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Abstract: Background and Objective: the aim of this study is to develop and validate an automated
image segmentation-based frame selection and stitching framework to create enhanced composite
images from otoscope videos. The proposed framework, called SelectStitch, is useful for classifying
eardrum abnormalities using a single composite image instead of the entire raw otoscope video
dataset. Methods: SelectStitch consists of a convolutional neural network (CNN) based semantic
segmentation approach to detect the eardrum in each frame of the otoscope video, and a stitching
engine to generate a high-quality composite image from the detected eardrum regions. In this study,
we utilize two separate datasets: the first one has 36 otoscope videos that were used to train a semantic
segmentation model, and the second one, containing 100 videos, which was used to test the proposed
method. Cases from both adult and pediatric patients were used in this study. A configuration of
4-levels depth U-Net architecture was trained to automatically find eardrum regions in each otoscope
video frame from the first dataset. After the segmentation, we automatically selected meaningful
frames from otoscope videos by using a pre-defined threshold, i.e., it should contain at least an
eardrum region of 20% of a frame size. We have generated 100 composite images from the test dataset.
Three ear, nose, and throat (ENT) specialists (ENT-I, ENT-II, ENT-III) compared in two rounds the
composite images produced by SelectStitch against the composite images that were generated by the
base processes, i.e., stitching all the frames from the same video data, in terms of their diagnostic
capabilities. Results: In the first round of the study, ENT-I, ENT-II, ENT-III graded improvement
for 58, 57, and 71 composite images out of 100, respectively, for SelectStitch over the base composite,
reflecting greater diagnostic capabilities. In the repeat assessment, these numbers were 56, 56, and 64,
respectively. We observed that only 6%, 3%, and 3% of the cases received a lesser score than the base
composite images, respectively, for ENT-I, ENT-II, and ENT-III in Round-1, and 4%, 0%, and 2% of
the cases in Round-2. Conclusions: We conclude that the frame selection and stitching will increase
the probability of detecting a lesion even if it appears in a few frames.

Appl. Sci. 2020, 10, 5894; doi:10.3390/app10175894 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2537-8280
http://www.mdpi.com/2076-3417/10/17/5894?type=check_update&version=1
http://dx.doi.org/10.3390/app10175894
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 5894 2 of 13

Keywords: computer-assisted diagnosis; convolutional neural networks; eardrum abnormalities;
image stitching; otoscope; semantic segmentation

1. Introduction

Ear infections, particularly acute infections of the middle ear (i.e., acute otitis media—AOM), are a
major health problem in the pediatric population [1]. Otoscope is used in the clinical examination
of the eardrum or tympanic membrane (TM, an organ that separates the ear canal from the middle
ear) as the basic diagnostic apparatus for checking the status of the ear canal and TM. Nevertheless,
both clinician and computerized system diagnostic accuracies are heavily influenced by the limitations
of otoscopy, such as small field of view [2], poor illumination, or partial occlusions [3], e.g., by hair or
wax. Clinicians have around 75 percent of diagnostic accuracy [4–8] with viewing single otoscopic
images grabbed from digital otoscopes.

Most of the computer-assisted methods in this field analyze two-dimensional images captured
by traditional otoscopes and oto-endoscopes. Unfortunately, these methods can only distinguish
among a limited number of TM abnormalities. For instance, Kuruvilla et al. proposed a method to
distinguish AOM from other abnormalities like otitis media with effusion (OME) [5]. However, it is
difficult to generalize their approach to more than two categories because they need to design more
handcrafted features to identify other TM abnormalities such as TM perforation (a hole in the eardrum),
TM retraction (a condition in which a part of the eardrum lies deeper within the ear than its normal
position), and tympanosclerosis (a condition including scarring or accumulation of calcium deposits
within the TM) [9].

To explore the computer-assisted detectability of a wide range of eardrum abnormalities,
we employed both deep learning techniques [10] and traditional approaches that require hand-crafted
features [11,12] in our previous works. While prior studies reported promising results, they rely on a
single image rather than raw video for eardrum abnormalities [13]. Manually selecting a representative
frame from even a few seconds of those videos is extremely time consuming and subject to high inter-
and intra-reader variability. The complex topology of the eardrum requires multiple images at varying
depths of focus to properly capture the eardrum. For this reason, even if a best frame could be selected
from the video, it might not contain the entire view of the TM. Therefore, a clear and comprehensive
composite image generated automatically from otoscope video clips would be helpful for accurate and
automated diagnosis of eardrum abnormalities.

