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Abstract: This is a systematic review of over one hundred research papers about machine
learning methods applied to defensive and offensive cybersecurity. In contrast to previous reviews,
which focused on several fragments of research topics in this area, this paper systematically and
comprehensively combines domain knowledge into a single review. Ultimately, this paper seeks to
provide a base for researchers that wish to delve into the field of machine learning for cybersecurity.
Our findings identify the frequently used machine learning methods within supervised, unsupervised,
and semi-supervised machine learning, the most useful data sets for evaluating intrusion detection
methods within supervised learning, and methods from machine learning that have shown promise
in tackling various threats in defensive and offensive cybersecurity.
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1. Introduction

In the fight against malicious threats, there has been collaborative support from experts to
design different cyber defense systems. Both researchers and designers respectively have the same
goals: maintain the privacy, integrity, and accessibility of information through the cyber defense
systems against both internal and external threats. The main goal of cybersecurity systems is to
combat security threats originating from online sources, including viruses, Trojans, worms, spam,
and botnets [1]. These systems defend against cybersecurity threats at both the network and host levels.
Network-based defense systems make use of the network flow while host-based defense systems
control workstation’s upcoming data by mechanisms designed in firewalls, antiviruses, and Intrusion
Detection Systems (IDS).

These mechanisms monitor, track, and block viruses and other malicious cyberattacks. However,
these methods do not completely eliminate vulnerabilities, threats, and attacks because the design and
implementation of software and network infrastructure is inherently imperfect. The old adage that
“security chain is only as strong as the weakest link” sums this up aptly, because a single weak spot
within modern software and network infrastructures can lead to cascading security compromises at
multiple sub-levels [2]. This has led to the constant cycle of patches to protect cyberspace infrastructure,
but this has not deterred attackers. Thus, building defense systems for known attacks is insufficient
in protecting users. Effective cybersecurity is more critical than ever, as modern attacks are being
initiated with the intent for cyberwarfare by well-trained and well-funded militaries and criminal
organizations. Moreover, the intensity of attacks has increased and correspondingly the impact of
intrusions, as people and organizations get more connected via the Internet of Things (IoT) [3].
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Advanced methods are needed to discover previously unknown cyber intrusions and techniques
towards a more dependable cybersecurity infrastructure, including both defensive and offensive
approaches. Defensive approaches use reactive strategies that focus on prevention, detection,
and responses. This is the more traditional method to keep networks safe from cyber criminals,
and requires a thorough understanding of the system to be secured. Preventive measures are developed
from understanding of the system and potential weak points [4]. On the other hand, offensive
approaches are counterpoint to defensive methods, and proactively predict and remove threats in
the system using ethical hacking techniques. Security experts mimic exploits and attacks as cyber
attackers would. Ultimately, experts aim to eliminate vulnerabilities by identifying them ahead of
time [4]. Due to the accessibility of vast volumes of data and cyber criminals trying to gain illegal access
to cyberinfrastructures, various Artificial Intelligence (AI) and Machine Learning (ML) techniques
have been explored. This is because ML-based cybersecurity solutions, both offensive and defensive,
can handle and analyze large amounts of data and complex detection logic where traditional methods
would struggle.

Previous reviews in this area have focused on several fragments of research topics. This paper
systematically combines the knowledge base in cybersecurity with ML. The goal of our research is to
provide a baseline for readers, covering ML techniques, objectives, and effectiveness in cybersecurity,
as well as current challenges and future directions of ML techniques in cybersecurity. We focus on a
clear depiction of various ML methods, including Data Mining (DM) and computational intelligence.
We survey nearly two decades of research papers on application of ML techniques to cybersecurity.
We also review and contextualize the literature through the Six Dimensions of Intersection of AI/ML
and Cybersecurity (AI-ML-CS) framework [3]. Our systematic review focuses on two dimensions:
firstly data and new information frontiers and, secondly, algorithms for AI/ML and cybersecurity.

The paper is organized as follows, in line with the IMRAD (Introduction, Methods, Results,
and Discussion) organization structure typically used in scientific literature [5]. After the Introduction
section, we provide an overview of our Methodology grounded in Systematic Literature Reviews
(SLR). The outcomes from implementation of the SLR methods are contained in the Results section,
while applications of the results are covered in the Discussion section.

2. Methodology

There are other complementary surveys on the topic of ML and cyberattacks [6] and
cybersecurity [7]. In order to add to domain knowledge in this area, this review aims at producing
an impartial and comprehensive search of the resources considered from the defensive and
offensive cybersecurity perspectives. This involves utilizing systematic methods and secondary
data, while critically appraising research studies in order to synthesize findings qualitatively and
quantitatively. The recent interest in the field of cybersecurity approaches to ML has not yet resulted in
an effort to survey the underlying concepts, methods, and problems systematically. Our research is
partially using the Kitchenham and Charters methodology for SLRs [8]. This includes three critical steps
that pre-define a review protocol to reduce potential researcher bias: outlining the research questions,
generating a search strategy, and specifying a selection criteria. Overall, this systematic review adheres
to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [9]. To fulfill
the requirements of PRISMA, this paper has been structured in accordance with the required sections,
and we have provided the PRISMA flow diagram in Figure 1, as well as the PRISMA checklist with
cross-references in Appendix A.
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2.1. Research Questions

We cover the following three main research questions in this research that the systematic review is
aiming to answer, with emphasis on current ML methods being used in cybersecurity. These questions
are formulated to be relevant to both researchers and practitioners in cybersecurity. In line with the
AI-ML-CS framework, our research questions explore the need and availability of training data sets,
as well as the need for the two-pronged approach using passive (forensic or defensive) versus proactive
(offensive) cybersecurity strategies in algorithms [3].

• What ML techniques have been used in offensive and defensive cybersecurity?
• What data sets are used in training supervised ML models by researchers?
• What cybersecurity threats can be better tackled by ML in cybersecurity?

2.2. Search Strategy

Figure 1 shows the study selection divided into three different stages: identification, screening,
and eligibility. For the identification step, we shortlisted five major databases: ACM Digital Library,
IEEE Xplore, Springer Link, Science Direct, and Scopus. Scanning bibliographies of relevant articles,
we also searched for resources outside those databases. For example, Google Scholar was also
investigated but exempted from our sources, due to overlapping citations with the other databases.
Google Scholar is not a publishing entity, and mostly indexes citations and papers from other primary
database sources. On the other hand, the selected sources are original publishers who index original
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papers from self-managed conferences and journals by ACM, IEEE, Springer, and Elsevier. Hence,
the overlap between publications retrieved from the selected databases is minimal. In order to collect
all relevant existing research, we employed groups of several keywords. Despite major contributions
to the cybersecurity industry starting from the 2010s, we chose our timeline based on the impact of ML
in the early 2000s and included contributions made prior to 2010, as well.

