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Featured Application: The present findings may find application in manufactured composite
material for engineering purposes, load-bearing parts, and structural components.

Abstract: This paper presents an investigation on fracture behavior of carbon/epoxy composite
laminates interleaved with electrospun nanofibers. Three different mats were manufactured and
interleaved, using only polyvinylidene fluoride (PVDEF), only polysulfone (PSF), and their combination.
Mode-I and Mode-II fracture mechanics tests were conducted on virgin and nanomodified samples,
and the results showed that PVDF and PSF nanofibers enhance the Mode-I critical energy release rate
(Gic) by 66% and 51%, respectively, while using a combination of the two registered a 78% increment.
The same phenomenon occurred under Mode-II loading. SEM micrographs were taken, to investigate
the toughening mechanisms provided by the nanofibers.
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1. Introduction

Carbon-fiber-reinforced polymer composites (CFRP) are applied widely in various industries,
such as electronics, construction, and aeronautics. Among different resins, epoxy is the most frequently
used because of its good mechanical properties, suitable fatigue resistance, and low shrinkage while
curing. On the other side, its highly crosslinked structure leads to brittleness and thus to poor resistance
to crack propagation [1,2]. Among the several methods that have been presented during the years to
increase the fracture toughness of carbon/epoxy laminates [3-6], interleaving polymers [7-9], in the
form of particles, films, or nanofibrous mats [10-16], has proved to be one of the most effective.
In particular, nanofibrous mats have been found to be a suitable choice because of their high porosity
(which lead to rapid penetration of epoxy) and the strengthening effects they are able to provide.

Literature reviews on nanofibers reinforcing composites are wide, and many polymers, such as
polyvinylidene fluoride (PVDF) [17-20], polyvinyl butyral (PVB) [21-23], polysulfone (PSF) [10,11,24],
Nylon [25-32], phenoxy [33,34], and carbon [35-37] nanofibers, have been used to enhance composites’
mechanical properties. Saghafi et al. [20] Showed that PVDF nanofibers can increase Mode-I fracture
toughness by about 43%, while another study [19] in this field had completely reverse outcomes.
The considerations showed that the main reason was a non-suitable curing process and the high

Appl. Sci. 2020, 10, 5618; d0i:10.3390/app10165618 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4961-0961
http://www.mdpi.com/2076-3417/10/16/5618?type=check_update&version=1
http://dx.doi.org/10.3390/app10165618
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 5618 20f12

thickness of the nano-mat in the second study. As seen, some limited study was also conducted
regarding the effect of PSF nanofibers on fracture behavior of nanomodified laminates. For instance,
Li et al. [10] used PSF nanofibers and PSF/carbon nanotube (CNT) hybrid nanofibers for increasing
Mode-II energy release rate (Gyc) of carbon/epoxy laminate. According to results, PSF and the
best combination of hybrid nanofibers (PSF + 10%wt of CNT) improved Gy by about 11% and
50%, respectively.

The interesting matter in this regard is the toughening mechanisms that lead to improved
properties when polymeric nanofibers are interleaved. (1) Fiber bridging: When nanofibers do not
melt during curing cycle, they bridge the two layers they are interleaved between, thus hindering
fracture propagation [38]. (2) Phase separation: Some nanofibers, such as polycaprolactone (PCL),
due to the heat provided during the curing process, change shape to spherical particles and distribute
in the matrix during curing, increasing fracture toughness due to crack deflections [11]. (3) Some other
thermoplastic polymers, such as PVDF, melt and mixed with epoxy during curing, due to high porosity
of the mat, and a plastic zone is produced in front of crack tip, capable of absorbing energy during
loading [17].

Interleaving nanofibers that can act different toughening mechanisms is an interesting topic,
and this is what this paper means to present. Recently, Zheng et al. [39] used a combination of nylon
nanofibers and PCL film as interleave to increase the interlaminar fracture energy of carbon/epoxy
laminates. The results demonstrated a synergistic effect; for instance, Mode-I fracture tests proved
that fracture toughness for the laminates interleaved by nylon and PCL, separately, were enhanced by
30% and 50%, respectively, while a remarkable increase of 110% occurred for the laminates interleaved
by nylon/PCL. In the present study, the effect of mixing two other mechanisms, i.e., phase separation
and plastic zone, is considered. For this aim, electrospun PSF, PVDF, and PSF/PVDF nanofibers were
produced separately and interleaved between carbon/epoxy laminate. Then, Mode-I and Mode-II
fracture tests were conducted to investigate their effect. For deeper investigation, SEM pictures were
also taken to find out toughening mechanism.

