the shear wave velocity averaged at a bedrock depth 
of 30 m (Vs30). KDS and RPA 99/2003 use the shear wave velocity (Vs) in the range of bedrock depths 
(H) from 10 to 20 m to define the site classifications. 

The target site of this study is a shallow and hard ground area with a bedrock depth of 
approximately 17 m and a shear wave velocity higher than 260 m/s. The Eurocode 8 and UBC 97 
standards classify the target site as soil type C and RPA 99/2003 as S3. According to KDS, which 
accounts for both the bedrock depth and shear wave velocity, the target site was included in the S2 
type. Based on the site conditions defined from the shear wave velocity of the actual ground, 
nonlinear ground response analysis was performed to generate near-fault and far-fault artificial 
ground motions [38–40]. The dynamic properties of the soil used in the ground response analysis 
involved the unit weight, plasticity index, and shear wave velocity. The property values were 
determined by the shear wave velocity corresponding to the site classification. Figure 2 shows the 
response spectrum obtained from the nonlinear ground response analysis according to the 
amplification of ground motions. The near-fault ground motions included a relatively low-frequency 
range compared with the far-fault ground motions, but no significant differences were found. The 
peak values of the response spectrum were approximately 5 to 15 Hz in the near-fault ground motions 
and 10 to 20 Hz in the far-fault ground motions. The acceleration of the ground motions was rapidly 
reduced to maintain an almost constant value with increasing frequency after the peak value. 

Figure 1. Typical time histories of the near-fault ground motion with forward-directivity and fling-step
effects and the far-fault ground motion: (a) Near-fault ground motion with forward directivity; (b)
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2.2. Ground Motions with Soil Conditions

The selected ground motions were revised to match the design response spectrum in the entire
period. In this study, spectrum matching was performed for a period of 0.02 to 10 s using the algorithm
of Alatik and Abrahamson [33]. Ground response analysis was then performed according to the
site condition of a target bridge to revise the ground motions. The local site condition is essential
in the seismic response of a structure. Table 3 lists the site classifications specified in several main
design standards: EC 8 (Eurocode 8) [34], UBC 97 (Uniform Building Code) [35], KDS (Korean Design
Standard) [36], and RPA 99/2003 (Regles Parasismiques Algeriennes) [37]. Eurocode 8 and UBC 97
define the site classifications based on the shear wave velocity averaged at a bedrock depth of 30 m
(Vs30). KDS and RPA 99/2003 use the shear wave velocity (Vs) in the range of bedrock depths (H) from
10 to 20 m to define the site classifications.

The target site of this study is a shallow and hard ground area with a bedrock depth of
approximately 17 m and a shear wave velocity higher than 260 m/s. The Eurocode 8 and UBC 97
standards classify the target site as soil type C and RPA 99/2003 as S3. According to KDS, which accounts
for both the bedrock depth and shear wave velocity, the target site was included in the S2 type. Based on
the site conditions defined from the shear wave velocity of the actual ground, nonlinear ground
response analysis was performed to generate near-fault and far-fault artificial ground motions [38–40].
The dynamic properties of the soil used in the ground response analysis involved the unit weight,
plasticity index, and shear wave velocity. The property values were determined by the shear wave
velocity corresponding to the site classification. Figure 2 shows the response spectrum obtained
from the nonlinear ground response analysis according to the amplification of ground motions.
The near-fault ground motions included a relatively low-frequency range compared with the far-fault
ground motions, but no significant differences were found. The peak values of the response spectrum
were approximately 5 to 15 Hz in the near-fault ground motions and 10 to 20 Hz in the far-fault ground
motions. The acceleration of the ground motions was rapidly reduced to maintain an almost constant
value with increasing frequency after the peak value.

Table 3. Soil types specified in EC 8 (Eurocode 8), UBC 97 (Uniform Building Code), KDS (Korean
Design Standard), and RPA 99/2003 (Regles Parasismiques Algeriennes).