In line with PRISMA, we also self-evaluate our sampling methods for any hidden bias, which could
lead to diverging outcomes from systematic studies [10]. Our data collection strategy had no known
hidden bias. The databases selected are well-known, and we were not limited by any issues regarding
access to manuscripts. We have also taken into account citation counts and year of publication for the
selected studies, as documented in Appendix B, and hence, it is expected that any potential errors from
missing or incomplete data will be minimal.

After collection, we identified duplicates manually based on citation similarity. The following
search terms were used (Box 1), with ML, artificial intelligence, and DM grouped inclusively to ensure
the presence of either word would return the matched articles. To filter for only security-related articles,
cybersecurity was used exclusively in the search query to return ML articles specific to cybersecurity.

Box 1. Search terms.
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2.4. Machine Learning Techniques Primer 

In the screening step, a team of researchers independently filtered the collection based on their titles
and abstracts. Next, the researchers examined the full contents of the selected collection. The eligibility
step reviewed articles using outlined search criteria to guarantee only relevant articles had been
collected. In the event of differing opinions in relation to the credibility of any selected article, meetings
were held to re-examine the full article until consensus was reached. Ultimately, 245 articles on
cybersecurity approaches using ML techniques were collected. From these, further criteria were
applied based on uniqueness of contributions to ML and cybersecurity, as well as removing duplicated
contributions to get the final listing of 120 studies, listed with references in Appendix B. We also
extracted metadata from the final selected set, including author’s name, title, year of publication,
publishing type, citation, data set, objectives, ML techniques, current and future challenges, offensive
or defensive cybersecurity approach, and data sets used.

2.3. Search Criteria

A systematic search of the literature concerning offensive and defensive cybersecurity approaches
using ML techniques was performed. Table 1 shows several criteria defined in order to find high-quality
articles to answer our research questions. These criteria were applied in order to determine which
articles would be included or excluded from all articles across each phase of the selection process.

Table 1. Search inclusion and exclusion criteria.

Inclusion Criteria

Peer-reviewed journals and conference publications dated between 2000–2018
The study reports the use of defensive approaches to solve cybersecurity problems
The study reports the use of offensive approaches to solve cybersecurity problems

The study presents full result to the research question

Exclusion Criteria

Papers NOT published as part of the main conference proceedings
Studies that only give general descriptions, failing to present experimental results

Studies that failed to give enough explanation of the experimental results
Studies with similar results published in different venues
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2.4. Machine Learning Techniques Primer

To answer the research question about the prevalence of ML techniques, we divided the ML
methods within defensive and offensive cybersecurity. In general, ML techniques can be categorized
into three main groups: supervised, unsupervised, and semi-supervised learning. With supervised
learning, the ML algorithms require prior knowledge to guide decisions. This includes detailed
data from past security incidents with an assigned label as to whether this was a breach or not.
This popular type of supervised ML method is called a classifier. For instance, the training data
could include information about network packets sent during an attack, along with other properties
such as originating source details. The patterns within the training data is then associated with a
“threat” or “no threat” label by the ML algorithm, and the trained model can classify future unknown
threats. On the other hand, unsupervised ML methods do not rely on training data or curated
labels, but group threats and non-threats based on general-purpose patterns within observations.
One popular unsupervised ML method is clustering, where data points with similar attributes are
grouped together, such as signals for attacks as an example. One benefit of unsupervised ML is
that historical data is not needed for training. On the other hand, unsupervised algorithms tend to
be more general-purpose compared with supervised methods that can learn domain-specific data
properties better. For example, an unsupervised method for malware detection may take longer to
detect new threats until the algorithm parameters are changed by the domain experts. On the other
hand, supervised ML algorithms would be able to correlate new threats as soon as new signatures
are provided as training data. Semi-supervised ML is useful when the training data is insufficient
for supervised ML, but the unsupervised alternative may not give the best results. In this scenario,
a small curated data set of attack signals can be used to make temporary inferences about new signals
in conjunction with unsupervised ML approaches.

ML techniques are evaluated using standard metrics such as true positive rate, false positive rate,
accuracy, precision, recall, F1 score, false alarm rate, and confusion matrix. The basis of these metrics
are true positives, false positives, true negatives, and false negatives. True positive rate is considered
as the number of intrusions that were correctly detected over the total number of intrusions in the
testing set. False positive rate is a representation of the number of normal requests recognized as
intrusions over the total number of normal requests available in the testing set [11]. It should also be
noted that False Positive Rate (FPR) and False Negative Rate (FNR) are essential metrics in various
types of network systems, including Erdos–Rényi (ER) networks, Random Regular (RR) networks,
and Scale-Free (SF) networks. FPR and FNR provide a robust measurement of a network’s probability
of being compromised by attacks or security threats being overlooked [12]. Accuracy provides the
percentage of all requests correctly classified. That is, the number of requests correctly classified over
the total number of requests available in the testing set expressed as a percentage [13]. Another common
measure is precision, computed as the number of intrusions that were correctly classified over the
total number of observed data points. Recall is another measure to compute the ratio of the number of
correctly identified intrusions over the total number of intrusions. F1 score is a composite measure
computed as the weighted average of the recall and precision [14]. It provides a balance through
incorporation of both precision and recall. False alarm rate is considered as the proportion between the
number of normal connections that are incorrectly categorized as attacks and the aggregate of normal
connections [11]. The confusion matrix presents the distribution of correctly and incorrectly classified
or predicted data points [14].

3. Results

Having followed the review protocol we outlined, the results of the systematic review are
summarized by answering each of the three research questions we raised. Firstly, we presented results
of the survey on offensive and defensive ML techniques in cybersecurity, followed by a summary of
data sets used in supervised ML. Lastly, we categorized cybersecurity threats that were tackled with
ML techniques in the related literature. It should be noted that there is no silver bullet classification
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algorithm, and specific context requires thorough evaluation to determine the best classifiers suitable
for the cybersecurity classification problem at hand.