The aim of this study is to develop and validate an automated image segmentation and stitching
framework, called SelectStitch, to create enhanced composite images from otoscope videos. For this
purpose, a semantic segmentation-based framework is proposed. The segmentation and subsequent
stitching enable us to automatically select meaningful frames from otoscope videos and reduce
irrelevant ones (e.g., those heavily blurred with excessive amount of cerumen). A meaningful frame is
a frame that contains a specific proportion of an eardrum. We propose a modified U-Net [14] based
semantic segmentation approach to identify meaningful frames, which are used by our stitching engine
to create a composite image. We then compare the diagnostic decisions of three ear, nose, and throat
(ENT) physicians after reviewing these new composite images, relative to the images generated by
using the entire frames of the video recorded by traditional handheld otoscopy (i.e., composite images
generated without frame selection). Figure 1 gives an overview of our complete analysis pipeline in
this study.
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Figure 1. Overview of our study structure: 36 otoscope videos were used for training a segmentation 
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compared visually by three Ear, Nose, and Throat (ENT) physicians in two rounds of evaluation. 
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are respectively included in Sections 4 and 5. 
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2.1. Materials 

A centralized database of high-resolution digital adult and pediatric images was created for this 
particular project, captured at Ear, Nose, and Throat (ENT) clinics and primary care settings at the 
Ohio State University (OSU) and Nationwide Children’s Hospital (NCH) in Columbus, Ohio, USA 
in accordance with the OSU Institutional Review Board (IRB) approved protocol (the project 
identification codes: 2016H0011 and 2018H0395). A high definition (HD) video otoscope (JEDMED 
Horus+ HD Video Otoscope, St. Louis, MO, USA) was utilized to capture and record the video data. 
The video frames are of size 1440 by 1080 pixels and are recorded in MOV format. 

Our dataset included 136 otoscope videos. First, we randomly chose 36 otoscope videos from 
our database, then an image analyst determined 764 images from the extracted frames of all the 
videos (Dataset 1). These images were selected to contain the eardrum in several different conditions 
such as blurriness, glare as much as possible. Two otolaryngologists (Aaron C. Moberly and Charles 
Elmaraghy) annotated the selected frames as a final step (Figure 2) and these frames were used to 
develop the semantic segmentation model. The second one (Dataset 2) containing 100 videos for an 
independent set was used for employing the stitching process along with a reader study to assess the 
efficiency of the proposed method. Table 1 shows the distribution of major diagnostic categories as 
reported by the expert physicians. 

Table 1. Number of Abnormalities in Dataset 2. 

Abnormalities Number of Occurrences 
Effusion 27 

Tympanosclerosis 22 
Perforation 15 
Retraction 12 

Acute Otitis Media (AOM) 11 
Cholesteatoma 7 

Other Minor Cases 6 
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Figure 1. Overview of our study structure: 36 otoscope videos were used for training a segmentation
algorithm, which is then used to select appropriate frames for the 100 otoscope test videos. The
composite videos from a control set without frame selection and SelectStitch method are then compared
visually by three Ear, Nose, and Throat (ENT) physicians in two rounds of evaluation.

The rest of this paper is organized as follows: Section 2 describes the data and the proposed
framework. Experimental results are presented in Section 3. The discussion and concluding remarks
are respectively included in Sections 4 and 5.

2. The Proposed Methodology

2.1. Materials

A centralized database of high-resolution digital adult and pediatric images was created for this
particular project, captured at Ear, Nose, and Throat (ENT) clinics and primary care settings at the
Ohio State University (OSU) and Nationwide Children’s Hospital (NCH) in Columbus, Ohio, USA in
accordance with the OSU Institutional Review Board (IRB) approved protocol (the project identification
codes: 2016H0011 and 2018H0395). A high definition (HD) video otoscope (JEDMED Horus+ HD
Video Otoscope, St. Louis, MO, USA) was utilized to capture and record the video data. The video
frames are of size 1440 by 1080 pixels and are recorded in MOV format.

