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Abstract: This paper is an extension of the existing works on the frequency-domain-based bit
flipping control strategy for stabilizing the single-bit high-order interpolative sigma delta modulator.
In particular, this paper proposes the implementation and performs the performance evaluation of
the control strategy. For the implementation, a frequency detector is used to detect the resonance
frequencies of the input sequence of the sigma delta modulator. Then, a neural-network-based
controller is used for finding the solution of the integer programming problem. Finally, the buffers
and the combinational logic gates as well as an inverter are used for implementing the proposed
control strategy. For the performance evaluation, the stability region in terms of the input dynamical
range is evaluated. It is found that the control strategy can significantly increase the input dynamical
range from 0.24 to 0.58. Besides, the control strategy can be applied to a wider class of the input
signals compared to the clipping method.

Keywords: high-order interpolative sigma delta modulator; bit flipping control; quantization; fractal;
chaos; complex number

1. Introduction

A single-bit high-order interpolative sigma delta modulator [1,2] consists of a negative feedback
of a high order loop filter and a single bit quantizer [3]. If the loop filter is designed properly, then the
magnitude of the noise transfer function can be very small at the signal band and the noise is mainly
localized outside the signal band. On the other hand, the magnitude of the signal transfer function
can also be very small outside the signal band and the signal is mainly localized in the signal band.
As the signal and the noise are separated in different frequency bands, a very good analog to digital
conversion performance can be achieved by applying a simple lowpass filtering at the quantizer
output. This technique is known as the noise shaping technique [1,4]. As an oversampling operation
for an audio signal can be implemented using an existing hardware [5,6], a single-bit high-order
interpolative sigma delta modulator is widely employed for the analog to digital conversion in the
audio devices [7,8].

However, the loop filter is required to be unstable (not bounded input bounded output stable) in
order to achieve a high signal to noise ratio. Therefore, a single-bit high-order interpolative sigma delta
modulator may suffer from the internal instability problem [9,10]. That is, the state variables of the
loop filter may diverge. To address this issue, control is required for the stabilization purpose [7,11-13].

The most common control method is clipping. Here, the values of the output of the loop filter
are clipped to a certain value when they exceed a certain value [7]. However, this control method
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usually results to the occurrence of a limit cycle [14]. This is because it will reach the same set of state
vectors every time when the control action takes place. Another common control method is to reset the
state vector to a certain vector in its largest invariant set if the largest invariant set of the state vectors
exists [11]. However, the determination of the largest invariant set of the state vectors requires a very
high computational power [15]. Therefore, the implementation cost of this approach is very expensive.

To address the drawbacks of the existing clipping control strategy, a sliding mode control-based
method was proposed [12,13]. However, the conventional sliding mode control technique usually
requires an amplifier with the gain higher than the saturation level of the quantizer. Equivalently
speaking, this flipping strategy is valid only for the input signal with a very small dynamic range.

To address the drawbacks of the above control strategies, a frequency-domain-based bit flipping
control strategy was proposed [1]. Although the theoretical analysis was discussed in detail in [1],
the implementation of this control strategy and the detail performance evaluation have not performed.
The main contribution of this paper is to propose an implementation to realize this control strategy
such that the stability region in terms of the input dynamical range can increase significantly.

The outline of this paper is as follows. In Section 2, the implementation of the frequency-domain-based
bit flipping controller is proposed. In Section 3, the performance evaluations are presented. Finally, a
conclusion is drawn in Section 4.

2. Implementation of the Frequency-Domain-Based Bit Flipping Controller

Since this control strategy is based on the cancellation of certain frequency contents of the input
sequence of the sigma delta modulator, it only requires a frequency detector [16-18] to detect the
resonance frequencies of the input sequence of the sigma delta modulator, a neural-network-based
controller for finding the solution of the integer programming problem [19-21], the buffers and the
combinational logic gates as well as an inverter for implementing the proposed control strategy.
The block diagram of the proposed method is shown in Figure 1.

Frequency detector —m| Controlle
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Figure 1. Block diagram of the proposed system.

