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Abstract: Throughout this work, new criteria for the asymptotic behavior and oscillation of a class
of odd-order delay differential equations with distributed deviating arguments are established.
Our method is essentially based on establishing sharper estimates for positive solutions of the
studied equation, using an iterative technique. Moreover, the iterative technique allows us to test the
oscillation, even when the related results fail to apply. By establishing new comparison theorems
that compare the nth-order equations with one or a couple of first-order delay differential equations,
we obtain new conditions for oscillation of all solutions of the studied equation. To show the
importance of our results, we provide two examples.

Keywords: positive solutions; delay differential equations; odd-order

1. Introduction

In this work, we study the asymptotic and oscillatory behavior of odd-order delay differential
equations with distributed deviating arguments of the form

(
r (ξ)

(
x(n−1) (ξ)

)α)′
+
∫ b

a
ρ (ξ, s) f (x (ψ (ξ, s)))ds = 0, (1)

where n ∈ Z+ is an odd. Moreover, we assume the following conditions:

(i) r ∈ C1 ([ξ0, ∞) , (0, ∞)) , r′ (ξ) ≥ 0, α is a ratio of odd positive integers and

µ0,0 (ξ, ξ0) :=
∫ ξ

ξ0

r−1/α (s)ds→ ∞ as ξ → ∞;

(ii) ψ, ρ ∈ C ([ξ0, ∞)× [a, b] ,R) , ρ (ξ, s) ≥ 0, ψ (ξ, s) ≤ ξ for ξ ≥ ξ0 and s ∈ [a, b] , ψ has nonnegative
partial derivatives and limξ→∞ ψ (ξ, s) = ∞;

(iii) f ∈ C (R,R) , f (ξ, x) ≥ $xα for x 6= 0 and $ is a positive constant.

The function x is said to be a solution of Equation (1) if there exists a ξx ≥ ξ0 such that x ∈
Cn−1 ([ξx, ∞) ,R), r (ξ)

(
x(n−1)

)α
∈ C1 ([ξx, ∞) ,R) and satisfies Equation (1), for all ξ ∈ [ξx, ∞).
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We limit our discussion to those solutions x of Equation (1) which satisfy sup {|x (ξ)| : ξ1 ≤ ξ0} > 0
for every ξ1 ∈ [ξx, ∞). Such a solution x is said to be non-oscillatory if x is positive or negative,
ultimately; otherwise, x is said to be oscillatory. If every solutions of Equation (1) is oscillatory,
then Equation (1) is called oscillatory.

Oscillatory behavioral nature of solutions of various classes of neutral and delay differential
equations is of great interest, and often encountered in applied problems in natural sciences, technology,
and engineering, see [1,2]. Recently it has been noticed the rising interest of many researchers and
papers in studying the qualitative properties of different classes of linear and non-linear differential
equations, see [1–14].

To the best of the authors’ knowledge, the study and examination of the oscillatory behavior of
odd-order differential equations received less attention than even-order, see [15–25].

Vidhyaa et al. [26] studied the oscillation of all solutions of the third-order neutral differential equation(
ψ (ξ)

((
h (ξ) z′ (ξ)

)′)α)′
+ f (ξ) yα (ξ) = 0, ξ ≥ ξ0,

where z (ξ) = y (ξ) + p (ξ) y (σ (ξ)) .
Li and Rogovchenko [27] investigated asymptotic behavior of solutions to an odd-order delay

differential equation(
r (ξ)

(
x(n−1) (ξ)

)α)′
+ p (ξ)

(
x(n−1) (ξ)

)α
+ ρ (ξ) xα (τ (ξ)) = 0,

where ξ ≥ ξ0 > 0 and n ≥ 3 is an odd natural number.
Baculikova and Dzurina [18] adopted the Riccati transformation for examining the asymptotic

and oscillation behavior of the solutions of advanced differential equations of higher order(
r (ξ)

(
x(n−1) (ξ)

)α)′
+ ρ (ξ) xα (τ (ξ)) = 0,

where τ (ξ) > ξ and n is odd.
Based on the use of iterative technique, we first establish a more sharp estimate of the

increasing/decreasing positive solutions of Equation (1). By following the comparison approach
with first order delay equations, we attain oscillation of all solutions of Equation (1) under easy
application conditions.