Our dataset included 136 otoscope videos. First, we randomly chose 36 otoscope videos from
our database, then an image analyst determined 764 images from the extracted frames of all the
videos (Dataset 1). These images were selected to contain the eardrum in several different conditions
such as blurriness, glare as much as possible. Two otolaryngologists (Aaron C. Moberly and Charles
Elmaraghy) annotated the selected frames as a final step (Figure 2) and these frames were used to
develop the semantic segmentation model. The second one (Dataset 2) containing 100 videos for an
independent set was used for employing the stitching process along with a reader study to assess the
efficiency of the proposed method. Table 1 shows the distribution of major diagnostic categories as
reported by the expert physicians.

Table 1. Number of Abnormalities in Dataset 2.

Abnormalities Number of Occurrences

Effusion 27
Tympanosclerosis 22

Perforation 15
Retraction 12

Acute Otitis Media (AOM) 11
Cholesteatoma 7

Other Minor Cases 6
Total 100
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Figure 2. Examples of annotation. (a) Original tympanic otoscopy images; (b) annotated images. Glare 
and blur are excluded from the target area by the annotator. 

An example frame for each of the six major abnormality categories from our dataset is depicted 
in Figure 3. 

 
Figure 3. Examples of eardrum conditions observed in our dataset. The representative frame for each 
category was selected by a trained researcher: (a) otitis media with effusion, (b) tympanosclerosis, (c) 
eardrum perforation, (d) retraction, (e) acute otitis media (AOM), and (f) cholesteatoma. 

2.2. U-Net Based Semantic Segmentation 

U-Net was introduced in biomedical imaging to improve precision and localization of 
microscopic images of neuronal structures. The architecture builds upon the fully convolutional 
network [15] and is similar to the deconvolutional network [16]. In a deconvolutional network, a stack 
of convolutional layers—where each layer halves the size of the image but doubles the number of 

Figure 2. Examples of annotation. (a) Original tympanic otoscopy images; (b) annotated images. Glare
and blur are excluded from the target area by the annotator.

An example frame for each of the six major abnormality categories from our dataset is depicted in
Figure 3.
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Figure 3. Examples of eardrum conditions observed in our dataset. The representative frame for each
category was selected by a trained researcher: (a) otitis media with effusion, (b) tympanosclerosis,
(c) eardrum perforation, (d) retraction, (e) acute otitis media (AOM), and (f) cholesteatoma.

2.2. U-Net Based Semantic Segmentation

U-Net was introduced in biomedical imaging to improve precision and localization of microscopic
images of neuronal structures. The architecture builds upon the fully convolutional network [15] and
is similar to the deconvolutional network [16]. In a deconvolutional network, a stack of convolutional
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layers—where each layer halves the size of the image but doubles the number of channels—encodes
the image into a small and deep representation. That encoding is then decoded to the original size
of the image by a stack of up-sampling layers. The U-Net adds additional skip connections between
layers at the same hierarchical level in the encoder and decoder. This allows low-level information to
flow directly from the high-resolution input to the high-resolution output.

We trained a U-Net architecture with an encoder depth of four to automatically find eardrum
regions in each otoscope video frame. In order to reduce the effects of overfitting, we took
advantage of data augmentation [17], which involves random horizontal flips, image sharpener,
affine transformations between −45 and 45 degrees, and elastic transformations with three different α
intervals of (45, 50), (55, 60), and (65, 80) with σ = 5 as described in [18]. The augmentation process
was implemented using the imgaug library [19]. Then, to scale inside the image randomly, images
were shrunk and enlarged within a range of (−0.5, +0.5). After data augmentation, we had 15,280
additional images, i.e., generated 20 augmented images for each of the 764 images in Dataset 1, to train
the segmentation network.

The performance of the segmentation algorithm was computed in a k-fold cross-validation [20]
(with k = 10). It should be emphasized that the segmentation framework was exposed neither to the
validation images (Dataset 2) nor the augmented images resulting from the validation set.

2.3. Image Stitching

Image stitching was performed with an OpenCV image-processing library for a stepwise process
of correcting optical distortion, cropping the circular TM field of view, and estimating affine transforms
between neighboring fields using Speeded Up Robust Features (SURF) [21] key points matching.
These transforms describe the translation, rotation, and skew of each peripheral field relative to
the central field. Finally, a full-resolution mosaic is generated using the estimated transforms, and
overlapping regions are linearly blended.