Generally, most of the authors of the selected reviewed papers employed defensive approaches
to provide solutions to the various cybersecurity issues and this can be seen based on Figure 2.
Offensive approaches in cybersecurity were first employed in few of the selected reviewed papers
published in 2008 and the number of papers that used these approaches comparatively increased in 2012.
Despite this increase, the number papers that used defensive approaches in 2012 was about three times
the number of papers leveraging offensive approaches in that same year. Furthermore, the selected
reviewed papers published in 2017 recorded the highest number of studies that leveraged defensive
approaches to solve cybersecurity problems. We postulated that a key reason for this discrepancy might
be perceptions of Return on Investment (ROI) for offensive approaches, including unclear metrics for
success. Offensive methods mitigate attacks and breaches before they occur. Hence, the effectiveness
of these approaches is comparatively harder to quantify with traditional security metrics like FPR
and FNR.
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3.1. Defensive Machine Learning Techniques

We identified seven commonly used classification techniques in the selected reviewed papers on
IDS, a defensive cybersecurity strategy: Support Vector Machine (SVM), naïve Bayes, decision trees,
random forests, logistic regression, neural networks, and hybrid methods. Figure 3 summarizes the
range and prevalence of ML defensive strategies surfaced in literature.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 26 

Generally, most of the authors of the selected reviewed papers employed defensive approaches 
to provide solutions to the various cybersecurity issues and this can be seen based on Figure 2. 
Offensive approaches in cybersecurity were first employed in few of the selected reviewed papers 
published in 2008 and the number of papers that used these approaches comparatively increased in 
2012. Despite this increase, the number papers that used defensive approaches in 2012 was about 
three times the number of papers leveraging offensive approaches in that same year. Furthermore, 
the selected reviewed papers published in 2017 recorded the highest number of studies that leveraged 
defensive approaches to solve cybersecurity problems. We postulated that a key reason for this 
discrepancy might be perceptions of Return on Investment (ROI) for offensive approaches, including 
unclear metrics for success. Offensive methods mitigate attacks and breaches before they occur. 
Hence, the effectiveness of these approaches is comparatively harder to quantify with traditional 
security metrics like FPR and FNR. 

 
Figure 2. Trend for Machine Learning (ML) -based offensive and defensive approaches in 
cybersecurity. 

3.1. Defensive Machine Learning Techniques 

We identified seven commonly used classification techniques in the selected reviewed papers 
on IDS, a defensive cybersecurity strategy: Support Vector Machine (SVM), naïve Bayes, decision 
trees, random forests, logistic regression, neural networks, and hybrid methods. Figure 3 summarizes 
the range and prevalence of ML defensive strategies surfaced in literature. 

 
Figure 3. Machine Learning (ML) techniques used in defensive approaches. 

SVM are a frequently used classification algorithm by authors of the selected reviewed papers 
when dealing with IDS. This classification algorithm searches for an optimum hyperplane to divide 
two classes by conducting a structural risk analysis of statistical learning theory [15]. For the 
definition of this hyperplane, the algorithm ensures some support vectors are computed so that the 

0

10

20

30

40

50

60

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

N
um

be
r o

f p
ap

er
s

Year of Publication 

Offensive Approach Defensive Approach

Figure 3. Machine Learning (ML) techniques used in defensive approaches.

SVM are a frequently used classification algorithm by authors of the selected reviewed papers
when dealing with IDS. This classification algorithm searches for an optimum hyperplane to divide
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two classes by conducting a structural risk analysis of statistical learning theory [15]. For the definition
of this hyperplane, the algorithm ensures some support vectors are computed so that the maximum
margin could be achieved. Some authors applied a soft margin when the data set was imperfectly
linearly separable. This means that the authors were able to change the non-linear support vector
machines to a linear problem using kernel functions. Many of the reviewed papers employed radial
basis function (RBF). RBF has satisfactory non-linear forecasting abilities and RBF SVM has a smaller
number of controllable parameters with respect to linear SVMs.

Naïve Bayes classifier is considered the simplest form of Bayesian network classifiers as all attributes
are naively assumed to be unconstrained. Several authors have used this classifier in many studies
because of its accuracy, performance, as well as simplicity, which can be attributed to its assumption
property, which is conditionally independent. However, some authors have discovered that this
classification algorithm will not have a good performance if there is an unsatisfied assumption property
especially with data sets such as the KDD’99 data set which has complex attribute dependencies [16].

Decision trees are another widely used classification technique consisting of leaf nodes and
decision nodes. One major evaluation factor for decision trees is classification error. This error has been
defined as the misclassified cases percentage. When the class categories are more in the decision tree,
there is a significant reduction in the classification accuracy [16]. Some authors considered the decision
tree-based algorithms to be more advantageous than SVM as decision tree-based algorithms, especially
J48, showed better weighted recall and overall accuracy. Furthermore, those authors concluded that
decision tree-based algorithms provide better understanding of various classes of malicious behaviors
as results were better interpreted.

Another common classification technique is random forest. Through this technique, several trees
from the training data set are created. Every data set will go through the forest of trees to be classified
and by averaging prediction from all the trees, the results are calculated. This classification technique
has been considered to have excellent accuracy. Random forest has also been shown to help reduce
false alarms and processing times [16].

Logistic regression is a probabilistic linear classifier that involves the projection of input vectors
onto hyperplanes. The probability that the input is a member of a corresponding class is reflected
through the distance of the input to the hyperplane. Though the logistic classifier needs extensive
training time in some instances, it is an efficient classifier and has been used in cybersecurity to more
effectively handle noisy data that can often be generated when trying to deal with security threats and
attacks [17].

Neural networks were also used in many of the selected reviewed papers for IDS. More advanced
variants of this classification technique include deep learning, with the support of several layers of
connected networks. This classification algorithm is suitable for solving complicated data problems by
extraction of sophisticated patterns from features with limited prior knowledge. Backpropagation is a
common method used in training a neural network, and has been considered to result in local solutions
or cause low training speed so a single-hidden layer feed-forward neural network, called extreme
learning machines (ELMs) was proposed. The ELMs use bias and random weights for the connection of
hidden neurons and input. Also, the ELMs use only a one step calculation of least squares approximation
to determine the weights, thereby speeding up the learning process [18].

Finally, many current IDS studies have proposed hybrid detection techniques, combining both
signature-based detection techniques and anomaly-based detection techniques. Several papers
integrated classification algorithms to create effective IDS. One of the papers of interest proposed
a Signature-based Anomaly Detection System (SADS) to overcome some of the drawbacks of the
conventional IDS, such as false alarms, by integrating naïve Bayes and random forest classifiers [16].

It was also discovered that when random forest and NBTree algorithms, which combine naïve
Bayes and decision tree classifiers, were used cooperatively based on the sum rule scheme, the detection
accuracy was greater than the singular random tree algorithm’s detection accuracy [19]. Malicious web
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sessions have also been automatically classified to multiple vulnerability scan classes and attack classes
using various multiclass supervised ML methods such as SVM, J48, and PART [20].