In the following, we present some useful lemmas that will be used throughout the results.

Lemma 1. (Lemma 2.2.3 in [3]) If F ∈ Cn ([ξ0, ∞) , (0, ∞)) , F(n−1) (ξ) F(n) (ξ) ≤ 0 for ξ ≥ ξF ≥ ξ0 and
limξ→∞ F (ξ) 6= 0, then there exists a ξδ ∈ [ξF, ∞) such that

F (ξ) ≥ δ

(n− 1)!
ξn−1

∣∣∣F(n−1) (ξ)
∣∣∣ .

for every δ ∈ (0, 1) and ξ ∈ [ξδ, ∞).

Lemma 2. (Lemma 2 in [18]) If x is a positive solution of Equation (1), then all derivatives x(k) (ξ) , 1 ≤ k ≤
n− 1, are of constant signs, r (ξ)

(
x(n−1) (ξ)

)α
is non-increasing, and x satisfies either

x′ (ξ) > 0, x′′ (ξ) > 0, x(n−1) (ξ) > 0, x(n) (ξ) < 0 (2)

or
(−1)m x(m) > 0, m = 1, 2, ..., n. (3)



Appl. Sci. 2020, 10, 5952 3 of 10

Next, we provide the following notations to help us display the results easily:

ρk (u) := $
∫ b

a
ρ (u, s) ηα

k (ψ (u, s))ds,

moreover, we denoted the set of all positive solutions of Equation (1) with property Equation (2) or
Equation (3) by X+

I or X+
D , respectively.

Remark 1. All functional inequalities and properties including increasing, decreasing, positive, etc. are assumed
to hold eventually, that is, they are satisfied for all ξ large enough.

2. Nonexistence of Increasing Positive Solutions

In this section, we obtain nonexistence criteria for increasing positive solutions of odd-order delay
differential Equation (1).

Lemma 3. Assume that x ∈ X+
I . Then,

x (ψ (ξ, s)) ≥ ηk (ψ (ξ, s)) x(n−1) (ψ (ξ, s)) , (4)

where
η0 (ξ) :=

δ0

(n− 1)!
ξn−1

and

ηk+1 (ξ) :=

(
δkr1/α (ξ)

(n− 2)!

) ∫ ξ

ξ1

υn−2
(

1
r (υ)

exp
(∫ ξ

υ

ρk (u)
r (u)

du
))1/α

dυ,

for all δk ∈ (0, 1) and k = 0, 1, ....

Proof. Assume that x ∈ X+
I . Then, there exists a ξ1 ≥ ξ0 such that x (ξ) > 0 and x (ψ (ξ, s)) > 0 for

all ξ ≥ ξ1. Now, we will use the induction to prove Equation (4). For k = 0, using Lemma 1, we obtain

x (ψ (ξ, s)) ≥ δ0

(n− 1)!
ψn−1 (ξ, s) x(n−1) (ψ (ξ, s)) ≥ η0 (ψ (ξ, s)) x(n−1) (ψ (ξ, s)) .

Next, we assume that x (ψ (ξ, s)) ≥ ηk (ψ (ξ, s)) x(n−1) (ψ (ξ, s)), for k > 1. Then

xα (ψ (ξ, s)) ≥ ηα
k (ψ (ξ, s))

(
x(n−1) (ψ (ξ, s))

)α

or equivalently,

f (x (ψ (ξ, s))) ≥ $ηα
k (ψ (ξ, s))

(
x(n−1) (ψ (ξ, s))

)α
. (5)

Combining Equations (1) and (5), we get

(
r (ξ)

(
x(n−1) (ξ)

)α)′
≤ −$

∫ b

a
ρ (ξ, s) ηα

k (ψ (ξ, s))
(

x(n−1) (ψ (ξ, s))
)α

ds.