To save time on developing a customized image stitching algorithm and to focus on the clinical
impact of the proposed framework, we used Image Composite Editor (ICE) 2.0 (v2.0.3, Microsoft,
Redmond, WA, USA, 2015) [22] software package, created by the Microsoft Research Interactive Visual
Media Group, which generates seamlessly combined composite images. Microsoft ICE is distributed
as a freeware for non-commercial use.

Microsoft ICE does not have the capability of stitching images from totally different scenes.
Therefore, reducing TM-irrelevant frames, as proposed in this study, was needed to utilize this tool.
Our solution provides a feasible and practical alternative to manual selection. The proposed framework,
SelectStitch, consists of two main processes, i.e., semantic segmentation and image stitching, as depicted
in Figure 4.
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Figure 5 demonstrates the image stitching process for the three of selected frames. In this example,
the image stitching helped to obtain a single image that contains a more comprehensive view of
the pathology.
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2.4. Post-Processing

Post-processing consisting of two steps, cropping and image enhancement, was applied to the
output of the composite image generator. Most composite images produced by the ICE included
black background areas, which were redundant and removed after blurring with a Gaussian filter [23],
gray level thresholding [24] and foreground detection on the thresholded, binary image.

An image captured in an outdoor scene could be highly degraded due to poor- or over-lighting
conditions, or if there are different suspension particles, such as water droplets or dust particles. These
particles may cause the irradiance coming from the object to be scattered or absorbed, leading to haze,
smoke, or fog. The resulting images are degraded, and the color and contrast are shifted from the
original irradiance at the time of capture of the image. The image needs to be de-hazed before it can be
analyzed. While our ear images were not captured outdoors, the inverted low-light images common in
eardrum imaging results in hazy images. Therefore, we borrowed a de-hazing technique [25] to solve
low-light image condition in this study. Figure 6 gives the before and after images for a sample output
of the cropping and de-hazing technique.
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generator; (b) image cropped by applying converting to gray level, blurring with a Gaussian filter,
gray level thresholding and identification of the coordinates of the area that is needed for subsequent
processing; (c) image enhanced by a de-hazing technique.

2.5. Experimental Setting

Segmentation experiments were conducted on Wake Forest Baptist Medical Center’s
high-performance computer cluster. We took advantage of 16 GB Nvidia Tesla P100 PCI-E GPU
(Nvidia, Santa Clara, CA, USA). We used the Deep Learning Toolbox of MATLAB R2018b (MATLAB 9.5,
MathWorks, Natick, MA, USA, 2018) to implement the U-Net architecture, and Dice coefficient [26,27]
to evaluate the performance of the segmentation.
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Minimization of the pixel-wise cross-entropy loss is achieved via stochastic gradient descent
using the Adam optimizer [28] and learning rate of 0.001. We used mini-batches of size 16 for U-Net.
Early stopping was employed to avoid over-fitting [29,30].

In this study, we generated 100 composite images from the corresponding videos in Dataset 2.
The videos in Dataset 2 were categorized into different eardrum abnormalities by four expert physicians
(three ENT specialists and one pediatrician) based on physical examination and evaluation of the
patient at the time of the encounter.

Base process: In the base-process, we stitch all the frames of the video data regardless of their
content to create composite images. The base process does not incorporate neither a human intervention
nor a computerized technique to process or analyze video frames before stitching step, i.e., every frame
is used in the resulting composite image. Unlike SelectStitch, the resulting composite images do not
benefit from segmentation-based frame selection nor post-processing.

Two rounds of evaluation: The composite images produced by SelectStitch were compared by
three ENT specialists against the base processes in terms of their diagnostic capabilities. This reader
study provides an evaluation of a new measurement or analysis method [31]. In order to do this,
three ENT specialists graded each composite image using one of the three categories: 1 (Poor) refers to
a situation that he/she cannot diagnose well or the image has serious problems; 2 (Moderate) refers
to an image which is poor quality but still usable for diagnosis; and finally 3 (Good) refers to a good
quality composite image which can be used for diagnosis. Doing these measurements with three ENTs
provided us a measure of inter-reader variability, and repeating the study in a second round provided
us an estimate of intra-reader variability.

2.6. Statistical Analysis

To evaluate changes in scoring the composite images generated by SelectStitch compared to the
base process images in two rounds of assessments of three ENT specialists, we employed an ordinal
logistic regression model on image scoring (possible levels of 1, 2, or 3) to test the differences between
two methods (i.e., base process and SelectStitch) and two rounds. To evaluate the inter-reader variability
within rounds and the intra-reader variability between rounds for each method, we calculated Kendall’s
coefficient of concordance, which ranges between 0 (representing no agreement) and 1 (representing
perfect agreement).