3.2. Offensive Machine Learning Techniques

Figure 4 shows the popular techniques used in offensive cybersecurity. Neural networks were the
more commonly used technique, while unsupervised ML techniques such as association rule mining [21],
frequent pattern mining [11], and clustering [22] were used in a few studies. Combinations of supervised
and unsupervised methods as semi-supervised learning were also used [23].
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Many authors have conducted research on bigraph-based ML algorithms and a subset of
anonymized data learning methods function as offensive filter-based methods for network defense
as well as moving target defense techniques that change the view of the network from the attacker
through spatio-temporal randomization. These studies contributed significantly to a paradigm shift
from defensive to offensive cybersecurity. One of the selected reviewed papers of interest discussed
a framework created by the authors with the purpose of predicting adversarial movement with
progressing threats. The authors employed the Cloppert 12-stage intrusion-chain model [24] and
used various ML and DM models for predicting threats with time series data: Auto Regressive
Integrated Moving Average (ARIMA), Nonlinear Auto Regressive (NAR) neural network, NAR neural
network with eXogenous input (NARX), and NAR neural network for multi-steps ahead prediction.
The authors were successful in predicting adversarial movement with the proposed innovative
mixed-methods approach [25]. Similarly, to solve the challenge of predicting potentially malicious
actions in execution files, Recurrent Neural Network (RNN) models have been used, as RNNs have
been proven to be effective in time series data processing, providing high accuracy with minimal
execution time for the case of dynamic malware, with appropriate feature selection and optimally
configured hyperparameters [26].

3.3. Supervised Machine Learning Data Sets

Most of the studies surveyed using supervised ML with defensive or offensive security mechanisms
used contest-curated data sets, while a number of recent articles have also used real-world data.
The listing of data sets for supervised ML is summarized in Figure 5.

KDDCUP’99 was the most commonly used data set in the selected reviewed papers and this was
followed by DARPA’99, NSL-KDD, log files, and honeypot. In Figure 5, the list of others includes
MiniChallenge2, PREDICT, ADFA-LD, UCI, USPS, CDMC2012, SEA, CSIC2010, SSNET2011, ISCX,
MNIST, ISOT, HIGGS1, SUSY2, Collection, Flower, NAB, MUTAG, ENZYMES, Tiki Usenet, CIDDS-001,
Netresec AB 2015, RTBTE, CAIDA’07, and CAIDA’08.
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DARPA’99 data set was commonly used in the reviewed papers when testing IDS methods as
it is considered well documented and well-studied in IDS. This data set is widely used especially in
articles that focused on signature-based IDS. This type of detection involves the availability of a normal
network traffic and a whole set of attack with each attack having a comprehensive information such as
source and destination ports, source and destination IP addresses, attack duration, attack starting time,
and other relevant information [27]. Though DARPA’99 data set is considered well documented and
well-studied, many of the reviewed papers combined it with other data sets when evaluating intrusion
methods [16]. This was because many researchers concluded that DARPA’99 is old and not suitable
for evaluating recent IDS methods. Some of the reviewed articles either used both DARPA’99 and
UNSW-NB15 Data Set or used only the UNSW-NB15 Data Set which is a recent data set generated with
the aim of responding to the inaccessibility of network benchmark data set challenges [27].

The NSL-KDD data set is an updated version of KDDCUP‘99 and was used in many of the
articles reviewed as researchers consider KDDCUP‘99 to have some innate flaws. One major flaw is the
large number of unwanted records as duplicates of records were found when the KDDCUP‘99 was
used for IDS. This flaw causes bias in evaluation results [28]. However, many recent articles employ
KDDCUP’99 when evaluating the performance of anomaly-based IDS. Also, many authors consider
the KDDCUP’99 to provide non-biased evaluation results especially when used for the evaluation
of anomaly-based IDS performance [19]. NSL-KDD is still regarded to have some problems, such as
unrealistic data rates of normal and attack data. Nevertheless, many studies employ NSL-KDD data
set when evaluating IDS approaches because its test subset and train subset records are reasonable [29].

Log files were also employed in the reviewed literature. Though log files were not as commonly
used in the reviewed papers as DARPA’99, KDDCUP’99, and NSL-KDD, it was still employed in
a significant number of studies. Some of the studies used log files obtained from anti-virus logs,
firewall servers, and IDS [30]. Web logs as real-world data sets contained various websites and relevant
information about ATTACK-DATE, HOST, PARAMETERS, URL, REFER, USER-AGENT, COOKIE, IP,
POST-CONTENT, as well as other details.

Various honeypot mechanisms provided as data sets were also leveraged in the surveyed research
papers, which could be deployed to different networks to provide effective and practical evaluation
results. Most of the reviewed papers that employed honeypots when evaluating IDS approaches made
some modifications in addition to the traditional honeypots. For example, in one of the reviewed
papers, the researchers deployed offensive systems that access joint botnets and malicious web servers
to receive different types of commands as the traditional honeypots only receive attacks. There were
also some less common real-world data sets used in some of the reviewed papers. Some of the less
common real-world data sets were a real-world benchmark corpus which contained an estimate of
one billion words from the Google code project and the real-world data sets from the ML database
repository of the University of California, Irvine (UCI) [31].
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3.4. Cyberattacks Tackled by Machine Learning

In this section, an overview of the major challenges discussed in the selected reviewed papers
is presented. Many authors of the selected reviewed papers employed different ML techniques to
solve some of the most common IDS challenges which have been extensively discussed in IDS and
cybersecurity research. Figure 6 summarizes the cyberattacks tackled by ML techniques.
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Figure 6. Cyberattacks solved by the Machine Learning (ML) techniques used in the selected reviewed
papers and the number of studies that employed ML techniques to solve the different attacks.

Denial of Service (DoS), User to Root (U2R), Remote to Local (R2l), and probe attacks have been
the most common categories of attacks solved with ML techniques. These attacks were found in most
of the data sets (training and testing set). The DoS attack is an attack that results in the unavailability of
network resources to intended users as services of a host connected to the internet becomes suspended.
U2R attacks involve attackers attempting to get access of a target system without gaining official
permission or approval. R2L attacks involve situations where attackers exploit vulnerabilities which
could involve the guessing of passwords to take control over a remote machine. Probe attacks involve
attackers examining machines to obtain relevant information [32]. Distributed Denial of Service (DDoS)
attack is also a common attack solved with ML techniques. This attack has been considered the most
enhanced form of DoS attacks. Its power to deploy attack vectors over the internet in a “distributed
way” and generate lethal traffic through the aggregation of these forces differentiates it from other
attacks [33].

