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Abstract: This study aimed to determine the bactericidal efficacy of sequential use of NaOCl pH 12
followed by acidified NaOCl pH 6.5, and compare it to that of either of these NaOCl solutions alone.
E. faecalis biofilm was grown on standardized dentine specimens for four weeks. The specimens were
randomly divided into four groups: (A) 4 min exposure to 0.9% saline solution (control); (B) 4 min
exposure to 4% NaOCl pH 12; (C) 4 min exposure to 4% NaOCl pH 6.5; and (D) 2 min exposure to
4% NaOCl pH 12 followed by 2 min exposure to 4% NaOCl pH 6.5. The bactericidal activity was
evaluated after the 4 min of contact time using confocal laser scanning microscopy. The volume
ratio of red fluorescence to green and red fluorescence indicated the proportion of dead cells in the
biofilm. The percent of dead cells in the saline solution group was significantly lower than those in
the other groups. There was no significant difference between NaOCl pH 12 compared to NaOCl pH
6.5. The sequential use of NaOCl pH 12 followed by pH 6.5 significantly increased the percent of
dead cells compared to both the samples exposed to either NaOCl pH 12 or pH 6.5. These results
show that sequential irrigation protocol had a stronger bactericidal effect than the commonly used
NaOCl pH 12.

Keywords: bactericidal efficacy; biofilm; confocal laser scanning microscopy; Enterococcus faecalis; NaOCl; pH

1. Introduction

Endodontic diseases involve microbial infections organized in biofilm structures [1]. These microbial
communities are embedded in self-produced extracellular polymeric substances (EPSs) that attach to
surfaces and form three-dimensional matrix structures, making the bacteria more resistant to antimicrobial
agents [1–5]. Therefore, an effective root canal disinfection procedure requires the use of an irrigation
solution with the ability to disrupt the biofilm matrix along with having a broad antimicrobial spectrum [5].

Sodium hypochlorite (NaOCl) is the most widely used irrigation solution in endodontics [6],
and its antibacterial and tissue dissolution effectiveness depends on its pH, among other factors [7–9].
At pH 12, the regular type of NaOCl solution, the hypochlorite ion (OCl−) predominates in solution.
At this pH, tissue dissolution of NaOCl is maximized and it has the capability to disrupt and reduce
the matrix of biofilm-related matter [8–12].

On the other hand, when NaOCl is acidified to pH 6.5, hypochlorous acid (HOCl) is mostly
present [12–14], and the bactericidal ability of NaOCl is maximized [9,10,12,14,15].

This study was designed with the rational of sequential use of NaOCl at two different pH:
first disrupting the protective biofilm matrix, using NaOCl at pH 12, in order to allow subsequent
better penetration of the more bactericidal acidified NaOCl (pH 6.5).

The aim of this study was to determine the bactericidal efficacy of sequential use of NaOCl at
pH 12 followed by acidified NaOCl at pH 6.5, as compared to either NaOCl at pH 12 or NaOCl at
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pH 6.5 alone. The null hypothesis was that there will be no difference between such sequential use and
the bactericidal effect of NaOCl at either of the above pH levels alone.

2. Materials and Methods

The study design was approved by the Institutional Ethics Committee (IEC No. 132.16). The design
was based on the study of Ruiz-Linares et al., in which bacterial biofilms that were grown on flat
dentin slabs, were exposed to disinfecting solutions for 3 min, then subjected to confocal laser scanning
microscopy, using live/dead staining [1]. Power analysis was conducted to achieve 85% power at a
0.05 significance level. According to the analysis, 5 specimens in each group would achieve 87% power.

2.1. Dentine Specimen Preparation

Intact human maxillary incisors with mature apices were selected from a pool of recently extracted
teeth that were kept at 4 ◦C. Twelve teeth were horizontally sectioned at 1 mm and 5 mm apical to
the cemento-enamel junction and then vertically sectioned along the mid-sagittal plane into 2 halves
using a diamond-coated disc (Horico, Berlin, Germany) under water cooling. The outer cementum of
each half was removed, and the inner part of the dentine root was ground and polished to create a
flat surface. The size of the 24 samples was then adjusted, using a caliper, to obtain 4 × 4 mm (width
× length) specimens. The smear layer formed during preparation of the specimens was removed by
immersion in 4% NaOCl followed by 17% ethylenediaminetetraacetic acid (EDTA), each for 4 min,
in an ultrasonic bath. The specimens were then immersed in 10% sodium thiosulfate for 4 min to
inactivate the residual NaOCl, washed with distilled water and sterilized in an autoclave for 20 min at
121 ◦C. The dentine sections were then incubated in sterile brain heart infusion (BHI) broth for 24 h at
37 ◦C to verify the absence of turbidity in the culture medium.

