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Abstract: We describe, for the first time, a successful strategy for synthesizing chiral periodic
mesoporous organosilica nanoparticles (PMO NPs). The chiral PMO nanoparticles were synthesized
in a sol–gel process under mild conditions; their preparation was mediated by hydrolysis and
condensation of chiral-bridged organo-alkoxysilane precursor compounds, (OR‘)3Si-R-Si(OR‘)3,
in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The resulting nanoparticles
were composed merely from a chiral- bridged organo-alkoxysilane monomer. These systems
were prepared by applying different surfactants and ligands that finally afforded monodispersed
chiral PMO NPs consisting of 100% bridged-organosilane precursor. In addition, the major
advancement that was achieved here was, for the first time, success in preparing magnetic chiral
PMO NPs. These nanoparticles were synthesized by the co-polymerization of 1,1′-((1R,2R)-1,2-
diphenylethane-1,2-diyl)bis(3-(3-(triethoxysilyl) propyl) urea) chiral monomer by an oil in water
(o/w) emulsion process, to afford magnetic chiral PMO NPs with magnetite NPs in their cores.
The obtained materials were characterized with high-resolution scanning electron microscopy
(HR-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray
(EDX) spectroscopy, powder X-ray diffraction (XRD), solid-state NMR analysis, circular dichroism
(CD) analysis, and nitrogen sorption analysis (N2-BET).
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1. Introduction

Chirality is a fundamental research topic and of vital importance for various fields in natural
sciences. Chiral biomolecules have been recognized as the basis of life on earth and many phenomena
in nature could be explained through the concepts of stereoisomerism and chirality. In the last decades,
the major efforts have been devoted to developing methods for creation and isolation of chiral organic
molecules because of their significance in numerous applications [1–3]. Recently, increasing attention
has been paid to the construction of chiral solid materials and chiral surfaces due to their potential
to be applied in chiral adsorption, enantioseparations and catalysis [4–13]. In particular, several
methods have been developed for the fabrication of chiral silica in different morphologies [14–30].
These methods include the utilization of chiral surfactants or polymers as template, the condensation
of silane monomers containing chiral organic groups and the grafting of chiral groups on the walls of
mesoporous silica materials.

A significant breakthrough in porous materials came in 1999 when three independent
research groups discovered periodic mesoporous organosilicas (PMOs) [31–33]. PMO materials
soon demonstrated their special position in the field of organic–inorganic hybrid materials [34–39],
and were investigated intensively in a wide range of applications such as optical materials, adsorbents,
trapping agents, drug delivery agents, and catalyst supports [40–45]. The success of these PMOs is
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mainly attributed to their convenient preparation. Within a few years, PMOs with myriad bridging
organic groups, narrow distribution pore sizes, and well-defined pore geometries were synthesized and
characterized [46–49]. Generally, PMOs are synthesized by a sol–gel process under mild conditions and
their preparation is based on the hydrolysis and condensation of bridged organo-alkoxysilane precursor
compounds, (OR)3Si-R-Si(OR)3, in the presence of surfactants or block copolymers that assist in creating
uniform pores of 2–30 nm size [50–53]. The organic moieties of the PMOs are implemented directly and
distributed homogenously within the inorganic walls. This organic hybridization of the silicate network
permits precise control over the surface properties, modification of the hydrophilic/hydrophobic
character of the surface, alteration of the surface reactivity, protection of the surface from attack,
and modification of the bulk properties of these materials [54,55]. The surface area of PMOs can reach
up to 1800 m2/g, which makes these materials particularly attractive for the various applications
mentioned above.

The development of chiral PMOs has recently represented a conspicuous success in material
sciences [56–61]. Chiral PMOs have also been prepared using chiral organosilane precursors
and their potential for different applications was demonstrated in asymmetric catalysis [62–68],
chiral chromatography [69,70], and chiral separations [71,72]. Initial attempts to prepare chiral
PMOs were based on the co-condensation of chiral bis-alkoxysilane compounds or ligands with
tetraalkoxysilane (e.g., tetraethoxysilane) [73–75]. The preparation routes are diverse, including in
situ co-polymerization, post-condensation, and immobilization of chiral organic bis-alkoxysilane
moieties [76–87]. In addition, novel helical chirally doped PMOs were also reported [15,61]. Usually,
the loading of the chiral units into a PMO framework is less than 30% [88–96]. However, the catalytic
activity and enantioselectivity of such chiral PMOs in asymmetric transformations is usually less
than their homogeneous analogues. For this reason, preparation of chiral PMOs with highly ordered
mesostructures, which can exhibit high catalytic activity and chiral induction abilities, is still a
challenging research topic. Recently, some reports described the possibility of preparing chiral PMOs
constructed only from single enantiopure chiral organosilane precursors. These 100% chiral PMOs
represent a unique class of hybrid mesoporous systems, although no catalytic applications have
been reported yet [20,22,97–102]. One of the most elegant strategies for preparing chiral catalytic
nanosystems is based on supporting metal nanoparticles onto these solid supports.