Anti-Malware software products which protect legitimate users from attacks mostly use
signature-based detection methods. These methods involve the extraction of unique signatures
from already known malicious files and the identification of an executable file as a malicious code if
there is a match between its signatures and the list containing available signatures [34]. Many studies
have shown that the restriction of the signature-based detection method to recognize already known
malware has made it ineffective and unreliable against new malicious codes [17].

Currently, many firms deal with botnets as it has been considered as one of the most significant
cybersecurity threats. Many cybercrimes committed usually involved the use of botnets. Although,
many studies have discussed different methods in which botnet could be detected and analyzed,
coping with new forms of botnets has become a major challenge which has received relatively limited
attention [35]. Various reviewed papers proposed new detection techniques to address botnet attacks.
In some of the papers, traffic behavior analysis was used in detecting botnet activities as network traffic
behavior was classified using ML. The traffic behavior analysis approach can function normally with
encrypted network communication protocols as it is independent of packet payloads.
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Also, information regarding network traffic can be recovered with ease from different network
devices without the service availability or network performance being significantly affected.
Furthermore, it has been discovered that various existing botnet detection techniques depend on the
detection of botnet activities during the initial formation phase or attack phase. As a result, some of
the studies proposed techniques for the detection of botnets during the initial formation phase as well
as during the control and command phase.

One of the current attacks organizations face is the zero-day attack [36]. Many of the selected
reviewed papers focus on anomaly detection methods to detect zero-day attacks using behavior-based
data from benign programs. Some of the studies proposed a host-based anomaly detection method.
In one of the studies, fuzzy logic and genetic algorithms were employed for anomaly detection.
Furthermore, a significant number of the selected reviewed papers presented an enhanced or modified
SVM approach to solve this challenge. Several challenges in detecting sequential data anomalies still
exists even though anomaly detection techniques are employed in various studies and applied in several
areas [37]. Furthermore, many of the selected reviewed papers employed ML towards cyberattacks such
as malware, phishing, SQL injections, ransomware, and cross-site scripting (XSS) [38]. Authors find
detecting anomalies in sequential data more complicated than detecting anomalies in static patterns
and this is due to the sequential data’s temporary related nature. Many authors of the selected reviewed
papers propose different novel ML techniques to solve this challenge. In one of the studies, they
proposed a temporal difference (TD) learning based method. The authors made some modifications
to the Markov reward model which is often used to detect multi-stage cyberattacks. Furthermore,
the value functions of Markov reward process were equivalent to the anomaly probabilities of sequential
behaviors were included in the proposed TD learning based approach.

4. Discussion

There are a number of insights and challenges that can be identified in the use of ML with
cybersecurity. These include the high dimensionality of network traffic data, class overlap between
threats and legitimate data over the feature space, and general uncertainty of information. Nevertheless,
ML in cybersecurity is growing exponentially, and the future points to more utilization.

4.1. High Dimensionality of Network Traffic Data

High dimensionality of network traffic data has made classification challenging as network traffic
data usually comprise of many attributes and features [39]. This is mainly due to the computational
complexity and resources required to process large and sparse matrices with many feature columns
and observation rows. This challenge makes it difficult for researchers to train models in order to
differentiate between anomalous and normal behavior [40]. As a result, many of the selected reviewed
papers discussed the need for a reduction in the dimensionality of network traffic data as well as feature
selection and the introduction of ML techniques when classifying such data. Some of the authors
of the selected reviewed papers employed data mining techniques in a cloud-based environment,
by choosing suitable attributes and features with the least relevance with regards to weight for the
classification. In the majority of the reviewed studies, the standard strategy is to choose features with
more desirable weights.

4.2. Class Overlap Challenge

Network intrusion detection systems face the challenge of providing satisfactory detection results
due to class overlap between threat and legitimate data over feature space. This is also one of the causes
behind false alarms and false positives observed in ML-based IDS. Another aspect of the class overlap
challenge is the temporal shifting of network nodes from being threats to non-threats [41]. Nodes can
be malicious or non-malicious at different times due to changes in performance, resource availability,
or infections, disinfections, and re-infections. Various authors of the selected reviewed papers proposed
different ML optimizations to solve this class overlap challenge. One of the studies introduced a wavelet
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based multi-scale Hebbian learning approach to neural networks [42], and the proposed methodology
was able to properly differentiate between non-linear and overlapping boundaries.

4.3. Uncertainty of Information

The increasing occurrence of cyberattacks worldwide has resulted in the misuse or loss of
information assets, thereby, increasing organizations’ expenses [43]. Over the years, intrusion detection
systems have been used for the protection of networks and computer systems. To detect cyberattacks,
most of the present intrusion detection systems depend on low-level raw network data. A current
practice is to employ knowledge-based intrusion detection systems which store cyberattack related
information as well as the corresponding vulnerabilities. Also, this stored information is used
for guiding the process of predicting attacks. A major challenge knowledge-based IDS face is the
inability to predict attacks due to the lack of contextual information or the uncertainty of information.
Contextual information involves not only information about the configuration on the target systems
and their vulnerabilities but any important pre-condition that must exist to achieve a successful attack.
Also, contextual information includes probable semantic relationships between the targeted locations
and the activities of the attackers at the time of the activities. Machine learning and probabilistic
approaches have been employed in many studies to tackle common uncertainty challenges. However,
many authors discovered that these approaches use models that users cannot understand but fuzzy
logic approaches model uncertainty in a user-friendly form.

4.4. Future of Machine Learning in Cybersecurity

Looking ahead, some of the predictions around new cybersecurity threats involve the exploitation
of ML systems by attackers and the use of these ML systems to aid assaults. Even though ML
systems have been useful in automating manual activities and enhancing decision-making, they are
also targets of new attacks. The fragility of some ML technologies has been predicted to become a
growing concern. ML systems are also potential targets by hackers, and ML techniques can be used
by attackers to enhance their attack vectors and data sniffing activities. Also, phishing and other
social engineering attacks could be made better using ML, fooling targeted individuals through the
creation of well-crafted audio-visuals or untraceable emails. Furthermore, realistic disinformation
campaigns could be launched using ML. The generation of new threats can been made relatively
easy for attackers due to the availability of attack toolkits for sale online. Another prediction made
by some researchers relating to cybersecurity is increased dependence on ML for countering attacks
and identifying vulnerabilities. Mobile phone users could be warned of risky actions when ML is
embedded into mobile phones. Trade-offs between tracking personal information in exchange for
added security is an ongoing discussion especially within research on security-based ML [44].