2. Materials and Methods

Electrospinning is a technique that uses a high-potential electrostatic field to produce fibers in
scale of nano and micro. The machine used to produce the nanofibers is made of (1) a high-voltage
source with positive or negative polarity, (2) a syringe pump with Teflon tubes to carry the solution to
needles, and (3) a conductive collector, in the form of a rotating drum. The electrospinning process
is schematically shown in Figure 1. In the following subsections, further information regarding the
applied materials and electrospinning parameters, such as voltage and injection rate, are presented.

High voltage power supply

Syringe pump

— )

Polymer solution

Figure 1. Schematic picture of producing nanofibers by using the electrospinning process.
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2.1. Polymers

Polysulfone (Udel® 3500) and polyvinylidene fluoride (Solef® 6008) polymers in the form of
pellets and powder, respectively, were supplied by Solvay Specialty Polymers. Their properties are
presented in Table 1. Acetone and N, N-Dimethylacetamide (DMAc) and Dimethyl sulfoxide purchased
from Sigma-Aldrich Co. were used as the solvent for preparing polymeric solutions.

Table 1. Polysulfone (PSF) and polyvinylidene fluoride (PVDF) properties (source: datasheet provided

by Solvay website).
PSF (Udel® 3500) PVDF (Solef® 6008)

Forms Pellets Powder
Density (g/cm?) 1.24 1.75-1.8

Water absorption (24 h, 23 °C) 0.3 <0.04%
Melt temperature (°C) 316-371 170-175

Glass transition temperature (°C) 50 —40

Tensile modulus (GPa) 2.48 1.8-25

Tensile strength (MPa) 70.3 30-50
Tensile elongation (%) 50 to 100 20-300%

2.2. Electrospinning

The “lab unit” electrospinning machine by Spinbow company (Bologna, Italy) was used for
producing 30 m thick nanofibrous mats. The polymeric solutions of PSF and PVDF were made as
follows: (1) PSF solution was prepared by dissolving 23 g of polymer in 90 mL of DMAc and 10 mL of
acetone. (2) The second solution was produced by dissolving 15% (w/v) PVDF powder in a 30:70 (v/v)
of Dimethyl sulfoxide (DMSO) and Acetone. The solutions were poured into two separate syringes
and then transferred to the electrospinning machine. The electrospinning parameters are presented in
Table 2.

A continuous electrospinning process was conducted for producing pure PSF and PVDF
nanofibrous mat, but as the electrospinning machine was not equipped with two separate high-voltage
sources and syringe pumps, and due to different feed rates for the two polymers, the process was
discontinuous for the mixed (PVDF/PSF) nanofibrous mat: PSF and PVDF nanofibers were electrospun
for 1 and 2 min, respectively, until the desired thickness was obtained. SEM pictures of PVDF and PSF
nanofibers are shown in Figure 2.

:535’.0_‘4=

1603 rombo 15 OkV x2000 Sum '—i

1603 quadrato triangolo S.Qk_v x2000 Spym ——
(a) (b)

Figure 2. Produced nanofibers: (a) PVDF and (b) PSE.
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Table 2. Electrospinning parameters.

Electrospinning Parameters PSF (Udel® 3500) PVDF (Solef® 6008)
Applied voltage (kV) 22 12
Feed rate (mL/h) 1.2 0.6
Collector speed (rpm) 100 100
Needle tip-collector distance (mm) 120 120
Temperature (°C) 25 25

2.3. DCB and ENF Specimens

Double cantilever beam (DCB) and end-notched flexure (ENF) specimens were manufactured and
tested under Mode-I and Mode-II fracture loadings, according to ASTM D5528 [40] and guidelines
provided by [41], respectively. The samples were manufactured by stacking 14 layers of prepreg woven
carbon/epoxy laminates (twill 2/2 240 gsm supplied by Impregnatex Composite Srl) on each other,
and the nanofibrous mat and a 15 m thick Teflon layer interleaved between mid-layers. After the
lay-up, samples were sealed completely, using a vacuum bag, and transferred to an autoclave to cure:
from room temperature to 170 °C (at 1 °C/min), then 1 h at 170 °C, from 170 °C to 190 °C (at 1 °C/min),
then 20 min at 190 °C, and finally the oven was shut off and kept closed until complete cooling. Samples
were 20 mm wide and 4.2 mm thick, the initial crack length was 59 mm for DCB samples and 40 mm for
the ENF ones, and total length was 140 mm (DCB) and 150 mm (ENF). Three samples were produced
for each configuration.