First, the frequency detector detects the existence of the resonance frequencies in the input
sequence. Here, the resonance frequencies relate to those eigenvalues of A lying on the unit circle.

To detect the resonance frequencies, it is equivalent to test whether ¥, u[n]d;" is bounded or not with
n>0
|dj] = 1 for those i € {0,--- , P —1}. However, as the length of the signal is infinite, the implementation

involves the infinite sum. This has an implementation difficulty. To address this issue, a buffer is
employed to preload a block of signal and the summation is evaluated only over the points in the
block. Now, a simple accumulator is employed for computing the summation of the real part of the
points in the block. Similarly, another simple accumulator is employed for computing the summation
of the imaginary part of the points in the block. Finally, two comparators are employed to test whether
both the absolute values of the summed real part and the summed imaginary part of the points in the
block are larger than a threshold value or not.

Second, the loop filter is implemented via the direct form structure. Here, only the delay cells,
the multipliers and the adders are required for the implementation. The state variables of the digital
filter are stored in the delay cells.
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Third, the quantizer is implemented via the comparators. The output of the loop filter is compared
to the quantization levels of the quantizer via the comparators. Finally, the quantizer gives the output
which is the output of the corresponding comparator.

Fourth, the controller implements the integer programming algorithm via a neural network.
The decision vector of the optimization problem is the weight vector of the neural network. The update
of the decision vector is implemented via the update of the weight vector of the neural network.
Once the update of the weight vector is converged, the converged weight vector is used to control
the inverter.

Finally, the bit streams of the output of the quantizer is compared to the converged weight vector
of the neural network. If the bit streams of the output of the quantizer are different from the converged
weight vector of the neural network, then the corresponding bit is inverted by the inverter. Otherwise,
the bit streams of the output of the quantizer remain unchanged.

3. Performance Evaluation

Since the control objective is to guarantee the stability of the sigma delta modulator and the
stability only depends on the input signal for a given sigma delta modulator and the control strategy,
the input dynamical range is employed as the criterion for the comparison.

As discussed in Section 1 that the clipping method [7] is the most common control method,
the clipping method [7] is compared. More precisely, the clipping rule is to reset the state vector x(k)
to the zero vector when the absolute values of the outputs of the loop filter are greater than or equal
to one.

In this paper, a single bit fifth order interpolative sigma delta modulator realized using the state
space representation with the following state space matrices is considered:

0.9990 1.0000 0.0000 0.0000 0.0000
—-0.0020 0.9990 0.0530 0.1764 0.5164

A= 0 0 0.9997 1.0000 -0.0000 {,
0 0 —-0.0007 0.9997 0.3567
0 0 0 0 1.0000

B=[0 000 1]

and
C:[ 0.0307 0.4153 0.0828 0.2754 0.8063]

This sigma delta modulator is chosen for the comparison because it is widely used in the audio
industry [7].

It is worth noting that the eigenvalues of A are 0.9990 + 0.0445j, 0.9990 — 0.0445j, 0.9997 + 0.0264;],
0.9990 — 0.0264j and 1. As all the eigenvalues are on the unit circle, this loop filter is not bounded
input bounded output stable. For the ease of the implementation, assume that the initial state vector is
zero. Since this loop filter contains a DC pole, the step input is applied to this sigma delta modulator
for illustration purposes. This is because this input will result to the occurrence of the resonance.
Therefore, control is required for stabilizing the sigma delta modulator. Here, three-step input signals
with different step sizes are illustrated. For the first case, an input step size equal to 0.24 is applied to
the sigma delta modulator. That is, u(k) = 0.24 for k > 0. Figure 2a,b show the outputs of the loop
filters when our control strategy and the clipping method [7] are applied, respectively. Figure 2¢,d
show the magnitude responses of the outputs of the loop filters when our control strategy and the
clipping method [7] are applied, respectively. It can be seen from Figure 2a that the output of the loop
filter under our proposed control strategy is bounded. This implies that there exists a binary sequence
in Yy, or the neural network finds a solution of Problem (P) such that the objective functional value
of Problem (P) is exactly equal to zero. Besides, it can be seen from Figure 2c that the output of the
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loop filter is a wide band signal. Its frequency content is very rich. This means that the sigma delta
modulator exhibits the chaotic behavior. On the other hand, it can be seen from Figure 2b that the
output of the loop filter under the clipping strategy [7] is periodic. This is because the state vectors
are reset to the same state every time when the reset action takes place. Besides, it can be seen from
Figure 2d that the output of the loop filter only consists of the DC frequency and the Nyquist sampling
frequency. This implies that the sigma delta modulator exhibits the limit cycle behavior. For the audio
application, this frequency component with the high amplitude refers to the annoying audio tune,
which should be avoided.
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Figure 2. (a) Output of the loop filter when u(k) = 0.24 for k > 0 under our proposed control strategy.
(b) Output of the loop filter when u(k) = 0.24 for k > 0 under the clipping strategy [7]. (c) Magnitude
response of the output of the loop filter when u(k) = 0.24 for k > 0 under our proposed control strategy.
(d) Magnitude response of the output of the loop filter when u(k) = 0.24 for k > 0 under the clipping
strategy [7].

