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Abstract: The main objective of this paper is to use deep neural networks to decode the
electroencephalography (EEG) signals evoked when individuals perceive four types of motion
stimuli (contraction, expansion, rotation, and translation). Methods for single-trial and multi-trial
EEG classification are both investigated in this study. Attention mechanisms and a variant of recurrent
neural networks (RNNs) are incorporated as the decoding model. Attention mechanisms emphasize
task-related responses and reduce redundant information of EEG, whereas RNN learns feature
representations for classification from the processed EEG data. To promote generalization of the
decoding model, a novel online data augmentation method that randomly averages EEG sequences
to generate artificial signals is proposed for single-trial EEG. For our dataset, the data augmentation
method improves the accuracy of our model (based on RNN) and two benchmark models (based
on convolutional neural networks) by 5.60%, 3.92%, and 3.02%, respectively. The attention-based
RNN reaches mean accuracies of 67.18% for single-trial EEG decoding with data augmentation.
When performing multi-trial EEG classification, the amount of training data decreases linearly after
averaging, which may result in poor generalization. To address this deficiency, we devised three
schemes to randomly combine data for network training. Accordingly, the results indicate that
the proposed strategies effectively prevent overfitting and improve the correct classification rate
compared with averaging EEG fixedly (by up to 19.20%). The highest accuracy of the three strategies
for multi-trial EEG classification achieves 82.92%. The decoding performance for the methods
proposed in this work indicates they have application potential in the brain–computer interface (BCI)
system based on visual motion perception.

Keywords: electroencephalography; attention mechanisms; recurrent neural networks; data
augmentation; brain–computer interface; visual motion perception

1. Introduction

To build a direct communication pathway between the brain and environment, the brain–computer
interface (BCI) based on electroencephalography (EEG) has been investigated for decades. It detects,
analyzes, and decodes brain activities to translate them into commands for controlling external devices.
The visual BCI that relies on external visual stimuli is a popular research direction in this field, owing
to its robustness for different individuals and high information transfer rate (ITR) compared with
motor imagery and spatial auditory BCI paradigms [1,2]. The most commonly used stimuli for the
visual BCI are the flickering light or flipping of a static image, which evoke EEG signals such as P300
event-related potential (ERP) and steady-state visual evoked potential (SSVEP) [3–5]. To survive in
a dynamic visual world, the human visual system is naturally sensitive to motion. That is, a video
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stimulus with motion events should be more likely to elicit enhanced brain activities and, therefore,
has promise to be used to develop more effective BCI systems.

Although the perception of motion has been widely studied by neuroimaging and neurophysiology
techniques such as fMRI, PET, and EEG [6–8], introducing it into the BCI system is a recent development.
In some BCI systems for real-time monitoring and control, motion onset and periodic motion are
utilized to evoke motion onset visual evoked potential (mVEP) and steady-state motion visual evoked
potential (SSMVEP) signals transferring user intentions [9,10]. Surprisingly, most of the existing
mVEP and SSMVEP paradigms only involve one motion mode. Although a few studies used
contraction–expansion as stimulus [11–13], the contraction–expansion is taken as a periodic motion
stimulus to evoke SSMVEP rather than two different motions. The visual responses for different
motion types are not well utilized to increase the number of control commands for BCI. On the other
hand, in some special BCI systems for motion event detection, preference identification and emotion
recognition, dynamic videos depicting more motions are chosen as stimuli. However, all these works
require long video clips (lasting for more than 5 s), which is not suitable for real-time applications.

To overcome the above deficiencies, in this study, short video clips (lasting for 1 s) illustrating
four kinds of visual motions (contraction, expansion, rotation, and translation) are selected as stimuli.
Previous research [8] demonstrates that the type of motion (translation, contraction, expansion, and
rotation) affects the temporal and spatial features of EEG signals. They used grand average potentials
obtained in the four motion types and source location analysis to reveal the differences among
motions. However, the feasibility of decoding the type of above motions from single-trial EEG has not
been investigated.

The classification accuracy of EEG signals is a key factor affecting the performance of BCI systems.
EEG collected from the scalp is affected by brain background activity and artifacts like eyes blinks
and electrooculogram, so its signal-to-noise ratio (SNR) is very low. Therefore, it is still challenging to
classify EEG signals, especially when BCI uses stimuli with complex patterns. In the last few years,
deep learning (DL) methods have been demonstrated to be effective in extracting motion-related events
from the EEG [14–16]. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
are the two most frequently applied DL models.