2.4. Mode-I Interlaminar Fracture Test

In order to load the samples, aluminum blocks were glued to each side of the samples, as shown
in Figure 3. In order to observe the delamination progress by a digital image correlation (DIC) system
and measure the crack length (more details in Reference [42]), one side of each sample was coated with
a white paint first, and then with a black paint, to obtain a random pattern. The tests were performed in
a universal testing machine (Instron 8033), at a constant crosshead speed of 1.5 mm/min. The following
expression was used to calculated Gjc [40]:

Gic = 3F5/2Ba, 1

where F is the applied load, ¢ is the displacement of loading point, B is the width of specimen, and a is
the crack length.

Figure 3. Double cantilever beam (DCB) samples after white painting.
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2.5. Mode-II Interlaminar Fracture Test

ENF samples were used to conduct Mode-II fracture tests in a three-point bending load
configuration, as shown in Figure 4, at a crosshead speed of 1 mm/min, on the same machined
used for Mode-I tests. Span length was 100 mm; therefore, the distance between the crack tip and the
loading point was 35 mm. For calculating Gyc, the following formula was applied [41]:

Gic = (4.52"2 F5)/(B(0.25L"3+3a"3)), @)

where a, B, L, F, and 6 are the crack length, specimen width, span length, force, and displacement,
respectively.

Figure 4. End-notched flexure (ENF) sample under Mode-II test.

3. Results

3.1. Test Results

Figure 5 shows the force-displacement curves for the reference and modified samples under DCB
loadings, and Table 3 presents the results. As seen, the PSF and PVDF did not affect the slope of
the linear loading phase before crack propagation. An interesting phenomenon is observed while
the crack propagates. In the reference laminate, a high number of short rises and falls of the force is
registered, unlike the modified laminates, especially the PSF- and PVDF/PSF-modified ones, where a
lower number of variations is registered (see the orange ovals in the figures). In nanomodified samples,
the force rises after a drop up to about 6N, which is 15% of the maximum load.

The maximum load (Fmax) was 32.7 N for the reference laminate, and it increased 11% and 21% by
applying PSF and PVDF nanofibers, respectively; Gjc for the non-modified sample is 255 N/m, whereas,
for the PVDE, PSE, and PVDEF/PSF samples, it is 423, 384 and 454 N/m, respectively. By comparison with
the reference, the energy-release rate of PSF- and PVDF-modified laminates was enhanced by 51% and
66%, respectively, and a higher enhancement of 78% was obtained by using the mixed nanofibrous mat.
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Figure 5. Mode-I fracture test (DCB) outcome for reference (a) PSF-only, (b) PVDF-only, (c) PVDF/PSF
(d) nanomodified samples.

Table 3. DCB test results.

Reference PVDF PSF PVDEF/PSF
Maximum load (N) 327 +2 39.6 +0.5 36.3+1.5 39.6 +0.5
Variation (%) +21 +11 +21
Gic (N/m) 255+ 7 423 + 53 384 +9 454 + 26
Variation (%) +66 +51 +78

ENF test curves are shown in Figure 6, and the results are presented in Table 4. The behavior
of the two types of samples differs at the fracture initiation stage. The crack started to propagate
60-80 N below the Fmax in both control the PSF-modified samples. In this critical point, the slope of
force-displacement curve decreases, flagging a crack propagation. In the PVDF-modified laminate,
the crack initiation was followed by a force drop, about 40-60 N, in various samples. Then, the force
increased again up to the maximum load. The force-displacement curve of the laminates interleaved
by PVDE/PSF has some similarities with both of the two other modified samples. In the stage of crack
initiation, a very small force drop was observed, and then the load increased about 10-20 N, up to the
Fmax with a lower slope.
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Figure 6. Mode-II fracture test (ENF) outcomes for reference (a), PSF-only (b), PVDF-only (c) and
PVDEF/PSF (d) nanomodified samples.

According to Table 4, reference and PSF-modified laminates have similar values of maximum
load and Gyyc. Therefore, the PSF nanofibers do not show significant effect on toughening the virgin
laminate, while its influence in Mode-I loading was positive. On the other hand, PVDF and PVDEF/PSF
nanofibers increased the Gyjc of the laminate by 57% and 75%, respectively. It is interesting to note
that, although the influence of PSF nanofibers on Gyc was negligible, its mixture with PVDF had a
synergistic effect. A similar phenomenon was observed by Zheng et al. [39]. They used PCL film,
nylon nanofibers, and their mixture for toughening carbon/epoxy laminates: According to their results,
presented in Table 5, each interlayer individually increased Gy by 20%, while their mixture almost
doubled it.