Magnetic nanoparticles (MNPs) have emerged as a promising class of nanomaterials that have
resulted in massive advancements in many biological [103], biomedical [104,105], and catalytic
applications [106–111]. Recent studies show that magnetic nanoparticles serve as excellent supports
for catalysts [112,113]. The supported catalysts have proved to be effective and easily separated from
the reaction media by applying an external magnetic field.

Herein we report a successful method for the preparation of chiral periodic mesoporous
organosilica nanoparticles in a sol–gel process under mild conditions. Their preparation was initiated
by the synthesis of chiral bis-organosilane precursors that served as chiral building blocks for the
formation of chiral PMO NPs. In our project, we succeeded to synthesize and characterize different
chiral bridged-silane ligands that were utilized for the preparation of the synthesis attempts were
focused on the preparation of pure chiral PMO NPs that were composed merely from a chiral bridged
organo-alkoxysilane monomer. The preparation of these systems was accomplished by applying
different surfactants and ligands who could finally afford a monodispersed chiral PMO NPs consisted
of a 100% bridged-silane precursor. Additionally, for the first time, a successful preparation of
magnetic chiral PMO NPs was also accomplished. The PMO nanoparticles were synthesized by
a co-polymerization of 1,1′-((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(3-(3-(triethoxysilyl)propyl)urea)
chiral monomer by an o/w emulsion process, to give magnetic chiral PMO NPs with magnetite NPs in
their cores.



Appl. Sci. 2020, 10, 5960 3 of 18

2. Materials and Methods

2.1. General Information

X-ray powder diffraction (XRD) patterns were obtained using a D8 advanced diffractometer
(Bruker AXS, Karlsruhe, Germany) with Cukα radiation. The infrared spectra were recorded using
a Perkin Elmer (FTIR 65) spectrometer. Scanning electron microscopy (SEM) was performed using
a Sirion SEM microscope (FEI Company), a Schottky-type emission source, and a secondary electron
(SE) detector, operated at a voltage of 5 kV. Transmission electron microscopy (TEM), scanning
transmission electron microscopy (STEM), and electron diffraction spectroscopy (EDS) were performed
with a (S)TEM Tecnai F20 G2 (FEI Company, Fremont, CA, USA) instrument operated at 200 kV.
Size distribution and zeta potential determination were performed on a Nano Series instrument,
model Nano-Zetasizer ZEN3600 (Malvern Instruments, Malvern, UK). Thermogravimetric analysis
(TGA) was performed on a Mettler Toledo TG 50 analyzer. Measurements were carried out at
a temperature range that extended from 25 to 900 ◦C and at a heating rate of 10 ◦C/min under an inert
atmosphere (N2). The specific surface areas were calculated by means of the Brunauer–Emmett–Teller
(BET) equation by utilizing a high-speed gas sorption analyzer, Quantachrome Nova 1200e instrument.
Gas chromatography (GC; Agilent Technologies, 7890A) with a universal capillary column (HP-5, 30 m)
was used to determine the reactions’ conversion and selectivity. Circular dichroism (CD) analyses were
recorded with BioLogic instruments using Biokine software under a xenon lamp source on a MOS 500
spectrometer. 1H NMR and 13C NMR spectra were recorded using a Bruker DRX-400 and DRX-500
instrument. Sections 2.2–2.5 are cited from Arakawa et al., 2008 [114].