Eurocode 8 UBC 97 KDS RPA 99/2003

Soil type A:
Vs30 ≥ 800 m/s

Soil type A:
Vs30 ≥ 1500 m/s

S1:
H < 1 m

S1:
Vs > 800 m/s

Soil type B:
360 ≤ Vs30 < 800 m/s

Soil type B:
760 ≤ Vs30 < 1500 m/s

S2:
1 ≤ H ≤ 20 m
Vs ≥ 260 m/s

S2:
400 ≤ Vs < 800 m/s

Soil type C:
180 ≤ Vs30 < 360 m/s

Soil type C:
360 ≤ Vs30 < 760 m/s

S3:
1 ≤ H≤20 m
Vs < 260 m/s

S3:
200 ≤ Vs < 400 m/s

Soil type D:
Vs30 ≤ 180 m/s

Soil type D:
180 ≤ Vs30 < 360 m/s

S4:
H > 20 m

Vs ≥ 180 m/s

S4:
100 ≤ Vs < 200 m/s

Soil type E:
A soil profile consisting of a
surface alluvium layer with

Vs30 values of class C or D and
thickness varying between

about 5 and 20 m, underlain
by stiffer material with Vs30 >

800 m/s

Soil type E:Vs30 < 180 m/s S5: H > 20 m Vs < 180 m/s

Soil type F:
Soils requiring site-specific

evaluation

S6:
Soils requiring

site-specific
evaluation
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Figure 2. Spectral accelerations obtained from site response analyses for seven ground motions defined at
the near and far faults: (a) Spectral accelerations for near-fault ground motions; (b) spectral accelerations
for far-fault ground motions

3. Configuration and Numerical Modeling of the Bridge

3.1. Bridge Configuration and Design

This study selected a constructed PSC bridge widely used in the practical field. Figures 3 and 4
show the side view of a 5-span PSC I-girder bridge and the detailed cross section of the bridge and
columns, respectively. The bridge column is supported by the pile foundation, and the superstructure
of the bridge is supported by a rubber bearing installed on the columns.

The span length of the bridge was designed to be 30 m, and thus the total length of the bridge was
150 m. The abutment at both ends of the bridge was 8 m in height. All the piers of the bridge were 10 m
long with a circular cross section that was 2.3 m in diameter. Longitudinal reinforcement of the pier
was designed by a total of 105 D13 rebars installed in the two lines, as shown in Figure 4. A transverse
stirrup was installed using D16 rebars at an interval of 300 mm. According to the structural drawing,
the concrete compressive strengths of the superstructure and pier were designed to be 27 MPa and 24 MPa,
respectively. The yield strength of the longitudinal and transverse reinforcements was 300 MPa.
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3.2. Numerical Modeling for the Bridge

Nonlinear numerical simulation of the bridge was carried out using the OpenSees program [41].
The superstructure was expected to be within the elastic range due to earthquakes and was modeled
using elastic elements. The pier of the bridge system, which is the main structural element that resists
an earthquake load, was composed of reinforced concrete with longitudinal and transverse steel bars.
Therefore, nonlinear fiber elements were used to account for the cracking of concrete and the yielding of
bars. The rubber bearing was used to model an elastic-perfectly-plastic behavior using spring elements to
consider the inelasticity of the bearing material. The pile foundation was modeled as a fixed boundary
condition at the bottom of the piers. Figure 5 presents the numerical modeling of the bridge components
used in the study.

The height of the pier varied from 5 to 25 m to examine the effects of the aspect ratio of the pier.
The ratio of the longitudinal reinforcement was set to 1.17% based on the value designed in the actual
bridge. The unconfined and confined concrete material properties were designed using the model
proposed by Mander et al. [42]. The steel material was designed according to the bilinear model
proposed by Menegotto et al. [43] in the tension and compression, and the effect of low-cycle fatigue
and bucking of rebars was not considered in the study. Figure 6 shows the stress–strain curves of
concrete and steel.
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4. Nonlinear Static Analysis

To evaluate the seismic behavior of the bridge, pushover analysis, or nonlinear static analysis,
was first performed to assess the capacity of the pier. The bottom of the pier, in which a plastic
hinge could occur due to ground motion, was subdivided into fine elements. The yield and ultimate
displacement capacities were then derived from the shear force and displacement curve obtained from
the pushover analysis for each pier.