3. Results

We trained U-Net to segment each frames of otoscope videos. Using 10-fold cross validation, we
noted Dice coefficient of 0.84 ± 0.03. While investigating the effect of the segmentation process (as
recommended by Zijdenbos et al. [32]) was beyond the scope of this study, dice coefficient of greater
than 0.70 generally indicates a good overlap. At test time for composite image generation, a frame is
considered relevant if at least it contains an eardrum region of an experimentally determined threshold
of 20%, of its size. TM-relevant frames were utilized to generate composite images (see the SelectStitch
process in Figure 1).

Table 2 gives the changes in scoring the composite images generated by SelectStitch compared
to the base images among two rounds of assessments. An examination of Table 2 shows that when
SelectStitch is used, the readers gave fewer responses of a score of 1 (Poor) and more responses of a
score of 3 (Good) compared to the base composite images, regardless of round.
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Table 2. Changes in scores on the evaluation of SelectStitch composite images compared to base process
composite images over two rounds for three experts where the symbol of >means “to”; the symbol of
↔ represents no change cases.

Reader

Round-1 Round-2

Improvements Deterioration
↔

Improvements Deterioration
↔

1 > 3 1 > 2 2 > 3 3 > 1 2 > 1 3 > 2 1 > 3 1 > 2 2 > 3 3 > 1 2 > 1 3 > 2

ENT-I 8 32 18 0 0 6 36 13 22 21 0 0 4 40

ENT-II 24 15 18 0 1 2 40 17 29 10 0 0 0 44

ENT-III 17 24 30 0 1 2 26 13 40 11 0 0 2 34

Table 2 indicates that using SelectStitch composite images, ENT-I improved 32 images from
category 1 (Poor) to 2 (Moderate), 18 images from 2 to 3 (Good), and 8 composite images from category
1 to 3; ENT-II improved 15 composite images from 1 to 2, 18 images from 2 to 3, and 24 composite
images from category 1 to 3 and ENT-III improved 24 composite images from 1 to 2, 30 images from 2
to 3, and 17 composite images from category 1 to 3 for Round-1.

To illustrate the effectiveness of our proposed framework for otoscope video stitching, we presented
the composite images of three otoscope video clips in Figure 7.
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Figure 7. Examples of successful composite results using our approach. The first row shows the images
generated by the base processes and the second row shows the images by our approach, SelectStitch.
Each column indicates the number of readers. Each reader gives the score of 1 for the base image and 3
for the proposed image.

We used an ordinal logistic regression model to compare image scoring between SelectStitch and
the base method and between two rounds. There is a significant difference in scoring between the base
and proposed methods at p value of 0.0007, and the base method has 6.5 times higher risk of scoring
less than the proposed method.

The probabilities on scoring are listed in Table 3. At Round-1, the base method has probability of
0.43 for scoring below 2 and has probability of 0.84 for scoring below 3, but the proposed method has
probability of 0.10 for scoring below 2 and has probability of 0.44 for scoring below 3. At Round-2,
the base method has probability of 0.52 for scoring below 2 and has probability of 0.88 for scoring
below 3, but the proposed method has probability of 0.14 for scoring below 2 and has probability of
0.53 for scoring below 3. In summary, the base method has higher probability for scoring less than the
proposed method at both rounds.
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Table 3. Probability on Scoring. The p (score = 1) shows the probability of scoring 1 and p (score ≤ 2)
shows the probability of scoring below 3.

Round-1 Round-2

Probability Base SelectStitch Base SelectStitch

p (score = 1) 0.43 0.10 0.52 0.14
p (score ≤ 2) 0.84 0.44 0.88 0.53

As with other medical tests, there are intra- and inter-reader variations in assessing the eardrum
abnormalities. Table 4 gives the inter- and intra-reader variability among the rounds for each method
(values < 0 as indicating no agreement and 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate,
0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement). We observed the base method has
higher inter- and intra-reader agreement in assessment of evaluation of composite images according to
their diagnostic capabilities. This could be explained by the fact that the ENTs agreed more on the
poor quality of cases than deciding whether the improvement category belongs to 2 or 3.

Table 4. Inter- and Intra-ENT Variability.