RNNs are capable of capturing long-term dependencies in time sequences, and the context
correlation of EEG reflected the type of stimulus [17,18]. In this study, we introduce attention
mechanism into RNN as the decoding model. Attention mechanism has been widely used in natural
language processing (NLP), based on the fact that words in a source sentence are not equally important
to the target task. When applying the attention mechanism to a time sequence, varied emphases are
placed on different parts of it, according to their significance. The attention mechanism is also applicable
for EEG analysis, because samples in an EEG sequence are differentially informative. Existing studies
utilizing attention-based RNN [16,19,20] for EEG analysis apply attention mechanisms to the hidden
states of RNN. However, in the RNN architecture, the hidden state is updated recurrently at each
time step, so those hidden states near the end are expected to capture more information, which may
result in a biased attentive weight towards the later coming samples in RNN [21]. Consequently, the
attention weights cannot reveal how relevant a specific part of the raw EEG signal is for the prediction
result. This defect is called ‘attention bias’. In our framework, we add attention to the input EEG
data before RNN computes the feature representation of EEG to avoid this problem. There are two
advantages to this: First, attention can directly process the signal to suppress noise and emphasize
task-relevant information in it, thereby promoting the neural network to extract more robust features of
signals. Second, the weights learned by the attention mechanism can be visualized through a heatmap
to increase the interpretability of the deep neural network.

Using DL to analyze EEG data is more challenging than to analyze images and audio. This is
mainly because of two reasons. First, the number of samples in most EEG datasets is limited [22].
When the model is too complex, such as containing parameters that are much larger than the number
of training samples, overfitting may occur, which will weaken its generalization ability. Second, the
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inter-trial and the inter-subject variabilities also affect the generalization ability of neural networks,
because they cause inconsistencies between training data and test data. Generalization performance
can be improved through data augmentation [23]. Many data augmentation techniques such as random
cropping, noise addition, and affine/rotational distortions and unsupervised generative models (e.g.,
conditional GANs) have been applied to EEG [24–27]. The above methods increase the amount of EEG
data, but do not consider the differences in SNR between trials.

During the EEG acquisition process, the physical and mental state of the subject fluctuates all
the time, resulting in varying degrees of artifacts and neural background activities. Therefore, EEG
data have various SNRs in different trials, and this variation exists even at different time periods
within a trial. Such inter-trial difference undermines models’ generalization ability, leading to worse
prediction accuracy. In this study, we propose a data augmentation approach that generates artificial
signals by randomly averaging EEG data. In the EEG community, averaging is the most common
method that changes SNR of EEG, based on the assumption that the task-unrelated brain activity
is random noise [28]. Therefore, artificial signals with various SNR can be generated by averaging
different numbers of EEG signals. The more SNR patterns included in the training data, the easier
it is for the network to keep invariance to different levels of SNR in the test data. Notably, this data
augmentation method is implemented during the training stage and, therefore, does not take up
additional storage space.

The multi-trial EEG classification problem is also considered in this study. When more emphasis
is placed on decoding accuracy and less on the real-time requirement, the BCI system performs the
averaging for the ensemble of several signals before classification. This is a common practice in the
P300 and mVEP BCI paradigms. However, the average potentials are generated in a fixed combination
fashion (i.e., each trial is used only once), thus, reducing the number of training examples [29]. This may
affect the generalization ability of the DL model and fail to achieve a better classification rate. To solve
this problem, three strategies that randomly combine EEG are utilized for multi-trial EEG classification
in this work. Compared with fixed combinations, random combinations allow the network to see
more examples. They guarantee a noticeable increase in accuracy, even when the number of trials for
combination is small.

2. Related Work

2.1. DL Methods for Classifying EEG Signals Evoked by Visual Stimuli

P300 and SSVEP are still the two most widely used signals in visual BCI systems because they
only need simple and short duration stimuli. The two signals both have distinct features that are
easy to extract. The video stimuli depicting motions could evoke EEG signals with more abstract and
complicated features. Therefore, a review of the classification methods for EEG signals elicited by
novel and long duration visual stimuli can inspire our work more. Baltatzis et al. [30] presented a
signal decomposition method named swarm decomposition and a CNN to detect bullying incidences
in EEG. Signals were recorded when subjects watched visual stimuli involving cases of bullying and
non-bullying. Before being fed into CNN, the EEG signals were decomposed to several components,
and the components that convey useless information were discarded. The findings show that SWD
is a necessity for their CNN architecture to obtain reasonable classification rates. Behncke [31] et al.
decoded erroneous robot behavior from the EEG of human observers using a deep CNN. The CNN
obtained much higher classification accuracy than regularized linear discriminant analysis (rLDA).
Teo et al. [32] used a deep neural network (DNN) to classify preferences (likes and dislikes) for 3D
rotating visual stimuli from EEG. They achieved a classification performance better than those of other
machine learning classifiers. Xing et al. [18] combined stack autoencoder (SAE) with RNN to recognize
emotion induced by video stimuli. The SAE-based linear EEG mixing was used to decompose EEG
signals to source signals and extract EEG channel correlations. The video lengths of the above studies
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varied from 5 s to 3 min. The effectiveness of deep learning for analyzing EEG evoked by informative
video stimuli has been demonstrated.