Since x(n) < 0 and ψ (ξ, a) < ξ, we have

(
r (ξ)

(
x(n−1) (ξ)

)α)′
≤ −$

(
x(n−1) (ξ)

)α
∫ b

a
ρ (ξ, s) ηα

k (ψ (ξ, s))ds. (6)
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If we set w := r (ξ)
(

x(n−1) (ξ)
)α

, then (6) reduces to

w′ (ξ) ≤ − $

r (ξ)
w (ξ)

∫ b

a
ρ (ξ, s) ηα

k (ψ (ξ, s))ds.

By using Grönwall inequality, we obtain

w (υ) ≥ w (ξ) exp
(∫ ξ

υ

ρk
r (u)

du
)

,

and hence

x(n−1) (υ) ≥
(

r1/α (ξ) x(n−1) (ξ)
)( 1

r (υ)
exp

(∫ ξ

υ

ρk
r (u)

du
))1/α

. (7)

Using Lemma 1 with F := x′ > 0, we conclude that

x′ (ξ) ≥ δkξn−2

(n− 2)!
x(n−1) (ξ) , for all δk ∈ (0, 1) . (8)

Integrating (8) from ξ1 to ξ, and using (7), we find

x (ξ) ≥ δk
(n− 2)!

∫ ξ

ξ1

υn−2x(n−1) (υ)dυ

≥
(

x(n−1) (ξ)
δkr1/α (ξ)

(n− 2)!

) ∫ ξ

ξ1

υn−2
(

1
r (υ)

exp
(∫ ξ

υ

ρk
r (u)

du
))1/α

dυ

≥ ηk+1 (ξ) x(n−1) (ξ) ,

or equivalently,
x (ψ (ξ, s)) ≥ ηk+1 (ψ (ξ, s)) x(n−1) (ψ (ξ, s)) .

The proof is complete.

Theorem 1. Assume that ηk is defined as in Lemma 3. If, for some δk ∈ (0, 1) and some k ∈ N, the delay
differential equation

w′ (ξ) +
ρk (u)

r (ψ (ξ, a))
w (ψ (ξ, a)) = 0 (9)

is oscillatory, then X+
I is empty.

Proof. Assume the contrary that x ∈ X+
I . Then, there exists a ξ1 ≥ ξ0 such that x (ξ) > 0 and

x (ψ (ξ, s)) > 0 for all ξ ≥ ξ1. As in the proof of Lemma 3, we arrive at (6). Since ψ (ξ, s) is
nondecreasing with respect to s, we get that ψ (ξ, s) ≥ ψ (ξ, a) for s ∈ (a, b). Then, (6) becomes

(
r (ξ)

(
x(n−1) (ξ)

)α)′
≤ −$

(
x(n−1) (ψ (ξ, a))

)α
∫ b

a
ρ (ξ, s) ηα

k (ψ (ξ, s))ds. (10)

If we set w := r
(

x(n−1)
)α

> 0, then (10) becomes

w′ (ξ) +
ρk (ξ)

r (ψ (ξ, a))
w (ψ (ξ, a)) ≤ 0.

Thus, the last inequality has a positive solution. Using Theorem 1 in [10], we see that (9) also has
a positive solution, which is a contradiction. The proof is complete.
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Corollary 1. Assume that ηk is defined as in Lemma 3. If, for some δk ∈ (0, 1) and some k ∈ N,

lim inf
ξ→∞

∫ ξ

ψ(ξ,a)

ρk (u)
r (ψ (u, a))

du >
1
e

, (11)

then X+
I is empty.