In order to evaluate the performance on the analog to digital conversion of the sigma delta
modulator under various control strategies, the peak signal to noise ratio is employed as the performance
index. Since the passband of the loop filter is (—614, 614)' the ideal lowpass filter with the passband equal

to (—&, %) is applied to the quantizer output. Here, the ideal lowpass filtering is implemented using
the discrete Fourier transform approach. That is, those discrete Fourier transform coefficients outside
the frequency band (—614, 614) are set to zero. It is found that the signal to noise ratio of the signal based
on our control strategy is 36.98 dB. On the other hand, the signal to noise ratio of the signal based on
the clipping method [7] is —1.76 dB. This is because the output of the loop filter only consists of the DC
frequency and the Nyquist sampling frequency while there is no DC component in the input signal.
Therefore, the signal to noise ratio of the signal is significantly worse.

Now, consider another input step size. Here, the input step size is incremented by 0.01.
More precisely, an input step size of 0.25 is applied. That is, u(k) = 0.25 for k > 0. Figure 3a,b
show the outputs of the loop filters when our control strategy and the clipping method [7] are applied,
respectively. Figure 3¢,d show the magnitude responses of the outputs of the loop filters when our
control strategy and the clipping method [7] are applied, respectively. It can be seen from Figure 3a,c
that the sigma delta modulator exhibits the similar behavior as before if our proposed control strategy
is applied. On the other hand, it is worth noting that the increase in the input step size causes the
absolute value of the output of the loop filter greater than or equal to one at every time instant if no
control force is applied. Therefore, if the clipping control strategy [7] is applied, then the clipping
action takes place at every time instant. Hence, it can be seen from Figure 3b,d that the output of the
loop filter is always equal to zero if the clipping control strategy [7] is applied. In this case, the sigma
delta modulator is not working properly.
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Figure 3. (a) Output of the loop filter when u(k) = 0.25 for k > 0 under our proposed control strategy.
(b) Output of the loop filter when u(k) = 0.25 for k > 0 under the clipping strategy [7]. (c) Magnitude
response of the output of the loop filter when u(k) = 0.25 for k > 0 under our proposed control strategy.

(d) Magnitude response of the output of the loop filter when u(k) = 0.25 for k > 0 under the clipping

strategy [7].
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Likewise, it is found that the signal to noise ratio of the signal based on our control strategy is
35.37 dB. On the other hand, the signal to noise ratio of the signal based on the clipping method [7] is
exactly 0 dB.

Next, a very large input step, which is equal to 0.58, is applied. Figure 4a,b show the outputs
of the loop filters when our control strategy and the clipping method [7] are applied, respectively.
Figure 4c,d show the magnitude responses of the outputs of the loop filters when our control strategy
and the clipping method [7] are applied, respectively. It can be seen from Figure 4a,c that the sigma
delta modulator also exhibits the similar behavior as before if our proposed control strategy is applied.
Similarly, it can be seen from Figure 4b,d that the output of the loop filter is always zero under the
clipping control strategy [7]. From here, it can be seen that our proposed control method can achieve a
larger stability region in terms of the input dynamical range.
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Figure 4. (a) Output of the loop filter when u(k) = 0.58 for k > 0 under our proposed control strategy.
(b) Output of the loop filter when u(k) = 0.58 for k > 0 under the clipping strategy [7]. (c) Magnitude
response of the output of the loop filter when u(k) = 0.58 for k > 0 under our proposed control strategy.
(d) Magnitude response of the output of the loop filter when u(k) = 0.58 for k > 0 under the clipping
strategy [7].