2.2. Motion Stimuli for BCI Systems

Many studies have realized that motion can be an ideal stimulus for BCI systems. Guo et al. [9]
utilized motion onset visual evoked potentials (mVEPs) for spelling, and the BCI application showed
high accuracy and acceptable ITR compared to P300 ERP and SSVEP BCIs. Xie et al. [10] proposed
a steady-state motion visual evoked potential (SSMVEP)-based BCI paradigm and proved that
the paradigm could reduce users’ fatigue levels. Yan et al. [12] compared the accuracy and ITR
of four SSMVEP paradigms based on basic motion modes: swing, rotation, spiral, and radial
contraction–expansion. The results show that the spiral paradigm exhibited the highest average
accuracy and ITR. The mVEP and SSMVEP paradigms have been widely used for BIC applications
and have exhibited considerable comfort and stability [33,34]. However, only one motion mode was
utilized in the above BCI systems.

2.3. Attention-Based RNNs

Bahdanau et al. [35] firstly extended the encoder–decoder with an attention mechanism for
machine translation. The attention mechanism allows the model to detect the parts of a source
sentence relevant to predicting a target word. Recently, some works introduced attention-based
RNNs to EEG-related areas and achieved good results. Zhang et al. [20] proposed an attention-based
encoder–decoder RNNs structure for person identification from EEG. The framework assigns various
attention weights to different EEG channels based on the importance of each channel. Liu et al. [19]
combined a Long Short-Term Memory (LSTM) network with temporal attention and band attention
to recognize emotion from EEG. The EEG signals were transformed into a sequence of images on
three frequency bands. The band attention assigned different weights to different frequency bands,
while the temporal attention was applied to the hidden state of LSTM. Zhang et al. [16] also add
temporal attention to hidden states of LSTM in a hand movement classification task with EEG. However,
Wang et al. [21] noted that when adding the attention mechanism to hidden states, the attention bias
problem may occur. They analyzed this problem in the answer selection task and found that words at
the end of the sentence captured more attention.

2.4. Data Augmentation for EEG Signals

DL models contain a large number of learnable parameters, thus, requiring a significant amount
of training data to optimize. Many recent works have investigated data augmentation methods for
creating additional EEG data. Krell et al. [25] proposed a rotational data augmentation method for EEG
data, similar to rotational distortions for image data augmentation. The approach increased the signal
classification performance for BCI systems. Other image data augmentation methods, such as noise
addition and random cropping, were also evaluated by the subsequent studies [24,26]. Some novel
data augmentation methods were presented for EEG signals. Luo et al. [27] established a Conditional
Wasserstein GAN (CWGAN) framework to generate augmented EEG data. Kalunga et al. [29] proposed
an approach for augmenting EEG signals from their covariance matrices using Riemannian geometry.

In this paper, we will design a novel BCI paradigm based on motion perception and utilize an
attention-based RNN to decode visual motions from EEG within one trial or a few trials. In contrast
to the earlier BCI paradigms that utilize motion stimuli, we choose four types of video-depicted
motions (contraction, expansion, rotation, and translation). The durations of the videos are only 1
s. Our attention-based RNN applies temporal attention directly to the raw EEG signals to the avoid
attention bias problem, unlike the aforementioned attention-based RNN models. Besides, the input
signals do not need any transformation, so our approach is simpler and more efficient. The online data
augmentation proposed in this study generates artificial signals with different SNR during the model
training. This method has not been considered and investigated in the above studies yet.



Appl. Sci. 2020, 10, 5662 5 of 18

3. Materials

3.1. Participants

Eight healthy subjects participated in the study (mean age ± SD, 26.4 ± 3.7 years; one female and
seven males). They were all volunteers from the National University of Defense Technology. Each
subject showed normal or corrected to normal eyesight and no history of any neurological or psychiatric
disorder. All participants provided written informed consent after receiving a comprehensive
description of this study.