2.2. Preparation of the Chiral Bridged-Organosilane Ligand (1) [Arakawa et al., 2008]

A solution of 4-(2-(trimethoxysilyl)ethyl)benzene-1-sulfonyl chloride (2.5 g, 7.6 mmol) in CH2Cl2
(20 mL) was added to a solution of (1R,2R)-1,2-diphenylethane-1,2-diamine (3.22 g, 15.2 mmol) in
CH2Cl2 (30 mL) and triethylamine (2.3 mL, 16.8 mmol) at 0 ◦C. The resulting mixture was stirred for
12 h under nitrogen. After the solvent was evaporated, the crude product was purified by a short column
chromatography (ethyl acetate:hexane 1:1) to afford a white solid of R,R-(1) (79%). 1H NMR (400 MHz,
CDCl3): δ = 0.94 (t, J = 5.2 Hz, 4H), 2.69 (t, J = 3.2 Hz, 4H), 3.63 (s, 18H), 4.15 (d, J = 7.6 Hz, 2H), 4.48
(d, J = 5.2 Hz, 2H), 7.29–7.50 (m, 18H); 13C NMR (100 MHz, CDCl3): δ = 18.7, 20.1, 50.4, 56.4, 125.9, 126.3,
127.1, 127.8, 128.2, 141.1, 142.7, 143.5. Elemental analysis: C, 53.2; H, 6.08; N, 3.21; S, 8.72; Si, 6.98.

2.3. Preparation of the Chiral Bridged-Organosilane Ligand (2) [Arakawa et al., 2008]

A solution of triethoxy(3-isocyanatopropyl)silane (1.87 g, 7.6 mmol) in CH2Cl2 (20 mL) was
added to a solution of (1R,2R)-cyclohexane-1,2-diamine (1.73 g, 15.2 mmol) in CH2Cl2 (30 mL) and
triethylamine (2.3 mL, 16.8 mmol) at 0 ◦C. The resulting mixture was stirred for 12 h under nitrogen.
After the solvent was evaporated, the crude product was purified by short column chromatography
(ethyl acetate:hexane 1:1) to afford a white solid of R,R-(2). (67%). 1H NMR (400 MHz, CDCl3): δ = 0.64
(t, J = 7.4 Hz, 4H), 1.23 (t, J = 5.2 Hz, 20H), 1.54–1.58 (m, 4H), 1.71–1.73 (m, 2H), 2.03–2.06 (m, 2H),
2.18 (s, 2H), 3.02–3.06 (m, 2H), 3.14–3.19 (m, 2H), 3.42–3.52 (m, 2H), 3.65–3.84 (m, 12H), 4.88 (s, 2H),
5.22 (s, 2H); 13C NMR (100 MHz, CDCl3): δ = 7.65, 18.42, 23.58, 24.99, 33.25, 43.01, 54.73, 58.39, 159.03.
Elemental analysis: C, 50.79; H, 9.12; N, 9.57; Si, 9.28.

2.4. Preparation of the Chiral Bridged-Organosilane Ligand (3) [Arakawa et al., 2008]

A solution of triethoxy(3-isocyanatopropyl)silane (1.87 g, 7.6 mmol) in CH2Cl2 (20 mL) was added
to a solution of l-Lysine (2.22 g, 15.2 mmol) in CH2Cl2 (30 mL) and triethylamine (2.3 mL, 16.8 mmol)
at 0 ◦C. The resulting mixture was stirred for 12 h under nitrogen. After the solvent was evaporated,
the crude product was purified by short column chromatography (ethyl acetate:hexane 1:1) to afford
a white solid of (3) (92%). 1H NMR (400 MHz, CDCl3): δ = 0.63–0.67 (m, 6H), 1.08–1.25 (m, 22H),
1.39–1.67 (m, 6H), 2.56 (s, 2H), 3.16–3.31 (m, 6H), 3.52-3.86 (m, 12H), 4.10 (s, 1H), 4.53 (s, 1H); 13C NMR
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(100 MHz, CDCl3): δ = 13.28, 19.07,21.62, 24.83, 28.94, 41.05, 46.28, 58.17, 61.32, 156.82, 160.43, 173.87.
Elemental analysis: C, 47.87; H, 8.62; N, 9.08; Si, 8.72.