Likewise, it is found that the signal to noise ratio of the signal based on our control strategy is
32.52 dB. On the other hand, the signal to noise ratio of the signal based on the clipping method [7] is
exactly 0 dB.

To further demonstrate the effects of the input step size on the stability of the sigma delta
modulator, Figure 5a,b show the maximum absolute value of the output of the loop filter against the
input step size under our proposed control strategy and the clipping control strategy [7], respectively.
For our proposed control strategy, it can be seen from Figure 5a that the input step sizes being smaller
than or equal to 0.58 will yield the maximum absolute values of the outputs of the loop filter being
equal to nonzero. This means that the sigma delta modulator can be stabilized. However, the modulus
of U(z )| 4, increases as the input step size increases. Eventually, ’x’( ) + U(z )| ¢ Yy, Inthis
case, the sigma delta modulator cannot be stabilized. Therefore, it can be seen from Figure 5a that
the maximum absolute values of the outputs of the loop filter are equal to zero when the input step
sizes are larger than 0.58. On the other hand, for the clipping control method [7], it can be seen from
Figure 5b that the input step sizes being smaller than or equal to 0.24 will yield the maximum absolute
values of the outputs of the loop filter being equal to nonzero. However, the maximum absolute values
of the outputs of the loop filter are equal to zero when the input step sizes are larger than 0.58. This also
demonstrates that our proposed control method yields a wider stability region in terms of the input
dynamical range.
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Figure 5. (a) The maximum absolute value of the output of the loop filter against the input step size
under our proposed control strategy. (b) The maximum absolute value of the output of the loop filter
against the input step size under the clipping control strategy [7].

As the phases of the eigenvalues of A are 0.01427, —0.01427, 0.00847, —0.00847 and 0, the sinusoidal
inputs with the angular frequencies equal to 0.01427 and 0.00847 are applied for the illustration
purpose. Here, the amplitude of the sinusoidal input is equal to 0.24, which is chosen the same as
before for the comparison purpose. For the simplicity reason, there is no phase shift on the sinusoidal
input. Figure 6a,b show the outputs of the loop filters when the angular frequency is equal to 0.01427
under our control strategy and the clipping method [7], respectively. Figure 6¢,d show the magnitude
responses of the outputs of the loop filters when the angular frequency is equal to 0.01427t under our
control strategy and the clipping method [7], respectively. Figure 7a,b show the outputs of the loop
filters when the angular frequency is equal to 0.00847 under our control strategy and the clipping
method [7], respectively. Figure 7c,d show the magnitude responses of the outputs of the loop filters
when the angular frequency is equal to 0.00847 under our control strategy and the clipping method [7],
respectively. It can be seen from both Figures 6 and 7 that the sigma delta modulator exhibits the
similar behavior as before for our proposed control strategy.
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Figure 6. (a) Output of the loop filter when u(k) = 0.24 sin(0.01427tk) for k > 0 under our proposed
control strategy. (b) Output of the loop filter when u(k) = 0.24sin(0.01427k) for k > 0 under

the clipping control strategy [7].

(c) Magnitude response of the output of the loop filter when

u(k) = 0.24sin(0.01427tk) for k > 0 under our proposed control strategy. (d) Magnitude response of the
output of the loop filter when u(k) = 0.24 sin(0.01427tk) for k > 0 under the clipping control strategy [7].
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Figure 7. (a) Output of the loop filter when u(k) = 0.24 sin(0.00847k) for k > 0 under our proposed
control strategy. (b) Output of the loop filter when u(k) = 0.24sin(0.00847tk) for k > 0 under
(c) Magnitude response of the output of the loop filter when
u(k) = 0.24sin(0.00847tk) for k > 0 under our proposed control strategy. (d) Magnitude response of the
output of the loop filter when u(k) = 0.24 sin(0.00847k) for k > 0 under the clipping control strategy [7].

the clipping control strategy [7].