Proof. Applying a well-known criterion Theorem 2 in [13] for first-order delay differential Equation (9)
to be oscillatory, we obtain immediately the criterion (11).

Example 1. Consider the third-order differential equation

x′′′ +
∫ 1

ε

ρ0

ξ3 x (εξ)dξ = 0, (12)

where ξ ≥ 1, α = 1, n = 3, r = 1, ρ (ξ, s) = ρ0/ξ3, ρ0 > 0, a = ε, b = 1, ψ (ξ, s) = εξ and ε ∈ (0, 2/3).
Then, we get that

η0 (ξ) :=
δ0

2
ε2ξ2.

It is easy to verify that condition (11) with k = 0 reduces to

$ρ0δ0ε2 (1− ε) ln
1
ε
>

2
e

. (13)

From Corollary 1, we see that X+
I is empty if (13) satisfies.

3. Nonexistence of Decreasing Positive Solutions

In this section, we obtain nonexistence criteria for decreasing positive solutions of odd-order
delay differential Equation (1).

Lemma 4. Assume that x ∈ X+
D . Then,

x (u) ≥ r1/α (v) x(n−1) (v) µl,n−2 (v, u) , (14)

where
µl,k+1 (v, u) :=

∫ v

u
µl,k (v, s)ds

and

µl+1,0 (v, u) :=
∫ v

u

(
1

r (υ)
exp

(∫ v

υ

(
$
∫ b

a
ρ (u, s) µα

l,n−2 (u, ψ (u, s))ds
)

du
))1/α

dυ,

for k = 0, 1, ..., n− 3, and l = 0, 1, 2, ....

Proof. Assume that x ∈ X+
D . Then, there exists a ξ1 ≥ ξ0 such that x (ξ) > 0 and x (ψ (ξ, s)) > 0 for

all ξ ≥ ξ1. Now, we use the induction to prove (14). For l = 0, since
(

r(x(n−1))
)′
≤ 0, we get

−x(n−2) (u) ≥ x(n−2) (v)− x(n−2) (u) =
∫ v

u

1
r1/α (s)

r1/α (s) x(n−1) (s)ds

≥ r1/α (v) x(n−1) (v) µ0,0 (v, u) . (15)

Integrating (15) from u to v, we have that

− x(n−3) (u) ≤ x(n−3) (v)− x(n−3) (u) = r1/α (v) x(n−1) (v) µ0,1 (v, u) . (16)
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Integrating (16) (n− 3) times from u to v, we conclude that

x (u) ≥ r1/α (v) x(n−1) (v) µ0,n−2 (v, u) .

Next, we assume that x (u) ≥ r1/α (v) x(n−1) (v) µl,n−2 (v, u), for l > 1. Thus, we obtain

x (ψ (ξ, s)) ≥ r1/α (ξ) x(n−1) (ξ) µl,n−2 (ξ, ψ (ξ, s))

and so
f (x (ψ (ξ, s))) ≥ $r (ξ)

(
x(n−1) (ξ)

)α
µα

l,n−2 (ξ, ψ (ξ, s)) . (17)

Combining Equations (1) and (17), we obtain

(
r (ξ)

(
x(n−1) (ξ)

)α)′
+ $

∫ b

a
ρ (ξ, s) r (ξ)

(
x(n−1) (ξ)

)α
µα

l,n−2 (ξ, ψ (ξ, s))ds ≤ 0 (18)

or equivalently,

(
r (ξ)

(
x(n−1) (ξ)

)α)′
+ $r (ξ)

(
x(n−1) (ξ)

)α
∫ b

a
ρ (ξ, s) µα

l,n−2 (ξ, ψ (ξ, s))ds ≤ 0. (19)

If we set Φ := r (ξ)
(

x(n−1) (ξ)
)α

, then (19) reduces to

Φ′ (ξ) + $Φ (ξ)
∫ b

a
ρ (ξ, s) µα

l,n−2 (ξ, ψ (ξ, s))ds ≤ 0.