2.2. Bacterial Biofilm Formation

E. faecalis (ATCC 29212) was plated on BHI broth supplemented with 2% (wt/vol) agar
(Becton-Dickinson, Sparks, NV, USA) and incubated anaerobically at 37 ◦C for 24 h. The dentine
specimens were placed individually in separate wells in a sterile 24-well plate. In each well containing
a dentine specimen 50 µL of overnight E. faecalis culture (107 CFU/mL) was added and dispersed in
450 µL of fresh BHI growth medium. The plate was incubated anaerobically for 4 weeks at 37 ◦C,
and the BHI medium was replenished every other day.

The dentine specimens were removed from the wells aseptically and gently rinsed with 1 mL
sterile BHI broth to remove the non-adherent bacteria and then transferred to new sterile wells.
Four sample were used to verify the presence of a multi-layer bacterial biofilm, using confocal laser
scanning microscope (CLSM).

2.3. Disinfection of Dentine Covered with Biofilm

The specimens were randomly allocated to 4 groups (n = 5), according to the irrigation solutions
to which the biofilms were to be exposed: Group A: 0.9% saline solution, which served as control;
Group B: 4% NaOCl at pH 12; Group C: acidified 4% NaOCl at pH 6.5; and Group D: sequential
application of 4% NaOCl at pH 12, followed by acidified 4% NaOCl at pH 6.5.

To prepare acidified 4% NaOCl at pH 6.5, 10 mL of 4% NaOCl (Merck, Darmstadt, Germany) at
pH 12 was mixed with 0.3 mL of 99.5% acetic acid (Merck, Darmstadt, Germany) and allowed to settle
for 5 min before being used in the study [9]. The pH of the solutions was determined by using a digital
pH meter (Hanna Instruments, Woonsocket, RI, USA).

A droplet of 50 µL of each irrigation solution was placed on the biofilm surface for 4 min in groups
A–C. In group D sequential exposure to the solutions was used: first pH 12 NaOCl solution was placed
on the biofilm surface for 2 min, then removed and pH 6.5 NaOCl was used for the next 2 min, with a
total exposure time of 4 min (similar to groups A–C). A sterile micro pipette was used to gently remove
the first solution droplet from the sample surface before adding the second one. The pipet tip was
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directed to the edge of the sample, and the aspiration of the solution was done slowly, taking care not
to disturb the biofilm. After the contact period (4 min), the NaOCl solutions were removed (as above)
and remaining NaOCl was inactivated by adding 50 µL of 10% sodium thiosulfate for 5 min and then
rinsed with 1 mL of 0.9% sterile saline solution.

2.4. Disinfection Assessment

The dentine specimens from each group were stained with fluorescent LIVE/DEAD BacLight
Bacterial Viability Stain (Molecular Probes, Eugene, OR, USA) and observed with CLSM (Leica TCS
SP5, Leica Microsystems, Mannheim, Germany). The respective absorption and emission wave lengths
were 500/550 nm for the SYTO 9 stain and 580/630 nm for the PI stain. Sequential frame scan mode was
used to prevent crosstalk.

Three microscopic confocal volumes from random areas were acquired from each specimen
using a 40× oil lens with a 2 µm step size and a format of 512 × 512 pixels. Single-channel imaging
and simultaneous dual-channel imaging were used to display green fluorescence (live cells) and red
fluorescence (dead cells). CLSM images of the biofilms were analyzed and quantitated by using Imaris
8.4.3 microscopy image analysis software (Bitplane AG, Zurich, Switzerland). The volume ratio of
red fluorescence to green and red fluorescence in the three-dimensional reconstructions indicated
the percent of dead cells in the biofilm. The total volume of green and red fluorescence was used to
compare the amount of biomass between the groups.