5. Conclusions

In the fight against malicious threats, there has been collaborative support from experts to design
different cyber defense systems. Intrusion detection mechanisms monitor, track, and block viruses and
other malicious cyberattacks. However, these methods are still vulnerable to attacks in applications
because the design and implementation of software and networks is imperfect. Advanced methods
using ML are being developed to discover previously unknown cyber intrusions and techniques
towards a more dependable cybersecurity infrastructure, including both defensive and offensive
approaches. This paper systematically synthesized the knowledge base in the domain of cybersecurity
with ML. We also covered current challenges and future directions of ML in cybersecurity while
surveying nearly two decades of research in the applications of ML to security. By employing the
Systematic Literature Reviews and PRISMA model, we answered three research questions on ML
techniques being used in offensive and defensive cybersecurity, data sets being used in training
supervised ML models, as well as cyberattacks that have been tackled by ML. Our study was limited to
literature investigation, and while algorithmic and experimental comparison of the different approaches
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was beyond our scope, this would be an interesting research direction for future work in this area.
Although there is no silver bullet ML algorithm to handle all possible cybersecurity vulnerabilities,
threats, and attacks, our study shows impressive outcomes from ML solutions, and provides a good
starting point for researchers exploring ML techniques within cybersecurity.
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Appendix A

Table A1. PRISMA Checklist [9].

Section/Topic # Checklist Item Reported on Page #

TITLE

Title 1 Identify the report as a systematic review,
meta-analysis, or both. 1

ABSTRACT

Structured
summary 2

Provide a structured summary including, as
applicable: background; objectives; data sources;

study eligibility criteria, participants, and
interventions; study appraisal and synthesis

methods; results; limitations; conclusions and
implications of key findings; systematic review

registration number.

1

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of
what is already known. 1

Objectives 4

Provide an explicit statement of questions being
addressed with reference to participants,

interventions, comparisons, outcomes, and study
design (PICOS).

2

METHODS

Protocol and
registration 5

Indicate if a review protocol exists, if and where it
can be accessed (e.g., Web address), and, if available,

provide registration information including
registration number.

N/A

Eligibility
criteria 6

Specify study characteristics (e.g., PICOS, length of
follow-up) and report characteristics (e.g., years

considered, language, publication status) used as
criteria for eligibility, giving rationale.

4

Information
sources 7

Describe all information sources (e.g., databases with
dates of coverage, contact with study authors to

identify additional studies) in the search and date
last searched.

3

Search 8
Present full electronic search strategy for at least one

database, including any limits used, such that it
could be repeated.

4

Study selection 9
State the process for selecting studies (i.e., screening,

eligibility, included in systematic review, and, if
applicable, included in the meta-analysis).

3–4
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Table A1. Cont.

Section/Topic # Checklist Item Reported on Page #

TITLE

Data collection
process 10

Describe method of data extraction from reports (e.g.,
piloted forms, independently, in duplicate) and any
processes for obtaining and confirming data from

investigators.

N/A

Data items 11
List and define all variables for which data were
sought (e.g., PICOS, funding sources) and any

assumptions and simplifications made.
3

Risk of bias in
individual

studies
12

Describe methods used for assessing risk of bias of
individual studies (including specification of

whether this was done at the study or outcome level),
and how this information is to be used in any data

synthesis.

3

Summary
measures 13 State the principal summary measures (e.g., risk

ratio, difference in means). N/A

Synthesis of
results 14

Describe the methods of handling data and
combining results of studies, if done, including

measures of consistency (e.g., I2) for each
meta-analysis.

2

Risk of bias
across studies 15

Specify any assessment of risk of bias that may affect
the cumulative evidence (e.g., publication bias,

selective reporting within studies).
3

Additional
analyses 16

Describe methods of additional analyses (e.g.,
sensitivity or subgroup analyses, meta-regression), if

done, indicating which were pre-specified.
N/A

RESULTS

Study selection 17

Give numbers of studies screened, assessed for
eligibility, and included in the review, with reasons

for exclusions at each stage, ideally with a flow
diagram.

3

Study
characteristics 18

For each study, present characteristics for which data
were extracted (e.g., study size, PICOS, follow-up

period) and provide the citations.
21–28

Risk of bias
within studies 19

Present data on risk of bias of each study and, if
available, any outcome level assessment (see item

12).
N/A

Results of
individual

studies
20

For all outcomes considered (benefits or harms),
present, for each study: (a) simple summary data for

each intervention group (b) effect estimates and
confidence intervals, ideally with a forest plot.

5–11

Synthesis of
results 21 Present results of each meta-analysis done, including

confidence intervals and measures of consistency. 11–12

Risk of bias
across studies 22 Present results of any assessment of risk of bias

across studies (see Item 15). N/A

Additional
analysis 23

Give results of additional analyses, if done (e.g.,
sensitivity or subgroup analyses, meta-regression

[see Item 16]).
N/A

DISCUSSION

Summary of
evidence 24

Summarize the main findings including the strength
of evidence for each main outcome; consider their
relevance to key groups (e.g., healthcare providers,

users, and policy makers).

11

Limitations 25
Discuss limitations at study and outcome level (e.g.,

risk of bias), and at review-level (e.g., incomplete
retrieval of identified research, reporting bias).

12

Conclusions 26
Provide a general interpretation of the results in the
context of other evidence, and implications for future

research.
12

FUNDING

Funding 27
Describe sources of funding for the systematic

review and other support (e.g., supply of data); role
of funders for the systematic review.

13
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Appendix B

Table A2. Enumeration of reviewed studies (Retrieved 14 February 2019).

ID Reference Publication Year Title Citations

A1 [45] 2007 D-SCIDS: Distributed Soft Computing
Intrusion Detection System 207

A2 [46] 2016
Hybrid Intrusion Detection Method to Increase

Anomaly Detection by Using Data Mining
Techniques

1

A3 [33] 2016 Data Randomization and Cluster-Based
Partitioning for Botnet Intrusion Detection 35

A4 [40] 2018
An Evaluation of the Performance of Restricted
Boltzmann Machines as a Model for Anomaly

Network Intrusion Detection
0

A5 [43] 2017 Contextual Information Fusion for Intrusion
Detection: A Survey and Taxonomy 7

A6 [47] 2011
A New Approach Based on Honeybee to

Improve Intrusion Detection System Using
Neural Network and Bees Algorithm

6

A7 [21] 2017
Network Intrusion Detection for Cyber

Security using Unsupervised Deep Learning
Approaches

2

A8 [48] 2016
A Comparative Study of Different Fuzzy
Classifiers for Cloud Intrusion Detection

Systems Alerts
1

A9 [17] 2016 Toward an Online Anomaly Intrusion
Detection System Based on Deep Learning 17