3.2. Experimental Protocol

Similar to the stimuli used in previous research [8], four types of motion were adopted in this
experiment: translation (T), rotation (R), expansion (E), and contraction (C), all displayed on a gray
(RGB: 96, 96, 96) background. The visual stimuli were made up of light gray (RGB: 136, 136, 136) and
dark gray (RGB: 96, 96, 96) bands. They were presented on a 24-inch LCD monitor with a refresh rate
of 60 Hz and a resolution of 1920 × 1080 pixels. The sizes of bright and dark bands of all stimuli were
the same. Figure 1 shows the four stimuli displayed to the subjects.
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Figure 1. Four types of motion stimuli. The arrows on the figures indicate the direction of movement.

The motion parameters of the stimuli were set as the same as that in [8], where the speed of
T, E, and C was all set to 7.4 ◦/s and R stimulus was rotated at 40 rotations per minute. All stimuli
had a viewing angle of 11.7◦ at a distance of 80 cm from the monitor. All motion animations were
played at a frame rate of 45 fps. There were four blocks in the experiment, each with 8 runs. One
run comprised 25 trials (i.e., 25 motion animations randomly chosen from the four types). The total
duration of displaying a stimulus was 1000 ms, and the standard onset asynchrony (SOA) was 2000 ms.
Thus, the inter-stimulus interval (ISI) was 1000 ms, in which the monitor displayed a gray blank. To
maintain mental stability, the subjects were asked to rest for 60 s between each run and 20 min between
each block. Figure 2 illustrates the timing structure of one block.

Therefore, a total of 800 trials was obtained from each subject, and the entire dataset contained
6400 trials (8 × 800). A perceptual discrimination task was added to the experiment: a target cue was
randomly presented within approximately 10% of the stimulus intervals, and the next stimulus may
or may not be consistent with the cue (probabilities for both were 0.5). A participant was required
to respond as soon as possible when the stimulus was presented by pressing a button, with the left
button implying consistency and the right button implying inconsistency. The time of pressing the
button and the correct response rates were recorded. Before the experiment began, the subjects were
informed of the detailed procedure of the experiment and trained how to respond using the button.
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3.3. Data Acquisition

Brain waves were acquired using a BrainAmp Standard amplifier (Brain Products GmbH, Germany)
following the international extended 10–20 standard system. Signals were recorded from 32 electrodes
at positions O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, TP9, CP5, CP1,
CP2, CP6, TP10, T7, C5, C3, C1, CZ, C2, C4, C6, and T8, which ideally covered the dorsal pathway [36]
involved with motion perception. The reference electrode was placed at Cz and the ground at AFz, so
the number of signal channels was 31 (32–1). All electrode impedances were reduced to 10 kΩ before
data acquisition. EEG signals were sampled at 500 Hz and filtered by a 0.1–100 Hz bandpass filter
and a 50 Hz notch filter. Stimuli presentation and data collection were performed by the BCI2000
framework [37].

3.4. Data Preprocessing

The continuous EEG data were first visually inspected and trials severely contaminated by noises
were removed. The signals were, then, passed through a 12–65 Hz zero phase shift filter to preserve
the beta and the gamma bands associated with visual cognition [38]. In this way, the effect of ocular
artifacts was also reduced [39]. The clean raw data plugin in EEGLAB toolbox [40] was applied to
remove low-frequency drifts, noisy channels, and short-time bursts from the data. The removed
channels were replaced through the spherical interpolation method implemented in EEGLAB. Finally,
the number of signals in each category was balanced for further analysis. In the end, a total of 6000
(1500 × 4) trials were retained. All trial channels were additionally normalized between −1 and 1, with
a mean of zero. For each EEG recording, the first 50 samples were excluded to reduce the interference
of inter-stimulus intervals.

4. Methods

4.1. Stacked GRU with Skip Connections

Gated Recurrent Unit (GRU) [41], one of the two commonly used RNN variants, is exploited in
this study because it not only addresses the gradient vanishing problem associated with RNN but
also is more lightweight than the other variant, namely LSTM [42]. Compared with LSTM, GRU has a
better generalization on smaller datasets, and it is easier to train. GRU can be formulated as follows:
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zt = σ(Wzxt+Uzht−1)

rt = σ(Wrxt+Urht−1)

h̃t = tanh(Wxt + U(rt � ht−1))

ht = (1− zt)ht−1 + zt̃ht

(1)

where xt and ht−1 are the input and output of GRU at time t; Wz, Wr, Uz, and Ur are weight matrices and
� stands for element-wise multiplication. GRU units are stacked to improve the mining of temporal
correlations. Skip connections are introduced in our framework to pass the output of different layers of
stacked GRU directly to the classification layer. This way, the classification layer receives a combination
of low-level and high-level features. Skip connections allow better information and gradient flow,
thus, making the network easier to optimize [43,44]. They also solve the degradation problem caused
by the increased depth of the neural network. The skip connection in this study is similar to that of
DenseNet [44]: it combines features through concatenation rather than summation. The k-layer stacked
GRU with skip connections (SC-GRU) can be expressed as follows:

ht
( j) = G(ht

( j) + ht
( j−1))

h̃t = [ht
(1); ht

(2); . . . ; ht
(k)]

r =
∑T

t=1 h̃t
T

(2)

where G is the GRU mapping, which converts the input to the GRU state, ht
( j) is the state of the layer

j at time t, h̃t is the concatenation of ht from layer 1 to layer k, and r is the EEG representation used
for classification. The EEG representations carrying different categorical information are obtained by
averaging ht of all-time steps (in our framework, a 1D global average pooling layer [45] is applied
to calculate the averages). A fully connected layer for classification receives EEG representations
nonlinearized by ReLU. The framework for the 3-layer SC-GRU is presented in Figure 3.
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4.2. Attention-Based GRU

The attention mechanism is implemented through a fully connected layer jointly trained with
GRU. The attention layer (AL) projects the input into a weight vector of equal length to the time
dimension of the input. To compare the effect of the attention layer’s location, AL is placed before and
after the GRU, respectively. The former puts attention on EEG signals, while the latter puts attention
on EEG representations. Given a signal I containing T samples, then, I ∈ RC × T, where C is the number
of channels of the EEG, and T is the length of the EEG sequence. The AL-GRU that puts AL before
GRU can then be expressed as the following equations:

αt = σ(Wit)
ĩt = αtit
ht = G(̃it, ht−1)

r =
∑T

t=1 ht
T

(3)
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While the GRU-AL that puts AL after GRU can be formulated as follows:

ht = G(it, ht−1)

αt = σ(Wht)

h̃t = αtht

r =
∑T

t=1 h̃t
T

(4)

where it is the sample of the input EEG signal at time t, W is the weight matrix derived from back
propagation with a dimension of C, αt is the attention weight, σ is sigmoid function that normalizes
the weight between 0 and 1, and r is the EEG representation. In the experiment, AL-GRU and GRU-AL
are also stacked, and skip connections are added to the framework.

4.3. Data Augmentation by Randomly Averaging

During the model training, n examples are randomly taken from the same category to calculate
the average potential at each iteration, where n is any integer between 1 and N. When n > 1, the average
potential is considered as a new artificial sample for the model. N is the maximum number of signals
needed to generate an artificial sample. A small N means that the data augmentation method adds
insufficient diversity of SNR to the dataset. In contrast, a large N means the augmentation method may
produce meaningless artificial data with unrealistic SNR. Too large N not only increases the training
time but may also dilute the effect of network learning. We test the effect of different N values on the
classification accuracy through experiments and determined the appropriate N for models.

To figure out whether the improvement in network performance is due to more than just an
increase in the size of the dataset, a controlled experiment is performed by adding Gaussian noise
to augment training samples. Adding Gaussian noise is a simple data augmentation method that
works well when the amount of data is much less than the model parameters (e.g., MAHNOB-HCI [46]
dataset vs. ResNet [43]). The mean of the Gaussian noise is set to 0 to keep the signals’ amplitudes
unchanged. For each training iteration, a value from 0, 0.04, 0.08, 0.12, 0.16, and 0.2 is randomly chosen
as the standard deviation of Gaussian noise (0 means no noise is added), since it has been demonstrated
that the standard deviations between 0.01 and 0.2 works better [24]. Random averaging is an online
data augmentation method that utilizes the iterative training property of neural networks. There is no
need to augment data before the training. Instead, new samples are continuously generated before
each training iteration for the network to configure its weights and biases, thus, saving storage space
and time.

4.4. Multi-Trial Combination Strategies

For multi-trial EEG decoding, three combination strategies for training examples are proposed in
this paper: early randomly averaging (ERA), early random concatenation (ERC), and late randomly
averaging (LRA). ERA averages several EEG signals randomly taken from one category at each
training iteration. ERC on its part concatenates the signals along the channel dimension, inspired by
genetic recombination in sexual reproduction. One possible explanation for the superiority of sexual
reproduction is that, over the long term, the criterion for natural selection may not be individual fitness
but rather mixability of genes [47]. Given a single-trial signal I ∈ RC×T, where C is the number of
signal channels, and T is the length of the EEG sequence, after combining k trials according to the ERC,
multi-trial signal IERC ∈R(k·C)×T is obtained. LRA randomly averages the probability vectors output by
the classifier. This approach adds diversity to the output and reduces the likelihood of false predictions
by averaging the predictions of different trials. Under the ideal condition (sufficient training time for
the model), the number of samples generated by the three strategies is C (n, k), P (n, k), and C (n, k),
where n is the number of training samples, C (n, k) is k-combinations of n, and P (n, k) is k-permutations
of n. Note that all randomly combining methods are for the training set examples during the training
stage and the test set examples are generated in a fixed combining manner (i.e., all single-trial EEG
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signals are combined only once). The procedure for the three combination schemes is described in
Figure 4.
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4.5. Model Configuration and Training