In general, the yield displacement of a pier can be determined using either the equivalent energy
or effective stiffness approximation method [44–46]. The equivalent energy approximation method
generates a bilinear energy capacity curve from the shear force and displacement relationship and then
determines the intersection of the bilinear curve, at which the energy capacity becomes equal at each
part of the bilinear curve, as the yield displacement of the pier. The effective stiffness approximation
method defines the yield displacement using the bilinear force and displacement curve obtained using
the initial and post-yielding stiffness. The initial stiffness is defined as 0.6 times the effective yield load.
The yield displacement is defined by intersecting the lines of the initial stiffness and ultimate load,
which balance the area of the force and displacement before and after the yield point.
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In this study, the effective stiffness approximation method was used to obtain the yield displacement
of the piers. The ultimate displacement is usually defined at a point where a 15% reduction in the force
capacity occurs in the force–displacement relationship. When the force reduction was insufficient, a 15%
decrease in stress in the critical section of a pier was used to define the ultimate displacement using the
strain corresponding to the stress reduction. Table 4 lists the yield and ultimate displacements for each
pier according to the pushover analysis results. The yield and ultimate displacements increased, and
the shear force decreased with increasing height of the pier. The increase in the yield displacement
could be mainly attributed to the decrease in the initial stiffness of the pier. The increase in the ultimate
displacement was due to the increase in the corresponding displacement to the constant stress–strain
relationship of the material.

Table 4. Summary of the yield and ultimate displacements and the shear force for the piers of a bridge.

Pier Height (m) Yield Displ. (Dy, mm) Ultimate Displ. (Dy, mm) Max Shear Force (F, kN)

5 22 91 7200
10 88 215 3600
15 193 367 2400
20 361 548 1800
25 563 720 1420

5. Modal Analysis of Bridge

Modal analysis was performed to analyze the natural frequencies and mode shapes of the bridge.
Figure 7 shows the mode shapes of the bridge obtained from the modal analysis. The first and second
modes appeared in the bending shapes in the transverse direction, and the third mode appeared when
bending in the vertical direction. The natural frequency tends to decrease with increasing pier height,
as shown in Figure 8. In the first and second modes, the natural frequencies of the bridge significantly
decreased with increasing height to 15 m. At a pier height higher than 15 m, little change in the natural
frequency was found. The natural frequency of the third mode was almost constant, irrespective of the
increase in the pier height. This indicates that the natural frequencies of the first and second modes of
the bridge were largely affected by the change in structural configuration, but those of the third mode
were not observed.
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6. Seismic Response Characteristics by Nonlinear Dynamic Analyses

6.1. Displacement and Moment of the Bridge

Nonlinear dynamic analysis was performed to analyze the variations in the displacement and
moment of a bridge with a height of 10 m. Figure 9 shows the variations in the lateral displacements
at the top of each pier due to an earthquake. Displacements in piers located inside the bridge were
approximately 1.4 times as large as those in piers at both ends of the bridge. The variations in the
displacement of a bridge were evaluated according to the aspect ratio of the bridge and ground motion
based on the displacements at the top of the inside piers. Figure 10 shows the variations in the moments
along the length of the pier. Similar to the discussion on the displacement, the moments at the inside
piers were approximately 1.5 times as large as those at the outside piers. The maximum moment
occurred at the bottom of the piers and was approximately 18 times larger than the moments at the top
of the piers. Therefore, the effects of the change in the aspect ratio and ground motion on the moment
of the bridge were analyzed using the moment at the bottom of the pier.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17 
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6.2. Analysis of Maximum Displacement

This study evaluated the effects of the bridge height on the maximum displacement of the bridge
and the displacement spectrum of the ground motion. Figures 11 and 12 show the relationship of the
maximum displacement and displacement spectrum according to the height of a bridge for near-fault
and far-fault ground motions, respectively. The displacement of the bridge due to earthquakes showed
a similar tendency of an increase or decrease with the displacement spectrum as the aspect ratio of
the bridge increased. In particular, for a 5 m high bridge, little difference was found between the
maximum displacement and displacement response. This indicates that when the height of a bridge is
low, the type of ground motion dominates the seismic behavior of the bridge. As the height of a bridge
increased, however, the maximum displacement became larger than the spectral response. This is
because a real bridge composed of various structural and non-structural elements has a much larger
mass and higher complexity than the structure assumed in spectral analysis.