To demonstrate the application value of our proposed method, the sigma delta modulator is
applied to an electromyogram [1]. Figure 8 shows the electromyogram. Figure 9a,b show the outputs
of the loop filters under our control strategy and the clipping method [7], respectively. Figure 9¢c,d show
the magnitude responses of the outputs of the loop filters under our control strategy and the clipping
method [7], respectively. It can be seen from Figure 9a,c that the sigma delta modulator exhibits similar
behavior to before for our proposed control strategy. This demonstrates the generality of our proposed

method and the possibility of applying our proposed method to some practical signals.
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Figure 9. (a) Output of the loop filter under our proposed control strategy when the input is an
electromyogram. (b) Output of the loop filter under the clipping control strategy [7] when the input is
an electromyogram. (c) Magnitude response of the output of the loop filter under our proposed control
strategy when the input is an electromyogram. (d) Magnitude response of the output of the loop filter
under the clipping control strategy [7] when the input is an electromyogram.

4. Conclusions

This paper proposed an implementation of the frequency-domain-based bit flipping control
strategy [1] for stabilizing the single-bit high-order interpolative sigma delta modulator. In particular,
a frequency detector was used to detect the resonance frequencies of the input sequence of the sigma
delta modulator. Moreover, a neural-network-based controller was used for finding the solution
of the integer programming problem. Moreover, the buffers and the combinational logic gates as
well as an inverter were used for implementing the control strategy. The implementation cost was
low. The computer numerical simulation results show that the stability region in terms of the input
dynamical range increased from 0.24 to 0.58. Moreover, the control strategy could be applied to a
wider class of the input signals compared to the clipping method.



Appl. Sci. 2020, 10, 5785 14 of 21

Author Contributions: Conceptualization, H.Z. and B.W.-K.L.; methodology, software, H.Z. and BW.-K.L,;
validation, B.W.-K.L.; formal analysis, H.Z. and B.W.-K.L.; investigation, H.Z. and B.W.-K.L.; resources, B.W.-K.L.;
data curation, H.Z.; writing—original draft preparation, H.Z.; writing—review and editing, H.Z.; visualization,
H.Z.; supervision, B.W.-K.L.; project administration, B.W.-K.L.; funding acquisition, B.W.-K.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded partly by the National Nature Science Foundation of China [no. U1701266,
no. 61372173 and no. 61671163], the Team Project of the Education Ministry of the Guangdong Province [no.
2017KCXTDO011], the Guangdong Higher Education Engineering Technology Research Center for Big Data on
Manufacturing Knowledge Patent [no. 501130144], the Guangdong Province Intellectual Property Key Laboratory
Project [no. 2018B030322016] and Hong Kong Innovation and Technology Commission, Enterprise Support
Scheme [no. S/E/070/17].

Conflicts of Interest: The authors declare no conflict of interest

Appendix A. Review on the Conversions between the Integers and the Corresponding
Binary Sequences

First, consider the case when a non-negative integer is represented using the octave integer base.
Denote mod (+,-) and |-] as the modulo operator and the operator taking the smallest integer of a
real number, respectively. Define the following nonlinear map: J : Z* U {0} — {-1,1} x {-1,1} x---,
such that X = J(n) and the kth element of X" is equal to 2mod([2,%1J, 2) — 1. This nonlinear map is to
convert a non-negative decimal number 7 to a vector of a binary sequence x , in which the elements
in x are either 1 or —1. For example, if n = 11, then X = [ 11 -11 -1 -1 --- ]T. Define a
vector & in which the kth element of & is equal to 21 and denote the vector 1 as the vector with all its

elements being equal to 1. Then, we have E,T"TH = n. This equation is to convert the vector of the
binary sequence x back to a non-negative decimal number 1. From here, we can see that J is invertible.
For the completeness, consider the case when a non-negative integer is represented

using the non-octave integer bases. Similarly, define the following nonlinear map:
9 :Zztu{0} - {0,---, A" =1} x{0,1,--- , A’ =1} x - -+, such that X" = J’(n) and the kth element of x”
is equal to mod(l#J, )\’). This nonlinear map is to convert a non-negative decimal number # to a

vector of an integer sequence x" in which the elements in x” are in {0,1,--- , A’ — 1}. Define a vector g