A10 [49] 2018 Adversarial Anomaly Detection Using
Centroid-Based Clustering 0

A11 [50] 2017 Fuzziness Based Semi-Supervised Learning
Approach for Intrusion Detection System 152

A12 [23] 2017
Unsupervised Labeling for Supervised

Anomaly Detection in Enterprise and Cloud
Networks

6

A13 [51] 2014 Supervised Learning to Detect DDoS Attacks 16

A14 [52] 2016

An Effective Intrusion Detection Framework
based on MCLP/SVM Optimized by
Time-Varying Chaos Particle Swarm

Optimization

46

A15 [53] 2018
Performance Evaluation of Intrusion Detection

based on Machine Learning using Apache
Spark

2

A16 [54] 2011 TVi: A Visual Querying System for Network
Monitoring and Anomaly Detection 32

A17 [27] 2018 An Auto-Learning Approach for Network
Intrusion Detection 0

A18 [55] 2012
Towards a Multiagent-Based Distributed

Intrusion Detection System Using Data Mining
Approaches

23

A19 [56] 2015 Anomaly Detection from Log Files Using Data
Mining Techniques 8

A20 [22] 2007 Adaptive Real-time Anomaly Detection with
Incremental Clustering 59

A21 [57] 2011 An Evolutionary Multi-Agent Approach to
Anomaly Detection and Cyber Defense 5

A22 [58] 2016
A Comparative Analysis of SVM and its

Stacking with other Classification algorithm for
Intrusion Detection

17

A23 [59] 2016 Multilayer Hybrid Strategy for Phishing Email
Zero-Day Filtering 2
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Table A2. Cont.

ID Reference Publication Year Title Citations

A24 [24] 2009 Security Intelligence 13

A25 [39] 2017
A Heuristic Attack Detection Approach using

the ‘Least Weighted’ Attributes for Cyber
Security Data

0

A26 [60] 2015
A Study on Intrusion Detection using Neural

Networks Trained with Evolutionary
Algorithms

22

A27 [61] 2011 Data Preprocessing for Anomaly Based
Network Intrusion Detection: A Review 181

A28 [62] 2004 Probabilistic Inference Strategy in Distributed
Intrusion Detection Systems 1

A29 [11] 2014 Network Anomaly Detection Approach based
on Frequent Pattern Mining Technique 6

A30 [63] 2015
Multilayered Database Intrusion Detection

System for Detecting Malicious Behaviors in
Big Data Transaction

6

A31 [64] 2017
A Multi-Objective Evolutionary Fuzzy System
to Obtain a Broad and Accurate Set of Solutions

in Intrusion Detection Systems
0

A32 [65] 2015
Survey of Uses of Evolutionary Computation

Algorithms and Swarm Intelligence for
Network Intrusion Detection

5

A33 [15] 2015 An Improved Bat Algorithm Driven by Support
Vector Machines for Intrusion Detection 8

A34 [66] 2012
Securing Advanced Metering Infrastructure
Using Intrusion Detection System with Data

Stream Mining
55

A35 [67] 2014
Mining Network Data for Intrusion Detection
through Combining SVMs with Ant Colony

Networks
147

A36 [68] 2005 GP Ensemble for Distributed Intrusion
Detection Systems 65

A37 [36] 2015
MARK-ELM: Application of a Novel Multiple
Kernel Learning Framework for Improving the

Robustness of Network Intrusion Detection
45

A38 [20] 2012
Using Multiclass Machine Learning Methods to

Classify Malicious Behaviors Aimed at Web
Systems

13

A39 [69] 2011 Intrusion Detection using Neural Based Hybrid
Classification Methods 76

A40 [70] 2017
Detecting Anomalous Behavior in Cloud

Servers by Nested Arc Hidden SEMI-Markov
Model with State Summarization

3

A41 [29] 2018
A Hybrid Intrusion Detection System based on
ABC-AFS Algorithm for Misuse and Anomaly

Detection
4

A42 [71] 2016 Intrusion Detection System Based on Cost
Based Support Vector Machine 0

A43 [72] 2017 AHEad: Privacy-Preserving Online Behavioral
Advertising using Homomorphic Encryption 2

A44 [73] 2016
Deep4MalDroid: A Deep Learning Framework

for Android Malware Detection Based on
Linux Kernel

22

A45 [74] 2013
Network Anomaly Classification by Support
Vector Classifiers Ensemble and Non-linear

Projection Techniques
19

A46 [75] 2014 Advocating the Use of Fuzzy Reasoning
Spiking Neural P system in Intrusion Detection 3
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Table A2. Cont.

ID Reference Publication Year Title Citations

A47 [76] 2013 An Agent-Based Approach for Building an
Intrusion Detection System 6

A48 [77] 2012
A-GHSOM: An Adaptive Growing

Hierarchical Self Organizing Map for Network
Anomaly Detection

28

A49 [78] 2018 Efficient Privacy-Preserving Machine Learning
in Hierarchical Distributed System 0

A50 [79] 2018
Rst-Rf: A Hybrid Model based on Rough Set

Theory and Random Forest for Network
Intrusion Detection

0

A51 [80] 2017 A LogitBoost-Based Algorithm for Detecting
Known and Unknown Web Attacks 3

A52 [19] 2016
An Effective Combining Classifier Approach
using Tree Algorithms for Network Intrusion

Detection
38

A53 [81] 2015 On Copulas-Based Classification Method for
Intrusion Detection 0

A54 [82] 2012
An Incremental Semi Rule-Based Learning

Model for Cybersecurity in
Cyberinfrastructures

0

A55 [83] 2012 A Network Intrusion Detection System based
on a Hidden Naïve Bayes Multiclass Classifier 176

A56 [84] 2016 Data Analytics on Network Traffic Flows for
Botnet Behavior Detection 10

A57 [85] 2016
MVPSys: Toward Practical Multi-View based

False Alarm Reduction System in Network
Intrusion Detection

9

A58 [13] 2017 Anomaly-Based Web Attack Detection: A Deep
Learning Approach 0

A59 [86] 2016 Intrusion Detection Based on IDBM 3

A60 [34] 2017
A Hybrid Technique using Binary Particle

Swarm Optimization and Decision Tree
Pruning for Network Intrusion Detection

1

A61 [87] 2015

Study on Implementation of Machine Learning
Methods Combination for Improving Attacks

Detection Accuracy on Intrusion Detection
System (IDS)

6

A62 [88] 2015 Host-Based Intrusion Detection System for
Secure Human-Centric Computing 3

A63 [89] 2003 A Comparative Study of Techniques for
Intrusion Detection 80

A64 [90] 2003 Intrusion Detection Using Ensemble of Soft
Computing Paradigms 104

A65 [91] 2005 Model Selection for Kernel Based Intrusion
Detection Systems 24

A66 [92] 2004 Intrusion Detection Systems Using Adaptive
Regression Spines 97

A67 [93] 2011 An Efficient Local Region and Clustering-Based
Ensemble System for Intrusion Detection 12

A68 [94] 2015
Probabilistic Models-Based Intrusion Detection

using Sequence Characteristics in Control
System Communication

4

A69 [95] 2009 An Empirical Approach to Modeling
Uncertainty in Intrusion Analysis 27

A70 [32] 2015 Two-Tier Network Anomaly Detection Model:
A Machine Learning Approach 23
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Table A2. Cont.