The maximum displacement was also compared with the yield displacement capacity of the bridge
obtained from the nonlinear static analysis of the pier. When subjected to near-fault ground motion
with a forward-directivity characteristic, the bridge with a low height of 5 m exhibited a maximum
displacement of 17.72 mm, which was approximately 80.6% of the yield displacement capacity of
22.0 mm. For bridges higher than 5 m, the maximum displacements were within 67.4% of the yield
displacement. On the other hand, the maximum displacement of the bridge under the fling-step
near-fault ground motions reached up to approximately 154.3% of the yield displacement capacity for
the 5 m high bridge. The results of the study show that the maximum displacement response of the
bridge due to the near-fault ground motion with the fling-step effect was close to or larger than the
yield displacement capacity but lower than the ultimate displacement capacity.

The far-fault ground motion produced relatively lower displacements than the near-fault ground
motion. The maximum displacement of a 10 m high bridge, which showed the highest value among
the bridges, was 19.79 mm, which is approximately 22.5% of the yield displacement capacity. For other
heights, the maximum lateral displacement was within 17.2% of the yield displacement. In general,
the bridge showed more significant displacement when subjected to the near-fault ground motion.
However, the far-fault ground motion EQ3_FF with a very low PGA (Peak Ground Acceleration)
of 0.08 g generated the highest maximum displacement of 67 mm for the bridge with a height of
20 m. This is because the bridge and EQ3_FF were similarly in the low-frequency range. These results
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indicate that the displacement response of a bridge is affected by the frequency characteristics of both
the ground motion and structural system.
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6.3. Analysis of Maximum Moment

Figure 13 shows the variation in the maximum moment as the height of the bridge increases.
The maximum moment was more significant when the bridge was subjected to near-fault ground motion
than when subjected to far-fault ground motion. In particular, as discussed regarding the maximum
displacement, near-fault ground motion with the flip-step effect showed a maximum moment larger than
those with the forward-directivity effect. A maximum moment of approximately 26,600 kN·m occurred
when the bridge with a height of 5 m was subjected to the EQ7_NF near-fault ground motion with the
fling-step effect. For high, tall bridges, the fling-step near-fault ground motion also produced relatively
high values of the maximum moment ranging from approximately 17,500 to 25,000 kN·m. On the other
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hand, when the bridge was subjected to far-fault ground motion, the largest maximum moment was
approximately 7600 kN·m at the bridge with a height of 20 m. The maximum moment of a bridge subjected
to the forward-directional ground motion tended to decrease with increasing bridge height. That is, in the
case of far-fault ground motion and near-fault ground motion with the fling-step effect, the decreasing
trend of the maximum moment with increasing bridge height was indistinct. Furthermore, the ground
motion with the fling-step effect remained a high maximum moment, barely affected by the bridge height.

For a bridge, the maximum moment could have a relationship with the maximum displacement.
However, considering the changes in structural configuration and ground motion, the moment is
barely related to the displacement response of the structure alone. Therefore, this study proposed the
non-dimensional dynamic response ratio (DR), which is defined as the ratio of the maximum dynamic
response and the yield displacement of a bridge, to accurately analyze the tendency of the maximum
moment occurring in a bridge according to the change in bridge height:

DR(%) =
Dmax

Dy
× 100 (1)

where Dmax is the maximum displacement response of a bridge for each ground motion, and Dy is the
yield displacement of a pier with different heights, as defined in Section 6.1.

Figure 14 presents a scatter plot of the maximum moment and DR for all the bridges under both
the near-fault and far-fault ground motions. When subjected to far-fault ground motions, the bridges
showed the maximum moment within approximately 25% of the DR. In the case of near-fault ground
motions with forward directivity, the maximum moment reached as much as approximately 80%
of the DR. In particular, some near-fault ground motions with the fling-step effect were shown
to be larger than 80% of the DR. A DR higher than 100% means that the displacement response
exceeds the yield displacement capacity of the bridge, resulting in the yielding of the bridge under an
earthquake. The maximum moment tends to increase as the DR increases, but the rate of increase in
the maximum moment decreases when the DR exceeds approximately 80%. According to a regression
analysis, curve fitting showed a very good relationship between the maximum moment and the DR
with a correlation coefficient (R-value) of 0.99. The DR proposed in this study showed a very good
estimation of the maximum moment of a bridge, which was difficult to predict using only the maximum
displacement response.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17 
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6.4. Analysis of the Variations of the Natural Frequency

This study also evaluated the changes in the natural frequency of bridges before and after ground
motions. The natural frequency of the bridge tended to decrease in some ground motions but did not
change in other ground motions. The decrease in the natural frequency was larger at near-fault motions
than at far-fault ground motions. Forward-directional near-fault ground motion decreased the natural
frequency by approximately 32.8%. For near-fault ground motions with the fling-step effect, the decrease
in the natural frequency of the bridge ranged from approximately 9.6 to 41.0%. The far-fault ground
motion showed a minimal decrease in the natural frequency of approximately 3.4 to 5.3% only when an
EQ3_FF earthquake occurred. Therefore, the proposed DR was used to assess the relationship between
the characteristics of ground motion and the decrease in the natural frequency of the bridge.