. . /. — /T w . . .

in which the kth element of £ is equal to A’¥71 Then, we have & x” = n. This equation is to convert
the vector of the integer sequence x” back to a non-negative decimal number 7. From here, we can also
see that J is invertible.

Appendix B. Review on Both the Fractal and the Chaotic Behaviors of the Dynamical System with
Its State Vectors Being the Corresponding Binary Sequences of the Consecutive Integers

Now, denote A as a complex number with its modulus greater than 1. Define T = {A~¢=1) : k > 1}.
Letcy € {1, -1} for k > 1be a binary combinational coefficient. Define a vector 1 in which the kth element
of P is A==1). Let y(n) be a complex number that can be represented as a binary combination of the

elements in T. Thatis, y(n) = ¥, cgA™. Denote Y = {y(n) : n > 0}. In this section, we will characterize
k>1
Y. First, the integer 0 is converted to the corresponding binary sequence J3(0). Then, we can compute

the corresponding complex number y(0). Next, increment the integer 0 to the integer 1 and convert
the integer 1 to the corresponding binary sequence J(1) and compute y(1). Eventually, we obtain
Y. More precisely, for a given binary sequence x(n), as J is invertible, the corresponding integer

is ET(%). Hence, the incremented integer is 1 + E,T(X(HZ&) and the corresponding incremented

binary sequence is 5(1 + E.T(x(nzﬁ)) As a result, we can define a nonlinear discrete time dynamical

system as follows:x(n+1) = 5(1 + ET(%)) and y(n) = PpTx(n) for n > 0. Here, x(n) and y(n)

are the state vector and the output of the nonlinear discrete time dynamical system, respectively,
where x(n) is the binary sequence and the kth element of x(n) is ¢x. Moreover, y(n) is the corresponding
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complex number. However, it is worth noting that Y is not the whole complex plane. That means,
some complex numbers cannot be represented by the binary combinations of the elements in I'.

Since J involves the modulo operator, the nonlinear discrete time dynamical system may exhibit
both the fractal phenomenon and the chaotic phenomenon [22]. Figure A1 shows some computer
numerical simulation results of Y with /A = {j for [A| = 1.1, |[A| = 1.3, |A] = 1.5 and |A| = 1.9. On the
other hand, Figure A2 shows some computer numerical simulation results of Y with |A| = 1.5 for
(A =0,/A =%, /A = % and /A = 7. It can be seen from Figure A1 that the size of Y becomes smaller
as |A| increases. This is because the distance between the complex numbers A~F and =1~k decreases as
|Al increases. Besides, it is worth noting that Y does not contain a neighborhood around the origin as
|Al increases. In addition, if ZA is an integer multiple of 7, then A is a real number. In this case, Y can
only contain the real numbers in the range (— /ﬁ, )\/\Tl) If A is a real number with [A| > 2, then Y does
not contain all real numbers in the range (—%, j\\%%)

This investigation will be applied to derive a stability condition for the sigma delta modulator.
Moreover, it will be used for formulating a frequency-domain-based bit flipping control strategy for
stabilizing the sigma delta modulator.

Imaginary part of y(n)
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16 of 21

Appl. Sci. 2020, 10, 5785

1

0

-1

-2

(U)X jo ped Aleuibew|

-1.5
-3

Real part of y(n)

()

I I l I l l
| | | e | |
| | |y | |
e
| i | | | |
S Bt it it Bt
| | VN |
| e
R
aacn R R R A
R R Tl e e e
| | | | | conay
iy
RS-
SRR R > S
| [y | | |
| ST I I I
o S N
L et
| I | | | |
| Soufen | | | |
e
T
| | | | | L
© ¥ N o N ¥ © o

(u)A jo ued Aleuibew)

0
Real part of y(n)

(d)

and |A| = 1.1. (b) Y with zA

L and

10

and |A| = 1.3. (¢) Y with 24

s
— 10

s
— 10

Figure Al. (a) Y with zA
[Al = 1.5. (d) Y with zA

16 and [A| = 1.9.