2.5. Preparation of the Chiral Bridged-Organosilane Ligand (4) [Arakawa et al., 2008]

A solution of triethoxy(3-isocyanatopropyl)silane (1.87 g, 7.6 mmol) in CH2Cl2 (20 mL) was added
to a solution of (1R,2R)-1,2-diphenylethane-1,2-diamine (3.22 g, 15.2 mmol) in CH2Cl2 (30 mL) and
triethylamine (2.3 mL, 16.8 mmol) at 0 ◦C. The resulting mixture was stirred for 12 h under nitrogen.
After the solvent was evaporated, the crude product was purified by short column chromatography
(ethyl acetate:hexane 1:1) to afford a white solid of R,R-(4). (83%) 1H NMR (400 MHz, CDCl3): δ = 0.609
(t, J = 8.4 Hz, 4H), 1.23 (t, J = 13.6 Hz, 18H), 1.58 (t, J = 7.6 Hz, 4H), 3.07–3.24 (m, 4H), 3.78–3.83 (m, 12H),
5.01 (s, 2H), 5.71 (s, 2H), 7.07–7.17 (m, 10H); 13C NMR (100 MHz, CDCl3): δ = 7.59, 18.28, 23.52, 43.00,
58.40, 60.47, 127.27, 127.41, 128.28, 140.26, 158.73. Elemental analysis: C, 57.64; H, 8.22; N, 7.17; Si, 8.06.

2.6. Preparation of the Chiral PMO Nanoparticles (Chiral PMO NPs)

The chiral PMO nanoparticles were synthesized as follows: CTAB (0.78 g), deionized water (88 mL),
and ethanol (33 mL), 25% aqueous ammonia (0.5 mL) were mixed. Then, the chiral organosilane
monomer (2.1 mmol), dissolved in 4 mL ethanol, was dropped into the mixture under stirring.
The reaction mixture was stirred for 24 h at room temperature. The solid product was then collected
by centrifuge and washed in a Soxhlet apparatus using acidic ethanol (1 mL of concentrated HCl in
100 mL of ethanol) for 24 h in order to extract the CTAB surfactant. The obtained chiral PMO NPs were
dried at 54 ◦C for 16 h to afford a fine white-beige powder.

2.7. Preparation of Hydrophobic Magnetite Nanoparticles Coated with Oleic Acid (MNP-OA)

The magnetic nanoparticles were prepared according to the Massart procedure [115]: Briefly,
11.7 g of FeCl3·6H2O and 4.23 g of FeCl2·4H2O were dissolved in 400 mL of deionized water under
nitrogen gas with vigorous mechanical stirring at 90 ◦C. At this temperature, 18 mL of concentrated
ammonia (25%) were added quickly to the solution, and it was stirred at the same temperature for
an extra 20 min. Then, 18 mL of oleic acid was added dropwise to the reaction mixture, and the
resulting mixture was stirred at 90 ◦C for an additional hour. After being cooled to room temperature,
a black precipitate was collected by applying an external magnetic field and washing several times
with water and acetone. Finally, the hydrophobic magnetite nanoparticles were suspended in 100 mL
of chloroform and sonicated for 60 min before further use.

2.8. Preparation of the Magnetic Chiral PMO Nanoparticles (Magnetic Chiral PMO NPs)

Magnetic chiral PMO nanoparticles were synthesized as follows: CTAB (0.78 g), deionized water
(88 mL), ethanol (33 mL), and 25% aqueous ammonia (0.5 mL) were mixed. Then, the chiral organosilane
monomer (2.1 mmol) dissolved in 4 mL ethanol and 1 mL of hydrophobic magnetite nanoparticles
coated with oleic acid (MNP-OA) was dropped into the mixture under stirring. The reaction mixture
was mechanically stirred for 24 h at room temperature. The solid product was then collected by
a magnet and washed in a Soxhlet apparatus using ethanol for 24 h to extract the CTAB surfactant.
The final magnetic chiral PMO NPs were dried at 54 ◦C for 16 h to afford a fine black-gray powder.