Table 4. ENF test results.

Reference PVDF PSF PVDF/PSF
Maximum load (N) 477 £ 13 523 + 15 478 £ 12 558 + 16
Variation (%) +10 / +17
Gric (N/m) 182 +3 285 + 2 199 +9 318 + 29
Variation (%) +57 +9 +75
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Table 5. The influence of PCL film, Nylon 66 nanofibrous mat, and their mixture on Gyc [39].

Sample Reference Nylon 66 Nanofiber PCL Film Nylon 66/PCL
Grc (N/m) 1420 + 60 1710 + 120 1700 + 90 2820 + 120
Variation (%) - 20.4 19.7 98.6

3.2. Toughening Mechanisms

Figure 5 shows the force-displacement curves for the reference and modified samples under DCB
loadings, and Table 3 presents the results. As seen, the PSF and PVDF did not affect the slope of
the linear loading phase before crack propagation. An interesting phenomenon is observed while
the crack propagates. In the reference laminate, a high number of short rises and falls of the force is
registered, unlike the modified laminates, especially the PSF- and PVDF/PSF-modified ones, where a
lower number of variations is registered (see the orange ovals in the figures). In nanomodified samples,
the force rises after a drop up to about 6N, which is 15% of the maximum load.

Figure 7 presents the SEM micrographs of the fractured surfaces of the reference and nanomodified
laminates. As seen in Figure 7a, the surface of fractured neat epoxy is smooth, a sign of a brittle
type of fracture; instead, for the other samples, images show a different situation and various
toughening mechanisms.

Due to high porosity and specific surface area, PSF mats were easily impregnated by the epoxy.
On the other hand, owing to PSF’s high viscosity and fast curing of resin, the diffusion of PSF in the
epoxy was more difficult. Subsequently, the nanofibers were dissolved in the resin. By continuing the
curing process, PSF started a phase separation from the epoxy and changed to spherical particles (see
Figure 7b). When the crack tip reached these particles, it was restrained and deflected from its path,
requiring higher energy to propagate.

4. Discussion

As the curing temperature of composite laminates was higher than the melting point of PVDF
(170 °C), the nanofibers melted. As mentioned before, the porous nature of nanofibrous mats caused
the epoxy to permeate completely into the PVDF mats before hardening, and, therefore, the PVDF
blended with the epoxy by the end of curing process (see Figure 7c). Since PVDF is a thermoplastic
polymer, its toughness is higher than thermosets like epoxy; therefore, more energy is required for
crack propagation in the blend of PVDF/epoxy. Furthermore, a plastic zone area was detected in front
of the crack tip, which could again absorb more energy in comparison with the crack propagated in
pure epoxy. Figure 7d illustrates the sample modified by PVDF/PSF nanofibrous mat, showing both
the toughening mechanism of each individual nanofiber, i.e., melted PVDF and PSF spherical particles,
which both hindered fracture propagation.

Figure 7. Cont.
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(d)

Figure 7. Morphology of fractured surface in (a) reference, (b) PSF-, (c) PVDF-, and (d)
PVDF/PSF-modified laminates.

5. Conclusions

In this study, two thermoplastic polymers, i.e., PVDF and PSF, were applied individually and at the

same time, in form on nanofibers into CFRP, to study their influence on Gic and Gyic. The investigation
produced the following results:

1.

Interleaving reference laminates with nanofibers made of both polymers lead to increased Mode-I
and Mode-II energy-release rates;

PVDF nanofibers offer better results than PSF nanofibers: the first improved Gic and Gy by 57%
and 66% against 9% and 51%, respectively, of the latter;

Mixed PVDEF/PSF nanofibrous mat had a synergistic influence, increasing Mode-I and Mode-II
energy-release rate by 75% and 78%, respectively. These results are similar to the results presented
in Reference [39], in which PCL film/nylon nanofibers were applied.

SEM micrographs showed that PSF started to engage in phase separation from the epoxy and
changed to spherical particles during curing process. Hence, when the crack tip reached these
particles, it deflected from its main path and absorbed energy.

When PVDF nanofibers are interleaved, they mix with epoxy and melt during cure, creating a
plastic zone in front of the crack tip, requiring higher energy for it to propagate. The melting is a
critical factor; otherwise, the PVDF cannot affectively toughen the laminates.

Author Contributions: Conceptualization, H.S. and R.P.; methodology, H.S., A.Z., and H.H.; investigation,
H.S. and R.P; data curation, T.M.B.; writing—original draft preparation, H.S.; writing—review and editing,
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the manuscript.
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