1

0

-1

(u)A jo ped Aseuibew|

Real part of y(n)

()

Figure A2. Cont.



Appl. Sci. 2020, 10, 5785 17 of 21

1.5 T T T
| | | |
. 3 - e |
1b-——— 4 e e -
< e ‘ l
=05l v ' SR I
o | : | | |
E : 'L’ ‘xb"
[o% 0 ,,,,, — — ]
— | | [ v e |
§-0.5 ————— Ehinia e o WA | T
| | |
£ ‘ _
-1 77777 4‘7777 ,,!:\. 7\7777 7‘77777
1 1 ‘ 1 ; 1
- 5 L L L L L
-3 -2 -1 0 1 2 3
Real part of y(n)
(b)
1.5 T T T
| | |
| | |
 HERE BRE0 . NEEH HE80

4o 4o ! S e 4 ! 4o o e ! -4
! ! | BRI 8 B "TTER
| | |
[ 78‘ LR - X | 7
. NeN  BEN | |

o
[¢)]

S
a
T
BE
.iu
&
=
]
]
—a-
|
=
]
=
—_J_
gs
-
&=
|

Imaginary part of y(n)
o

HEEE HNEN | BB AN
IR A OO R A
| | |
| |

|

[N

| |

-1.5 ‘ ‘ ‘

-2 -1 0 1 2
Real part of y(n)

(c)

Imaginary part of y(n)

Real part of y(n)
(d)

Figure A2. (a) Y with |A\| = 1.5and /A = 0. (b) Y with |A| = 1.5and ZA = §. (c) Y with [A] = 1.5 and
(A =%.(d) Ywith|A] = 1.5and ZA = 7.



Appl. Sci. 2020, 10, 5785 18 of 21

Appendix C. Review on the Frequency-Domain-Based Bit Flipping Control Strategy

Denote the transfer function of the loop filter as F(z). Denote the noise transfer function and the
signal transfer function as NTF(z) and STF(z), respectively. In order to achieve a high signal to noise
ratio, it is desired to achieve NTF(z) — 0 and STF(z) — 1 in the signal band as well as NTF(z) — 1

and STF(z) — 0 in the noise band. Since NTF(z) = Hlm and STF(z) = 15;()2)' it is implied that

(F (z)| — +oo in the signal band and F(z) = 0 in the noise band. This further implies that F(z) contains
some unstable poles ((1) the poles outside the unit circle; or (2) the poles on the unit circle with the
frequencies inside the signal band in which the resonance could occur). As the loop filter is unstable,
the stability issue is very critical. As a result, the control of the sigma delta modulator is very important.

Assume that the loop filter could be realized via the state space representation with the state space
matrices A, B, Cand D. Here, D = 0. Let the input sequence and the quantized output sequence of the

sigma delta modulator be u(n) and s(n), respectively. Denote the state vector as x(n). Then, it can be
shown that:

n—1
x(n) = A"x(0) + ) | A" B (u(k) - s(k))
k=0

Assume that A is diagonalizable. Denote a matrix T in such a way that the columns of T are the
eigenvectors of A. Moreover, denote a diagonal matrix D in such a way that its diagonal elements
are the corresponding eigenvalues of A. That is, A = TDT™!. Let the diagonal elements of D be d;.
Assume that the state vectors are N dimensional. Denote:

X() = [ Bo(n) - Faln) | =T X0

and _ _ T
B=[Dy - by | =T'B

Then, we have:

x(n) = TD"T~'x(0) + nil TD" kT 1B (u(k) - s(k))