Round Method Kendall’s Coefficient of Concordance

Inter ENT Variability

1 Base 0.848
1 SelectStitch 0.618
2 Base 0.846
2 SelectStitch 0.633

ENT

Intra ENT Variability

1 Base 0.926
1 SelectStitch 0.839
2 Base 0.912
2 SelectStitch 0.829
3 Base 0.862
3 SelectStitch 0.778

4. Discussion

To the best of our knowledge, this is a first attempt at representing an otoscope video with a
single composite image while preserving its diagnostic capability as much as possible. Three ENT
experts evaluated the images in the scale of poor, moderate, and good and the results (see Table 2)
show that, on average among experts and evaluation rounds, in 60.3% of the cases the diagnostic
quality improved and in 15.3% of the cases this improvement was from poor to good and 18.0% from
moderate to good. Only 3.0% of the cases deteriorated: 2.7% from good to moderate and only 0.3%
from moderate to poor. There is a statistically significant difference in scoring between the base and
proposed methods at p value of 0.0007.

Exemplary composite images for the case of same scoring (score of 2) are shown in Figure 8.
In Figure 8, each column illustrates the evaluations from different readers. As can be observed in
Figure 8, it is likely that better scores for the proposed images will be obtained in a wider assessment
scale (e.g., 1–5).
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Figure 8. Examples of the same evaluation score for both composite images. The first row shows the
images generated by the base processes and the second row shows the images by SelectStitch. Each
column indicates also the number of reader and each reader gives the score of 2 for both base and the
proposed image.

Exemplary composite images for the cases where the results deteriorated after SelectStitch are
shown in Figure 9, in which the proposed images were consistently scored as poorer than the base
images. The comment noted by the ENT-I for the first column was that the base image looks more
natural and the proposed image has an unnatural lighting, making difficult to see the disease, which is
retraction. The drawback for the composite image generated by the proposed framework (see the
second column of Figure 9) was overexposing, but the base image received the score of 3 although it is
also mentioned that it has partial view. For the third column, ENT-III noted that the SelectStitch image
has glare. We also noticed a particular SelectStitch composite image (see fourth and fifth column in
Figure 9) that was given a score of 2, respectively, by ENT-I and ENT-III in both rounds while the base
score was 3. For the fourth column in Figure 9, the sample was having multiple abnormalities, i.e.,
Perforation, Prosthesis, and Tympanosclerosis; and the reader noted that proposed composite image
has “a little unnatural lighting.” For the fifth column, the sample was originally labeled as Perforation,
Cholesteatoma, and Tympanosclerosis; and the reader evaluated the proposed image as “a little blurry.”
For these cases, we can conjecture that the calcification and scarring present in Tympanosclerosis made
the generation of enhanced composite image with natural looking colors even more difficult.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 13 

 
Figure 9. Exemplary composite images for the cases where the results deteriorated after SelectStitch. 
The first row shows the images generated by the base processes and the second row shows the images 
by SelectStitch. In all cases, the readers gave a score of 3 for base process composite image and 2 for 
the SelectStitch composite image. 

Although this work provides a proof-of-concept approach to obtain one representative 
composite image of the TM, the intra-class variability is a substantial challenge. Thus, to obtain a 
robust segmentation, more training samples from scarred eardrums, e.g., tympanosclerosis are 
required. With a larger database, a multi-modal image segmentation could also be developed. 

There are some limitations to this study. First, the relevant frames were determined according 
to the amount of eardrum they capture. If the amount of eardrum in a frame is above a certain 
threshold, then it was considered a relevant frame. While our study shows promising results, we 
expect that additional criteria could be developed to select the frames (or even parts of the frames) to 
be stitched. This would increase the probability that all the relevant frames (and parts of the frames) 
could be used to properly represent pathologies present in eardrums. 

In our study, we did not evaluate the diagnostic accuracy of composite images over either single 
images selected from the video or the entire of otoscopic video. Although, we expect that the 
proposed composite images will be superior (or at least equal) to the manually selected single images 
in terms of diagnostic capability, a comparison study is needed but is beyond the scope of the current 
study and will be the subject of our future studies. 