ID Reference Publication Year Title Citations

A71 [96] 2016 Multilayer Perceptron Algorithms for
Cyberattack Detection 1

A72 [31] 2018 Partition-Aware Scalable Outlier Detection
Using Unsupervised Learning 0

A73 [97] 2012 A Novel Multi-Threaded K-Means Clustering
Approach for Intrusion Detection 10

A74 [98] 2017 Using Google Analytics to Support
Cybersecurity Forensics 0

A75 [26] 2018 Early-Stage Malware Prediction using
Recurrent Neural Networks 5

A76 [99] 2018
Adaptive and Online Network Intrusion
Detection System using Clustering and

Extreme Learning Machines
4

A77 [100] 2010 Optimal Bayesian Network Design for Efficient
Intrusion Detection 4

A78 [101] 2018 A Bi-Objective Hyper-Heuristic Support Vector
Machines for Big Data Cyber-Security 3

A79 [14] 2015 Web Service Intrusion Detection Using a
Probabilistic Framework 1

A80 [102] 2016 Computational Intelligence in Intrusion
Detection System for Snort Log using Hadoop 0

A81 [103] 2016
Automated Intelligent Multinomial

Classification of Malware Species using
Dynamic Behavioral Analysis

3

A82 [104] 2017 Demystifying Numenta Anomaly Benchmark 3

A83 [105] 2015
An Intrusion Detection System using Network
Traffic Profiling and Online Sequential Extreme

Learning Machine
67

A84 [106] 2013 An Ensemble Approach for Cyber Attack
Detection System: A Generic Framework 22

A85 [107] 2013 Toward a More Practical Unsupervised
Anomaly Detection System 73

A86 [108] 2015 Intrusion Detection System using Bagging
Ensemble Selection 2

A87 [109] 2016
A Cross-Domain Comparable Measurement
Framework to Quantify Intrusion Detection

Effectiveness
0

A88 [110] 2013 An Approach to the Correlation of Security
Events based on Machine Learning Techniques 14

A89 [111] 2017 A Learning-Based Hybrid Framework for
Detection and Defense of DDoS Attacks 0

A90 [112] 2015 Advanced Temporal-Difference Learning for
Intrusion Detection 3

A91 [113] 2015
A New Privacy-Preserving Proximal Support
Vector Machine for Classification of Vertically

Partitioned Data
23

A92 [30] 2017

Analyst Intuition Inspired High Velocity Big
Data Analysis using PCA Ranked Fuzzy

K-Means Clustering with Multi-Layer
Perceptron (MLP) to Obviate Cyber Security

Risk

0

A93 [44] 2018 Cyber Security Predictions: 2019 and Beyond 0

A94 [114] 2014 A Fuzzy Intrusion Detection System based on
Categorization of Attacks 0

A95 [115] 2016

Local Outlier Factor and Stronger One Class
Classifier Based Hierarchical Model for

Detection of Attacks in Network Intrusion
Detection Data set

3

A96 [116] 2018 Adaptive Artificial Immune Networks for
Mitigating DoS Flooding Attacks 8
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Table A2. Cont.

ID Reference Publication Year Title Citations

A97 [117] 2017 Applying Convolutional Neural Network for
Network Intrusion Detection 10

A98 [118] 2017 Evaluating Effectiveness of Shallow and Deep
Networks to Intrusion Detection System 4

A99 [119] 2013 Deconstructing the Assessment of
Anomaly-based Intrusion Detectors 6

A100 [18] 2018
Network Intrusion Detection using Equality
Constrained-Optimization-Based Extreme

Learning Machines
2

A101 [120] 2018 Deep Learning-Based Intrusion Detection With
Adversaries 6

A102 [121] 2014 An Evasion and Counter-Evasion Study in
Malicious Websites Detection 24

A103 [37] 2010
Sequential Anomaly Detection based on

Temporal-Difference Learning: Principles,
Models and Case Studies

49

A104 [122] 2017
Continuous Implicit Authentication for Mobile

Devices based on Adaptive Neuro-Fuzzy
Inference System

2

A105 [16] 2014 Signature-Based Anomaly Intrusion Detection
using Integrated Data Mining Classifiers 11

A106 [123] 2015 Privacy-Preserving Association Rule Mining in
Cloud Computing 26

A107 [124] 2017
A Binary-Classification Method Based on

Dictionary Learning and ADMM for Network
Intrusion Detection

1

A108 [125] 2011

An Effective Network-Based Intrusion
Detection using Conserved Self Pattern

Recognition Algorithm Augmented with
Near-Deterministic Detector Generation

10

A119 [126] 2008 ULISSE, A Network Intrusion Detection System 12

A110 [127] 2016 Causality Reasoning about Network Events for
Detecting Stealthy Malware Activities 26

A111 [128] 2015 A Novel Anomaly Detection Approach for
Mitigating Web-Based Attacks Against Clouds 4

A112 [129] 2011
Artificial Immune System-Based Intrusion

Detection in a Distributed Hierarchical
Network Architecture of Smart Grid

30

A113 [35] 2013 Botnet Detection based on Traffic Behavior
Analysis and Flow Intervals 177

A114 [130] 2017 Network Intrusion Detection using Word
Embeddings 1

A115 [131] 2015
Secure Multi-party Computation Based Privacy

Preserving Extreme Learning Machine
Algorithm Over Vertically Distributed Data

5

A116 [132] 2011 On the Design and Analysis of the
Privacy-Preserving SVM Classifier 146

A117 [25] 2018 Predicting Adversarial Cyber-Intrusion Stages
Using Autoregressive Neural Networks 0

A118 [28] 2010 Discriminative Multinomial Naïve Bayes for
Network Intrusion Detection 71

A119 [42] 2017 Multiscale Hebbian Neural Network for Cyber
Threat Detection 2

A120 [133] 2011 Detecting P2P Botnets through Network
Behavior Analysis and Machine Learning 174
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