Using Grönwall inequality, we obtain

Φ (υ) ≥ Φ (v) exp
(∫ v

υ

(
$
∫ b

a
ρ (u, s) µα

l,n−2 (u, ψ (u, s))ds
)

du
)

.

Therefore,

x(n−1) (υ) ≥
(

1
r (υ)

exp
(∫ v

υ

(
$
∫ b

a
ρ (u, s) µα

l,n−2 (u, ψ (u, s))ds
)

du
))1/α

×
(

r1/α (v) x(n−1) (v)
)

. (20)

Integrating this inequality from u to v and by using (15), we have

−x(n−2) (u) ≥
∫ v

u

(
1

r (υ)
exp

(∫ v

υ

(
$
∫ b

a
ρ (u, s) µα

l,n−2 (u, ψ (u, s))ds
)

du
))1/α

dυ

×
(

r1/α (v) x(n−1) (v)
)

≥ r1/α (v) x(n−1) (v) µl+1,0 (v, u) .

Integrating the previous inequality (n− 2) times from u to v, we conclude that

x (u) ≥ r1/α (v) x(n−1) (v) µl+1,n−2 (v, u) .

Thus, the proof is complete.
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Theorem 2. Assume that µl,k is defined as in Lemma 4. If, for some l ∈ N,

lim sup
ξ→∞

$
∫ ξ

ψ(ξ,b)

∫ b

a
ρ (u, s) µα

l,n−2 (ψ (ξ, s) , ψ (u, s))dsdu > 1, (21)

then X+
D is empty.

Proof. Assume the contrary that x ∈ X+
D . Then, there exists a ξ1 ≥ ξ0 such that x (ξ) > 0 and

x (ψ (ξ, s)) > 0 for all ξ ≥ ξ1. It follows from Lemma 4 that (14) holds. Integrating Equation (1) from
ψ (ξ, b) to ξ, we obtain

r (ξ)
(

x(n−1) (ξ)
)α
− r (ψ (ξ, b))

(
x(n−1) (ψ (ξ, b))

)α
= −

∫ ξ

ψ(ξ,b)

∫ b

a
ρ (u, s) f (x (ψ (u, s)))dsdu.

From the definition of f , we find

r (ψ (ξ, b))
(

x(n−1) (ψ (ξ, b))
)α
≥
∫ ξ

ψ(ξ,b)
$
∫ b

a
ρ (u, s) xα (ψ (u, s))dsdu. (22)

Using (14) with u = ψ (u, s) and v = ψ (ξ, s), we get that

x (ψ (u, s)) ≥ r1/α (ψ (ξ, s)) x(n−1) (ψ (ξ, s)) µl,n−2 (ψ (ξ, s) , ψ (u, s)) ,

which with (22), gives

$
∫ ξ

ψ(ξ,b)

∫ b

a
ρ (u, s) µα

l,n−2 (ψ (ξ, s) , ψ (u, s))dsdu ≤ 1,

a contradiction. Thus, the proof is complete.

Theorem 3. Assume that µl,k is defined as in Lemma 4. If there exists a function Ψ ∈ C ([ξ0, ∞) , (0, ∞)) such
that Ψ (ξ) < ξ, ψ (ξ, s) < Ψ (ξ) and the delay differential equation

v′ (ξ) + $

(∫ b

a
ρ (ξ, s) µα

l,n−2 (Ψ (ξ) , ψ (ξ, s))ds
)

v (Ψ (ξ)) = 0 (23)

is oscillatory for some l ∈ N, then X+
D is empty.

Proof. Assume the contrary that x ∈ X+
D . Then, there exists a ξ1 ≥ ξ0 such that x (ξ) > 0 and

x (ψ (ξ, s)) > 0 for all ξ ≥ ξ1. It follows from Lemma 4 that (14) holds. Using (14) with u = ψ (ξ, s)
and v = Ψ (ξ), we get that

x (ψ (ξ, s)) ≥ r1/α (Ψ (ξ)) x(n−1) (Ψ (ξ)) µl,n−2 (Ψ (ξ) , ψ (ξ, s)) .