Layer normalization [48] is added before each layer of stacked GRU and applied over the channel
dimensions of the input signal to speed up convergence and improve performance. Based on our
pre-experimental results, layer normalization can effectively improve model performance, and it is
better to place before GRU than after GRU. Dropout [47] is added to non-recurrent connections to
prevent overfitting, whereas the early stopping method is adopted to achieve optimal generalization
performance. RAdam optimizer is used as the loss function optimization algorithm, with a learning
rate of 0.001 [49]. The optimizer ensured a comparable or even better performance without warm-up
for the learning rate. Xavier initialization [50] and Kaiming initialization [51] are adopted to initialize
the parameters of GRU and the fully connected layer, respectively. The model is trained by minimizing
the cross-entropy loss:

Loss(O, L) = −
∑N

i=1
log(oi) · li (5)

where O is the probability vector normalized by the softmax function with a dimension of N, N is the
number of signal categories, and L is the one-hot vector of the true label of signals. All models used in
this study were built in PyTorch [52] and trained on an NVIDIA GEFORCE RTX 2080 Ti GPU.

4.6. Model Configuration and Training

EEGNet and DeepConvNet [26,53], two prevalent CNN-based structures for decoding EEG, are
selected for comparison. EEGNet is an EEG-specific network that incorporates EEG feature extraction
concepts and contains comparatively less trainable parameters. The EEGNet-8,2 model, a version
of EEGNet that performs well on almost all the EEG classification tasks, is used in the experiment.
DeepConvNet is a generic architecture to extract a wide range of features from EEG inspired by
successful approaches in computer vision. On the basis of the original framework of EEGNet-8,2, the
last average pooling layer is replaced with the global average pooling type to reduce the parameters,
and the dropout layer is removed. This minimizes the disharmony between dropout and batch
normalization [54]. In fact, both batch normalization and global average pooling have regularization
properties, and some successful architectures, such as ResNet and DenseNet, achieve their best
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performance without dropouts through the application of these techniques. In our pre-experiments,
we find the performance of EEGNet-8,2 to be better and more stable after the replacement.

5. Results and Discussion

5.1. Reaction Times for Each Motion

The overall proportion of correct responses is 95.12%. One-way ANOVA and multiple comparison
tests with a Bonferroni post hoc correction are performed to analyze the differences among reaction
times (RTs) for each motion. The corresponding reaction times and p-values of statistical tests are
shown in Table 1. The results indicate that there is no significant effect of motions on RTs (F (3, 627) =

2.247, p = 0.082).

Table 1. Reaction times (RTs) and p-values for multiple comparison tests.

Motion Contraction Expansion Rotation Translation

RTs (ms) 346.88 ± 66.53 338.95 ± 65.03 328.66 ± 67.86 341.72 ± 59.16

p-VALUES
C-E 1.00 E-C 1.00 R-C 0.076 T-C 1.00
C-R 0.076 E-R 0.898 R-E 0.898 T-E 1.00
C-T 1.00 E-T 1.00 R-T 0.434 T-R 0.434

5.2. Performance of Attention-Based GRU with Skip Connections

Five-fold cross-validation is used to obtain the final classification results of the dataset that
contained 6000 trials. To make sure that the attention layers for AL-GRU and GRU-AL have the same
size, the state size of GRU is set to 31, consistent with the number of signal channels. Table 2 shows the
decoding accuracies of the attention-based GRU with skip connections for different numbers of stacked
layers. The performance of GRU improves after the addition of skip connections, which alleviates the
degradation caused by the increase in network depth. AL-GRU achieves the best classification rate of
61.74% when the number of stacked layers is four, better than that obtained in EEGNet-8,2, but worse
than that obtained in DeepConvNet.

Table 2. Accuracies of models with different number of layers (%).