Figure 15 plots the reduction of the natural frequency in terms of DR. Both the near-fault and
far-fault ground motions showed no decrease in the natural frequency when the DR of the bridge
was less than 12.5%. Therefore, this study investigated the relationship between the DR and the
decrease in the natural frequency for a DR larger than 12.5%. Linear regression analysis showed that
the decrease in the natural frequency was associated with the increase in the DR, as shown in Figure 15.
Compared with the far-fault ground motion, the near-fault ground motion with forward-directivity
and fling-step pulses significantly increased the DR and reduced the natural frequency. The linear
regression line shows a relatively larger dispersion in the near-fault ground motion than in the far-fault
ground motion, as shown in Figure 15. The rate of decrease in the natural frequency due to the far-fault
ground motions was similar to that due to the near-fault ground motions. The rate of decrease in
the natural frequency was approximately 2.25% for the near-fault ground motions and 2.54% for the
far-fault ground motions as the DR increased.
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7. Conclusions

This study examined the effects of the aspect ratios of a bridge and the characteristics of ground
motion on the seismic response of a bridge. For this, nonlinear static analysis, or pushover analysis,
was first performed to derive the shear force and displacement relationship of piers and evaluate the
yield and ultimate displacement capacities. The yield displacement was determined using the effective
stiffness approximation method, and the ultimate displacement was determined from a strain value
corresponding to a 15% decrease in stress in the critical section of the pier. The initial stiffness of the
pier decreased with a decreasing aspect ratio, which resulted in a decrease in the yield displacement
capacity and an increase in the maximum shear force capacity. The ultimate displacement, determined
from a constant strain of the confined concrete, increased with an increasing aspect ratio of the pier.

The maximum displacement of the bridge was compared with the displacement spectrum according
to the bridge height and ground motion. As the aspect ratio of the pier increased, the tendency of an
increase or decrease in the maximum displacement of the bridge was similar to that of the displacement
spectrum. This indicates that the displacement response would be affected mainly by the characteristics
of ground motion. However, the rate of increase or decrease in the displacement response was larger than
that of the response spectrum. Some differences between the maximum displacement and displacement
spectrum could be attributed to the effects of the aspect ratio of the bridge.

Compared with the displacement capacity of the bridge, far-fault ground motion produced the
maximum displacement within approximately 22.5% of the yield displacement capacity. On the other
hand, when subjected to near-fault ground motion with the forward-directional pulse, the maximum
displacement response was within 80.6% of the yield displacement capacity. Fling-step near-fault
ground motion significantly increased the maximum displacement of the bridge, which was close to or
larger than the yield displacement capacity.

For the maximum moment response of the bridge, this study proposed the dynamic response ratio
(DR), which is defined as the ratio of the maximum displacement to the yield displacement capacity.
The maximum moment of the bridge tends to increase as the DR increases, but the rate of increase
in the maximum moment decreases when the DR exceeds approximately 80%. Regression curve
fitting showed a good relationship between the proposed DR and the maximum moment of a bridge.
The maximum moment under far-fault ground motion occurred within 25% of the DR. Near-fault
ground motion with forward directivity produced the maximum moment at approximately 80%
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of the DR. In the fling-step ground motion condition, the maximum moment reached as much as
approximately 160% of the DR.

This study also investigated the changes in the natural frequency of bridges caused by ground
motions. The post-earthquake natural frequency of the bridge decreased only in some ground motions.
Therefore, the proposed DR was employed to analyze the decrease in the natural frequency of the bridge
and the characteristics of ground motion. Compared with the far-fault ground motion, the near-fault
ground motion showed a greater decrease in the natural frequency with the increase in the DR. The rate
of decrease in the natural frequency with an increasing DR was similar in near-fault and far-fault
ground motions.
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