2.5. Statistical Analysis

Statistical analysis was performed using mixed model test to determine significant clusters among
groups. The level of significance was p < 0.05. All statistical analyses were performed using SAS 9.4
software (SAS Institute, Cary, NC, USA).

3. Results

A total of 60 CLSM operative fields (3-dimensional stacks) were evaluated, 15 from each group.
The mean, median, minimum, maximum and standard deviation of log10 total biovolume (µm3) are
presented in Table 1. The mean and range (box plots) of the percent of red cells (dead cells) are shown
in Figure 1.

Table 1. Biovolume of the biofilm after exposure to the irrigants.

Irrigant
Log10 Total Biovolume (µm3)

Mean SD Min. Max. Median

Saline 7.35 0.22 7.03 7.40 7.68

NaOCl pH 12 7.28 0.23 6.94 7.36 7.74

NaOCl pH 6.5 7.16 0.29 6.73 7.14 7.61

NaOCl pH 12 + pH 6.5 7.32 0.22 7.03 7.36 7.62
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Figure 1. Mean and range (box plots) of the percent of red cells (dead cells) after 4 min of contact with
the solutions. The bactericidal effect of the irrigants on E. faecalis biofilms is expressed as the ratio of
red cells to green and red cells, indicating the proportion of dead cells in the biofilm. The percent of
dead cells in the 0.9% saline solution group was significantly lower than those in the other groups
(p < 0.0001). There was no significant difference in the percent of dead cells between 4% NaOCl pH 12
compared to acidified 4% NaOCl pH 6.5 (p = 0.0802). The sequential use of 4% NaOCl pH 12 followed
by 4% NaOCl pH 6.5 significantly increased the percent of dead cells compared to both the samples
exposed to either 4% NaOCl pH 12 or 4% NaOCl pH 6.5 (p < 0.0008 and p < 0.0276, respectively).
Similar low case letters indicate no difference; different letters indicate significant difference between
the groups. The box represents the interquartile range (IQR) and extends from Q1 to Q3. The rhombus
indicates the mean and the horizontal bar indicates the median. Upper and lower “wiskers” indicate
the maximum and minimum values.

For the total biovolume, there was no significant difference between the groups (p = 0.2786).
For percentage of dead cells, the biofilms exposed to 0.9% saline solution had a significantly lower
percent (13% ± 4%) than the other groups (p < 0.0001). There was no significant difference in the percent
of dead cells between 4% NaOCl at pH 12 (63% ± 9%) compared to 4% NaOCl at pH 6.5 (70% ± 9%)
(p = 0.0802). Sequential exposure of the biofilms to 4% NaOCl pH 12 followed by 4% NaOCl pH 6.5
significantly increased the percent of dead cells (79% ± 9%) compared to both the samples exposed to
either 4% NaOCl pH 12 or 4% NaOCl pH 6.5 (p < 0.0008 and p < 0.0276, respectively). Representative
CLSM images of the treated biofilms can be found in Figure 2.
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Figure 2. Representative confocal laser scanning microscopy images. (a) After exposure to saline
(control); (b) after exposure to 4% NaOCl pH 12; (c) after exposure to acidified 4% NaOCl pH 6.5;
and (d) after exposure to 4% NaOCl pH 12, followed by acidified 4% NaOCl at pH 6.5.

4. Discussion

The goal of endodontic treatment is to prevent or eliminate apical pathosis by means of shaping,
cleaning, disinfecting, and sealing of the root canal system. Studies have proven that mechanical
cleaning alone is limited in its ability to render the canal walls free from biofilm, since at least 10% of
the walls remain untouched following instrumentation with the most modern rotary nickel-titanium
file systems [16,17]. Thus, reduction of the microbial load and disruption of biofilms are commonly
achieved by a combination of mechanical instrumentation and irrigation with tissue dissolving and
antimicrobial irrigants [18].

NaOCl is currently the most widely used irrigation solution due to its antibacterial and
tissue-dissolving properties [6,18]. It has been previously shown that these properties are affected by
the pH of the NaOCl solution [7–9,15]. Various concentrations of NaOCl are being used clinically,
ranging from 0.5–5.25% and above, with pH levels of 12 and above [6,18]. Solutions with lower pH
levels are not commercially available since buffering NaOCl renders the solution unstable with a
decrease in its shelf life [6,9,15]. In the present study, acidified NaOCl was prepared by adding acetic
acid, according to the protocol of Mercade et al. [9]. Acetic acid is a suitable buffer solution since it has
no effect on the available chlorine [8]. Nevertheless, acidification of NaOCl should be done carefully,
as excessive pH reduction may negatively affect the dentin.