3. Results and Discussion

3.1. Preparation and Characterization of Chiral PMO NPs

The preparation of chiral PMO nanoparticles was initiated by synthesizing a small library of
chiral-bridged organosilane monomers that could serve as chiral building blocks of the periodic
mesoporous organosilica nanoparticles. These chiral ligands were synthesized by reacting to different
chiral amines and amino acids with a silane compound in a molar ratio of 1:2 under an inert atmosphere
as illustrated in Scheme 1.
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After the chiral building blocks were prepared, the chiral PMO NPs were prepared by
emulsifying the oil phase containing the chiral-bridged silane precursor in an ethanol/water
mixture containing cetyltrimethylammonium bromide (CTAB) or a cetyltrimethylammonium
chloride (CTAC) surfactant as a structure-directing agent. Under these conditions, the chiral
ligands 1-3 yielded in the presence of CTAB or CTAC either aggregates or fused nanoparticles
as was observed by scanning electron microscopy (SEM) analysis (Figures 1–3). On the other
hand,1,1′-((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(3-(3-(triethoxysilyl)propyl)urea) chiral ligand (4)
was the best chiral candidate for preparing chiral PMO nanoparticles, which afforded chiral PMO NPs
with uniform shape and size as shown in the SEM images (Figure 4). In addition, a representative
transmission electron microscopy (TEM) image of this system exhibited very well-ordered spherical
nanoparticles with a very low resolution of their mesoporous texture (Figure 4).
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In addition to the cationic surfactants, the contribution of other polymeric surfactants to the
system was tested with a ligand (4). Apparently, non-ionic and polymeric surfactants were not highly
favored in these systems and according to the obtained results, it was concluded that a cationic CTAB
surfactant was the best candidate for preparing chiral PMO nanoparticles. The resulting SEM images
of different systems that were prepared by utilizing different surfactants are summarized in Table 1.
As seen in entries 1-3, when Trition X-100, Igepal CO-520, and Pluronic P123 surfactants were used,
nanometric sized PMO NPs were obtained, but they were highly fused and some aggregates were
observed. The use of Brij 78 surfactant (Table 1, entry 4) yielded very smooth submicron PMO particles
but they were also fused. However, the utilization of a cationic surfactant was much favored because it
yields smooth and spherical nanoparticles.

Table 1. Preparation of a chiral PMO system from 1,1′-((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(3-
(3-(triethoxysilyl)propyl)urea) ligand (4) with different surfactants.

Entry Surfactant Structure SEM Images

1. Triton X-100
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3.2. Preparation and Characterization of Magnetic Chiral PMO NPs

In the same manner, we prepared magnetic chiral PMO NPs based on the same interfacial
polycondensation techniques. As illustrated in Scheme 2, the hydrophobic magnetic nanoparticles,
together with the chiral-bridged organosilane ligand (4), were added to the aqueous phase,
which includes water, ethanol, and ammonium hydroxide (25%). By the end of this sol–gel process,
spherical nanoparticles composed of 100% bridging chiral organosilane monomers filled with magnetite
(Fe3O4) in their cores were formed.
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Scheme 2. Preparation of magnetic chiral PMO nanoparticles.

The resulting nanoparticles were analyzed by TEM and STEM spectroscopy, accompanied by
energy-dispersive X-ray analysis (EDX). The representative TEM and STEM images in Figure 5 provided
clear evidence of the special composition and ordering of the magnetite nanoparticles inside the core
of the spherical nanoparticles. Moreover, the EDX spectrum confirms the elemental composition of the
obtained chiral magnetic nanoparticles because it exhibits all the relevant peaks of carbon, nitrogen,
oxygen, silicon, and iron in the detected organosilica network.
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chiral PMO nanoparticles.

Further elemental determination was conducted by X-ray powder diffraction (XRD) analysis
utilized for identifying the structure of this system. The XRD pattern of the magnetic PMO nanoparticles
(Figure 6) showed characteristic peaks of magnetite nanoparticles at 2θ = 30.3, 35.7, 43, 53.8, 57.6,
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and 63.4, in addition to a sharp peak at 2θ = 1.8–2.7, which is attributed to the mesoscopic structure of
the PMO nanoparticles.
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In addition, EDX-mapping analysis was also utilized to confirm the chemical composition and
elemental distribution in our system. Figure 7 presents a homogeneous distribution of oxygen, carbon,
and silicon throughout the organosilica network. With nitrogen, a similar distribution was also observed
in a lower density. The magnetic naoparticles were concentrated in the core, which it was clearly
confirmed by their narrow and specific distribution in the center of the resulting chiral PMO NPs.
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The average size of both systems was determined by dynamic light scattering (DLS) analysis,
which revealed an average size of 173 nm of the chiral PMO NPs and an average size distribution of
190 nm for the magnetic chiral PMO NPs (Figure 8).