Layers GRU SC-GRU AL-GRU GRU-AL EEGNet-8,4 DeepConvNet

1 57.08 ± 0.11 59.44 ± 1.02 58.60 ± 0.37

60.02 ± 1.84 64.82 ± 0.89
2 57.16 ± 0.58 58.04 ± 0.99 59.90 ± 0.18 59.68 ± 0.75
3 54.66 ± 1.86 59.20 ± 1.30 60.76 ± 1.39 59.86 ± 1.45
4 55.04 ± 2.20 60.36 ± 1.99 61.74 ± 1.86 61.24 ± 1.80
5 53.84 ± 0.70 59.62 ± 0.91 59.80 ± 1.22 59.68 ± 0.52
6 53.52 ± 2.03 59.46 ± 2.02 59.98 ± 1.03 59.18 ± 1.98

The parameters numbers for these three structures are 2.4k, 28.5k, and 184.5k, respectively. It
seems that DeepConvNet has obvious superiority due to its complex structure and the larger parameter
amount. The attention mechanism boosts the performance of GRU, especially when there are few
stacked layers. This may be because the attention mechanism improves the limited feature extraction
ability of the shallow network, so that it can learn high-level features which are more robust among
trials. The confusion matrices of AL-GRU, EEGNet-8,4, and DeepConvNet are shown in Figure 5.
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The confusion pattern from the confusion matrix for the single-trial EEG classification is apparent.
The model is prone to misprediction between contraction and expansion and between rotation and
translation. The recall for a category less than 50% suggests that the model tends to mistake it for the
other similar category. For example, the recall of DeepConvNet for contraction is 39.40%, with more
than half of the contraction examples being incorrectly predicted as expansion. The performance of the
models needs to be further improved.

5.3. Performance of Data Augmentation by Randomly Averaging

Since the purpose of this experiment is to study the effect of the proposed data augmentation
method, we adopt the single-layer AL-GRU structure that is easy to optimize. The state size of the GRU
is set to 31. EEGNet-8,2 and DeepConvNet are also used for comparison. The effect of the maximum
number of trials for averaging (N) on the network performance is shown in Figure 6. Compared with
non-augmentation, our method shows obvious advantages. It improves the accuracies of AL-GRU,
DeepConvNet, and EEGNet-8,2 by 5.60%, 3.92%, and 3.02%, respectively. AL-GRU and DeepConvNet
show the best performance when N is 6, while EEGNet-8,2 obtains the highest accuracy when N is
4. AL-GRU benefits more from this approach. However, the improvement of EEGNet-8,2 is limited,
which may due to the smaller size of the model. The data augmentation method allows the networks
to see more data with different SNR, thus, improving generalization performance on unseen data.
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Figure 7 shows the comparison of decoding accuracies among randomly averaging, the addition
of Gaussian white noise, and non-augmentation. N is set to 6, and the AL-GRU state size that
determines the number of parameters varies from 16 to 256. Here, as the state size increases, the
test accuracies improve at first, until too many model parameters result in overfitting. Compared
with non-augmentation, randomly averaging can consistently improve the accuracy regardless of the
state size of GRU, while adding noise to the data cannot. The reason may be that adding noise does
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not provide any new information to signals but only increases the number of training samples. The
volume of data used in this research is favorably large. When the model is not excessively complex, the
addition of noise may not bring a significant improvement. Data augmentation by randomly averaging
incorporates information about the change in SNR, thus, promoting the performances of the networks
with different complexity. The highest accuracy is 67.18% when the state size of AL-GRU is 128.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 18 

volume of data used in this research is favorably large. When the model is not excessively complex, 
the addition of noise may not bring a significant improvement. Data augmentation by randomly 
averaging incorporates information about the change in SNR, thus, promoting the performances of 
the networks with different complexity. The highest accuracy is 67.18% when the state size of AL-
GRU is 128. 

 
Figure 7. Accuracies of different data augmentation methods and state sizes. RA is randomly 
averaging, AN is noise addition, and NDA is non-augmentation. 

The confusion matrices of the models at their best performance are presented in Figure 8. The 
recalls of the models have also been improved. This indicates that the augmented data helps the 
models learn high-level features, so as to better distinguish signals of similar categories. 

 
Figure 8. Confusion matrices of different models with data augmentation by randomly averaging. 

Optimization learning curves for models over 600 epochs can be seen in Figure 9. The learning 
curve of the training set reflects how well the model is learning, while the learning curve of the test 
set gives an idea of how well the model is generalizing. Compared with non-augmentation, randomly 
averaging reduces cross-entropy losses for both test and training sets of AL-GRU and EEGNet-8,2. 

Figure 7. Accuracies of different data augmentation methods and state sizes. RA is randomly averaging,
AN is noise addition, and NDA is non-augmentation.