NaOCl at pH 12 has the capability to reduce biofilm-related matter [11], break glycosidic bonds,
dissolve glycoconjugates in the biofilm matrix and cause lysis to bacterial cells [11].

Ruiz-Linares et al. [1], used a similar model to the one used in the present study and reported that
2.5% NaOCl substantially reduced the total biovolume of the biofilm compared to biofilms exposed to
distilled water. This result was attributed to the disruption of the structure of the biofilm. In the present
study, no such reduction of biovolume was found, and the total biovolume of the biofilms exposed
to either of the NaOCl irrigants was not different from the biofilm exposed to saline. A potential
explanation could be a difference in the bacteria and conditions used to grow the biofilm. In the former
study, microbial samples were collected from infected root canals, and the polymicrobial biofilms
(of undefined nature) were grown for three weeks with a weekly refreshment of the BHI medium.
It could be that the E. faecalis biofilm grown, in the present study, for four weeks while replenishing the
BHI medium every two days created a biofilm more resistant to disruption.
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Additionally, based on previous studies, one could expect to find a more effective reduction
in the total biovolume after treatment with NaOCl at pH 12 compared to the acidified irrigant at
pH 6.5 [9–12,14]. Such a difference was not found in the present study. The above potential explanation
may be in line with previous findings that E. faecalis is a relatively resistant bacterium [19,20].
Nevertheless, this issue warrants further investigation.

E. faecalis was chosen for the present study because it has the ability to survive in vivo as a
single organism without the support of other bacteria and because it has been extensively used in
antimicrobial endodontic studies [9,19,21,22]. The benefit of the simplified in vitro system used in
the present study is its ability to isolate and study a single factor (pH of the NaOCl solutions) and
avoiding many confounding factors that could result from variations in the biofilm constituents if a
mixed biofilm of unidentified nature was used.

The bactericidal ability of the acidified NaOCl solution alone in the present study was not in
agreement with previous reports, which indicated that the bacteria killing was maximized at lower
pH [6,9,15]. Mercade et al. [9], proved that the antibacterial activity of a 4.2% NaOCl solution is
enhanced by weak acidification of the solution to pH 6.5. In the present study, when used alone, NaOCl
at pH 6.5 showed apparent enhanced bactericidal activity compared to NaOCl at pH 12, with 70% and
63% dead E. faecalis cells, respectively, but with no significant difference was found by the effects of the
two solutions. When these two solutions were used in succession, one after the other, a significantly
higher bactericidal effect was found (79% dead E. faecalis cells) compared to each solution alone.
None of the tested solutions were able to completely eradicate the biofilm.

It may be assumed that the first NaOCl solution at pH 12 had a disruptive effect on the
biofilm matrix [11,14], which allowed the acidified solution (pH 6.5), with its enhanced bactericidal
activity [12,14], better access to the bacteria in the biofilm, thus enhancing the total bactericidal effect.
Nevertheless, this assumption should be further investigated.

In the current study the biofilm was grown on flat dentin surface, similarly to Ruiz-Linares et al. [1].
This was done to allow optimal observation conditions for the confocal laser scanning microscopy and
avoid potential distortions that may result from growing the biofilm on a concave dentin surface of a
root canal [23]. The exposure time to the NaOCl solutions in the present study (4 min) was similar to
that used in previous studies: Rôças et al. [21], (3 min) and Ordinola-Zapata et al. [24], (5 min).

The results of the present study show a promising direction in the use of NaOCl. It should be
noted that this is a laboratory study and hence its limitations. We did not attempt to mimic the clinical
situation. Additional studies using tooth models, a multi-species biofilm model and different exposure
times are needed to confirm the promising results observed in the current study.

5. Conclusions

Within the limitations of the study, it can be stated that sequential exposure of E. faecalis biofilm
to NaOCl at pH 12 followed by acidified NaOCl at pH 6.5 may have a stronger bactericidal effect on
E. faecalis biofilm compared to the currently commonly used irrigation protocol using NaOCl at pH 12.
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