The N2 adsorption–desorption isotherms of the chiral PMO NPs and the magnetic chiral PMO
NPs (Figure 9) exhibit typical IV-type curves that indicate narrow pore sizes with uniform mesopores.
The Brunauer–Emmett–Teller (BET) surface area of chiral PMO NPs was estimated to be 497 m2/g,
and the calculated total pore volume was 0.39 cm3 g−1, whereas the BET surface area of magnetic
chiral PMO NPs was estimated to be 371 m2/g, and the calculated total pore volume was 0.23 cm3 g−1.
These values are indeed quite large considering the low porosity of the resulting nanoparticles and the
existence of Fe3O4 cores.
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The chemical composition of the magnetic chiral PMO NPs was further characterized by solid-state
29Si and 13C cross-polarization/magic angle spinning(CP-MAS) NMR spectroscopy. This analysis was
conducted after treatment with concentrated HCl, which was used for dissolving all the magnetite
nanoparticles in the detected system. The 29Si NMR spectrum in Figure 10 exhibited a T3 value of
−67.11 ppm, which confirms the formation of the Si-C covalent bonds in the organosilica framework.
In addition, the 13C NMR spectrum of the chiral PMO NPs in Figure 10b gives clear evidence of the
successful synthesis of these nanoparticles from ligand (4) because it shows all the characteristic peaks
of the incorporated ligands between 10 and 66 ppm, in addition to the aromatic species, ranging from
122 to 147 ppm, and a characteristic carbonyl peak of the urea group at 167 ppm. These results clearly
indicate the formation of silsesquioxane frameworks and further demonstrate the incorporation of
organic units into the silica networks.

FT-IR spectroscopy was employed for determining the chemical composition of chiral PMO NPs
and magnetic chiral PMO NPs. Figure 11 compares the FTIR spectra of both systems to the ligand
(4). Both systems were similar, displaying equivalent peaks that determine the organic content of
the chiral-bridged organosilane ligand (4) in addition to the distinct absorbance peaks at 1023, 1100,
and 1283 cm−1, which can be assigned to Si-C vibrations. Moreover, the absorption bands at intervals
of 3120–3700 cm−1 in both curves b and c are assigned to the Si-OH stretching vibrations in the resulting
silica network. The absorbance peaks at 2790–3100 cm−1 are assigned to C-H stretching from both
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chiral systems. The presence of the oleate group coating on the magnetite nanoparticles can be barely
observed, since its C-H and C=C stretching bands overlap with the distinct IR bands of the original
chiral ligand.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 
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The synthesis of chiral PMO NPs and magnetic chiral NPs was also evident by following the
organic contents in the resulting system in comparison to the as-synthesized MNP-OA nanoparticles by
thermogravimetric analysis (TGA). In both systems, a slight decomposition occurred in the temperature
range of 50–100 ◦C that could have resulted from ethanol and water residues in the detected system,
and the major decomposition process that occurred between 150 and 600 ◦C. In Figure 12 curve a, a total
weight loss of 19.2% was detected with MNP-OA, whereas chiral PMO NPs afforded a total organic
loss of 68.2% (Figure 12, curve b), compared with 75.1% with magnetic chiral PMO NPs (Figure 12,
curve c). These findings confirm the successful incorporation of the chiral ligand and the magnetic
cores besides the good thermal stability of the synthesized chiral systems.

Circular dichroism (CD) spectra of chiral compounds are quite sensitive to their chemical
and physical changes. From this spectroscopic method, we would be able to study and prove the
chiral character of the as-synthesized chiral PMO NPs compared to a bare chiral bridged-silane
ligand (4). As seen in Figure 13, the CD spectra of the free ligand (curve a) and the condensed ligand
(curve b) are quite similar, with a slight absorbance shift that resulted from its entrapment within the
silicate framework.
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4. Conclusions

In this work pure chiral PMO nanoparticles were successfully synthesized using
1,1′-((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(3-(3-(triethoxysilyl) propyl) urea) chiral monomer by
co-polymerization and sol–gel condensations. Additionally, magnetic chiral PMO NPs with magnetite
nanoparticles in their cores were synthesized for the first time using similar synthetic conditions.
We believe that this facile way for preparing chiral catalysts can open new doors for preparing diverse
chiral PMO nanocatalysts loaded with different metal nanoparticles that can be highly welcomed in
many enantioselective reactions.
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