The confusion matrices of the models at their best performance are presented in Figure 8. The
recalls of the models have also been improved. This indicates that the augmented data helps the
models learn high-level features, so as to better distinguish signals of similar categories.
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Optimization learning curves for models over 600 epochs can be seen in Figure 9. The learning
curve of the training set reflects how well the model is learning, while the learning curve of the test set
gives an idea of how well the model is generalizing. Compared with non-augmentation, randomly
averaging reduces cross-entropy losses for both test and training sets of AL-GRU and EEGNet-8,2.

However, it is interesting to observe that for DeepConvNet, only the loss of the test set decreases.
One possible explanation for this discrepancy is that for the complex network (e.g., DeepConvNet) with
strong learning ability, data augmentation makes it less specialized for training data to obtain a better
generalization performance. In contrast, for the shallow networks (e.g., AL-GRU and EEGNet-8,2), the
augmented data with useful features enhance their poor fitting capabilities. Thus, both the learning
and generalization performance improves. The learning curves of test set for the CNN-based networks
are more unstable than that of AL-GRU. This may be because the data augmentation method adds
new examples to each mini-batch, and the batch normalization layer is sensitive to data distribution
changes [55].
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5.4. Performance of Combination Strategies for Multi-Trial EEG Decoding

AL-GRU with a state size of 128 is used in this experiment. The decoding accuracies of different
random combination strategies and the fixed averaging scheme used in traditional ERP analyses are
given in Figure 10. Here, fixed averaging does not bring a significant increase for accuracy. In fact,
the accuracy starts to decline when the number of averaged trials is more than seven. This implies
that the gains from increasing SNR are no longer sufficient to counteract the overfitting caused by the
decrease in the volume of the data. The random combination strategies are designed to solve problems
related to sample size reduction. ERC is the best strategy for such problems, shown to achieve the best
accuracy of 82.92% when the number of trials combined is seven and accuracy of 73.72% when the
number of trials combined is three.
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Due to inter-trial variability, averaging data across trials may distort the waveforms and result in
a loss of information [56]. The ERC strategy concatenates rather than averages different trials, thus,
fully preserves information on the combined trials. This strategy provides more examples (P (n, k) > C
(n, k)), also a strength that allows it to outperform ERA. The LRA strategy increases the diversity of the
output rather than input, so it is inferior to the other strategies. Confusion matrices of the combination
strategies at their best performance are shown in Figure 11.
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5.5. Attention Weights Visualization

Figure 12 visualizes the attention weights of the four motions (C, E, R, and T) under different
models and combination strategies. The attention weights used here are averages of attention weights
of all EEG signals when the model training is completed. The larger the weight is, the more attention
the model pays to the corresponding part of the time sequence. Here, the attention bias problem can be
observed in GRU-AL (i.e., more attention is allocated to the posterior part of the EEG representation),
while the attention distribution of AL-GRU is more uniform.
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After the data augmentation and combining multiple trials through ERC and ERA, more attention
is focused on fewer parts of the signal. This indicates that the data augmentation method and
combination strategies proposed in this study make it easier for the model to extract robust features
among different trials. Unlike the other two strategies, the attention of LRA is distributed in various
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time periods. The focus on irrelevant features explains the poor performance of LRA. The weight
ranges for ERC, ERA, and LRA are between [0.370, 0.540], [0.367, 0.412], and [0.606,0.620], respectively.
The greater the difference between the maximum and minimum weight, the more confident the model
is in feature selection. ERC owning the largest weight range shows that it can better improve signal
quality after combination compared to other strategies.

According to the weight distribution of ERC-7 and ERA-7 over time, it can be deduced that
attention is not only paid to time periods around 200 ms containing the N2 component related to
motion perception [9,57], but also to other time periods of the signal. The DL model not only learns
the handcrafted features commonly used in traditional EEG analysis but also incorporates other
abstract features.

6. Conclusions

In this study, an attention-based GRU is utilized to decode motion types from EEG data. To our
best knowledge, this is the first attempt to introduce the four movements of contraction, expansion,
rotation, and translation as visual stimuli into BCI applications. Unlike the previous research using
attention-based RNN to analyze EEG, an attention mechanism is applied to raw EEG data, which not
only improves the classification performance but also increases the interpretability of the model. This
work implies the attention mechanism can be used for EEG preprocessing and analysis.

The data augmentation method proposed in this work generates artificial examples with different
SNRs through randomly averaging EEG signals. This method offers the decoding model better
generalization ability and robustness to SNR variabilities. Besides, it is performed during the model
training, which saves storage space and is easy to extend to other existing DL models.

As for multi-trial classification, ERC randomly concatenates the signals to generate more training
examples and performs best among all strategies. After a combination of three trials, the accuracy
for division into four classes achieves 73.72%, which demonstrates the potential of this method to be
applied to BCI systems with strict real-time requirements.
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