5. Conclusions 

In this study, we developed a framework to obtain enhanced composite images from otoscope 
video clips and evaluated its effectiveness with a reader study. The data used in our study were 
acquired from a hand-held HD video imaging system. The results of this study have shown that an 
appropriate frame selection applied on otoscopy videos can significantly improve the diagnostic 
quality of composite images generated by these selected frames. We envision that the proposed 
approach has the potential to provide valuable diagnostic information in the form of normative TM 
information. 

Our system could be very valuable to provide a comprehensive view of the eardrum to 
clinicians, supporting more appropriate treatment. These composite images may increase the 
accuracy and efficiency of automated image analysis systems. Such a system can analyze the 
composite image, on a cloud-based platform, produced from a video-otoscope taken by a trained 
healthcare individual. These systems could be particularly helpful in case of shortage of specialists 
who can accurately diagnose eardrum abnormalities, especially in low- and middle-income countries 
and/or in rural areas [9]. Moreover, this single image could be stored and transferred between health 
institutions or computation environments instead of a whole video sequence. 

More data is needed to explore the generalization of the proposed framework to different kinds 
of eardrum abnormalities. For example, some abnormalities (TM with retraction, perforation with 
discharge, and cholesteatoma) are more difficult to diagnose than some particular ones such as clear 
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The first row shows the images generated by the base processes and the second row shows the images
by SelectStitch. In all cases, the readers gave a score of 3 for base process composite image and 2 for the
SelectStitch composite image.

We also observed that there are six, three, and three cases which ENTs give less scores compared
to the base composite images in Round-1 and four, zero, and two cases in Round-2. We noticed that
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the composite images resulting from the proposed framework that received a lesser score than the base
composite images suffered from over-exposure as the de-hazing algorithm failed to preserve the color
information. To improve the diagnostic capability of the composite image, it should be enhanced by
preserving its original color as much as possible. We also noted that in no evaluation, SelectStitch image
received the score of 1 while the base process image score was 3. There was a significant difference in
scoring between the first and second rounds at p value of 0.001, and the second round has 1.44 times
higher risk of scoring less than the first round. It is possible that ENTs with Round-1 experience might
have better judgement at second round.

Although this work provides a proof-of-concept approach to obtain one representative composite
image of the TM, the intra-class variability is a substantial challenge. Thus, to obtain a robust
segmentation, more training samples from scarred eardrums, e.g., tympanosclerosis are required.
With a larger database, a multi-modal image segmentation could also be developed.

There are some limitations to this study. First, the relevant frames were determined according to
the amount of eardrum they capture. If the amount of eardrum in a frame is above a certain threshold,
then it was considered a relevant frame. While our study shows promising results, we expect that
additional criteria could be developed to select the frames (or even parts of the frames) to be stitched.
This would increase the probability that all the relevant frames (and parts of the frames) could be used
to properly represent pathologies present in eardrums.

In our study, we did not evaluate the diagnostic accuracy of composite images over either single
images selected from the video or the entire of otoscopic video. Although, we expect that the proposed
composite images will be superior (or at least equal) to the manually selected single images in terms of
diagnostic capability, a comparison study is needed but is beyond the scope of the current study and
will be the subject of our future studies.

5. Conclusions

In this study, we developed a framework to obtain enhanced composite images from otoscope
video clips and evaluated its effectiveness with a reader study. The data used in our study were
acquired from a hand-held HD video imaging system. The results of this study have shown that an
appropriate frame selection applied on otoscopy videos can significantly improve the diagnostic quality
of composite images generated by these selected frames. We envision that the proposed approach has
the potential to provide valuable diagnostic information in the form of normative TM information.

Our system could be very valuable to provide a comprehensive view of the eardrum to clinicians,
supporting more appropriate treatment. These composite images may increase the accuracy and
efficiency of automated image analysis systems. Such a system can analyze the composite image,
on a cloud-based platform, produced from a video-otoscope taken by a trained healthcare individual.
These systems could be particularly helpful in case of shortage of specialists who can accurately
diagnose eardrum abnormalities, especially in low- and middle-income countries and/or in rural
areas [9]. Moreover, this single image could be stored and transferred between health institutions or
computation environments instead of a whole video sequence.

More data is needed to explore the generalization of the proposed framework to different kinds
of eardrum abnormalities. For example, some abnormalities (TM with retraction, perforation with
discharge, and cholesteatoma) are more difficult to diagnose than some particular ones such as clear
perforation [33]. A further research study will be needed to build models that could analyze the whole
spectrum of otoscopic videos faced in clinical settings.
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