X(n) = T-1x(n) = DnT—lx(ko_ 0+ kg) DT 1B(u (k) — 5(k))
— D'X(0) + kg D" 1FB(u(k) - s(k))
This implies that:
xi(n) = dj'x;(0) + :Z,_;d?_l_kbz(u(k) —s(k))

In other words, we have:

%i(n) _ di(0) | N ulk) - s(k)
[

Denote the z-transform of the input sequence and that of the quantized output sequence of
the sigma delta modulator as U(z) and S(z), respectively. Suppose that the eigenvectors in T and
the corresponding eigenvalues in D are arranged in such a way that |d;| > |d|; for j > i. Moreover,
assume that there are P unstable eigenvalues in D. Thatis, |d;| > 1 fori = 0,--- , P — 1. By flipping some
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values in the quantizer output, denote the z-transform of the new quantizer output as $(z). In order to
stabilize the sigma delta modulator, we have:
xi(n) d;x;(0)

nETwEd?_l =0= b; " U(Z)|Z:di a S(Z)|Z:d1‘

fori =0,:--,P—1. This further implies that

dix;(0)
b;

+ U(Z)|Z:di = S(Z)lzzdi

fori=20,---,P-1.
Define Y. as the set of complex numbers where the elements inside Y,;, can be represented as the
binary combinations of the elements in the sequences {dl.‘k tk> 0}. That is, dc; € {1, -1} Yk > 0 such

that Y, ckd ke Yy If dxl( ) + U(z )| _, €Yy fori=0,---,P -1, then there exists a binary sequence
k=0 =i
cx € {1,-1} Yk > 0 such that the single bit interpolative sigma delta modulator is internally stable with

the z-transform of the quantizer output equal to 5(z).
The above result characterizes a condition for stabilizing the single-bit high-order interpolative
sigma delta modulator via flipping some values of the quantizer output. However, it can be seen from

Section 2 that Y, does not include all complex numbers. This implies that if d’x‘( ) + U(z )| _g €C\Yy,
then there does not exist any binary sequence such that the sigma delta modulator can be stablhzed.

di x,( )
On the other hand, if

delta modulator can be stablhzed For thlS case, it is required to find this binary sequence. In particular,
an integer programming approach is employed to address this issue. The objective function of

the optimization problem is to minimize the error energy between dlxl(o) + U(z )| _, and S5(z )|Z ”
subject to the binary constraint imposed to the quantizer output. That i 1s, the optlmlzatlon problem is

formulated as follows:

+ U(z )) _4. € Ya,, then there exists a binary sequence such that the sigma

Problem (P) X

@ — U(Z)|z:di ’

b;

T/
P, x —

min
Y

Vie{0,- ,P-1}

subject to ¥’y € {1, -1} Vk > 0.

Here, x'j is the k™ element of x* and dl._k is the k" element of ;. If there exists a set of binary
sequences such that the single-bit high-order interpolative sigma delta modulator is internally stable,
then the objective functional value of Problem (P) for these binary sequences in this set will be exactly
equal to zero. In this case, X' is the global minimum of Problem (P). Hence, by finding a solution of
Problem (P), we can find a stable binary sequence stabilizing the sigma delta modulator. However, it is
difficult to find a solution of Problem (P). This is because it is an infinite dimensional optimization
problem. To address this issue, the quantizer output bit streams are divided into blocks with the length
of each block is equal to M. Denote the vector of the binary sequence in the m" block as x”,;; for m > 0.
Define a vector 11)”,-,,11 such that the k" element of Il)”i,m is equal to dl._mM_k fork=0,--- ,M—1. Denote
x;, for m > 0 as a solution of the following finite dimensional integer programming problem:

Problem (le)

2

. . d;
mjn Z 11’1‘mT m"’ZlbznT;_ xl;( )_U(Z)|z:di ’

X viel0,,P-1} i
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subject to

X"gm €1{1,-1} Yke{0,--- ,M-1}.

here, x” ,, is the kth element of x”,,. It is worth noting that Problem (P',) is a standard integer
programming problem. There are many existing algorithms [23] for finding a solution of Problem
(P'm). Besides, it is worth noting that if M is large enough, then the solution of Problem (P'm) will be
close to that of Problem (P).
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