Thus, from Equation (1), we obtain

(
r (ξ)

(
x(n−1) (ξ)

)α)′
+ $r (Ψ (ξ))

(
x(n−1) (Ψ (ξ))

)α
∫ b

a
ρ (ξ, s) µα

l,n−2 (Ψ (ξ) , ψ (ξ, s))ds ≤ 0. (24)

If we set v := r
(

x(n−1)
)α

, then (24) becomes

v′ (ξ) + $

(∫ b

a
ρ (ξ, s) µα

l,n−2 (Ψ (ξ) , ψ (ξ, s))ds
)

v (Ψ (ξ)) ≤ 0.
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Thus, the last inequality has a positive solution. Using Theorem 1 in [10], we see that (23) also has
a positive solution, which is a contradiction. The proof is complete.

Corollary 2. Assume that µl,k is defined as in Lemma 4. If there exists a function Ψ ∈ C ([ξ0, ∞) , (0, ∞))

such that Ψ (ξ) < ξ, ψ (ξ, s) < Ψ (ξ) and

lim inf
ξ→∞

∫ ξ

Ψ(ξ)
$
∫ b

a
ρ (u, s) µα

l,n−2 (Ψ (u) , ψ (u, s))dsdu >
1
e

. (25)

Then X+
D is empty.

Proof. Applying a well-known criterion Theorem 2 in [13] for first-order delay differential
Equation (23) to be oscillatory, we obtain immediately the criterion (25).

Example 2. Consider the third-order differential Equation (12). Then, we see that

µ0,0 (v, u) = v− u, µ0,1 (v, u) =
1
2
(v− u)2 ,

µ1,0 (v, u) = $ρ0
(1− ε)3

2
v ln

v
u

and

µ1,1 (v, u) = $ρ0
(1− ε)3

2
v
(

v− u
(

1 + ln
v
u

))
.

Thus, by choosing k = 0, l = 1 and Ψ (ξ) := 3
2 εξ, condition (25) reduces to

3$2ρ2
0ε2 (1− ε)4

(
1
2
− ln

3
2

)
ln

2
3ε

>
4
e

. (26)

From Corollary 2, we see that X+
D is empty if condition (26) satisfies.

Theorem 4. Assume that ηk and µl,k are defined as in Lemmas 3 and 4, respectively. If there exists a function
Ψ ∈ C ([ξ0, ∞) , (0, ∞)) such that Ψ (ξ) < ξ and ψ (ξ, s) < Ψ (ξ), for some δk ∈ (0, 1) and some k, l ∈ N
and the delay differential Equations (9) and (23) are oscillatory, then, every solution of Equation (1) is oscillatory.

Corollary 3. Assume that ηk and µl,k are defined as in Lemmas 3 and 4, respectively. Then, every solution of
Equation (1) is oscillatory if one of the following conditions is provided:

(a) Equations (11) and (21)
(b) Equations (11) and (25)

for some δk ∈ (0, 1) and some k, l ∈ N.

Remark 2. From the results in Examples 1 and 2, we note that the conditions (11) and (25) reduce to (13) and
(26). Therefore, using Corollary 3-(b), we conclude that every solution of (12) is oscillatory if (13) and (26) hold.

4. Conclusions

Through applying an iterative approach in this work, we established sharper estimates for
increasing/decreasing positive solutions of Equation (1). Using the principles of comparison,
we obtained new oscillation criteria that can be used to test for oscillations, even when the previously
known criteria fail to apply.

The memory effect may also appear non-locally when certain fractional derivatives with power,
exponential and Mittag–Leffler laws are possibly applied. So, it would be interesting to extend the
results of this paper to the fractional delay differential equations, see [28–32].
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