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Abstract: Ultraviolet (UV) irradiation is used to disinfect water and food and can be classified as
UVA (detected at wavelengths 320-400 nm), UVB (280-320 nm), and UVC (<280 nm). We developed
a method for UVA sterilization of equipment with a UVA-light-emitting diode (LED); however, a
high rate of fluence was needed to promote pathogen inactivation. The aim of this study was to
identify genes associated with UVA sensitivity with the goal of improving UVA-LED-mediated
bactericidal activity. We constructed a transposon-mutant library of Vibrio parahaemolyticus and
selected six mutants with high sensitivity to UVA irradiation. Genes associated with this phenotype
include F-type H*-transporting ATPases (atp), as well as those involved in general secretion (gsp),
and ubiquinone and terpenoid-quinone biosynthesis (ubi). Gene complementation resulted in
decreased sensitivity to UVA-LED. The atp mutants had lower intracellular adenosine triphosphate
(ATP) concentrations than the wild-type treatment, with 20 mM L-serine resulting in elevated ATP
concentrations and decreased sensitivity to UVA-LED. The gsp mutants exhibited high levels of
extracellular protein transport and the ubi mutants exhibited significantly different intracellular
concentrations of ubiquinone-8. Taken together, our results suggest that the protein products of the
atp, gsp, and ubi genes may regulate sensitivity to UVA irradiation.
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1. Introduction

Vibrio parahaemolyticus is a Gram-negative marine bacterial species that can cause acute
gastroenteritis manifested by diarrhea, headache, vomiting, nausea, and abdominal pain; this
is typically observed in individuals who have consumed raw or undercooked seafood [1-4].
V. parahaemolyticus-induced gastroenteritis is mediated by the type III secretion system and by
enterotoxins, including thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) [5-7].
Food poisoning associated with V. parahaemolyticus is a frequent occurrence worldwide [8,9].
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Chlorination and ozonation have high efficiency against bacteria in general. However, some
health problems have been observed. For instance, residual chlorine in drinking water can cause
the formation of potentially carcinogenic halogenated by-products [10]. Likewise, ozonation can
lead to the formation of high concentrations of undesired by-products, including bromates, which
are also potential human carcinogens [11]. Other well-known disinfection methods include sunlight
and ultraviolet (UV) irradiation; these modalities produce by-products, but those reported so far are
below the level of health concerns [12]. UV rays are classified by wavelength into UVA (320-400 nm),
UVB (280-320 nm), and UVC (<280 nm). Solar disinfection is an effective and inexpensive method
of water treatment due to the fact that UVA and partial UVB in sunlight pass the ozonosphere and
reach the surface of the Earth; this is not the case for UVC. UVC-based disinfection systems that
utilize low-pressure mercury lamps are used widely as an effective sterilization method for both
drinking and wastewater [13]. Because deoxyribonucleic acid (DNA) has a maximum absorption
at approximately the same wavelength as UVC, irradiation can introduce photoproducts, including
cyclo-butane pyrimidine dimers (CPDs) into the genomic DNA of target bacteria [14,15]. Some bacterial
species have systems that repair thymine dimmers, including photolyases and the SOS response; these
properties impart tolerance to the effects of UVC on bacterial DNA [16,17].

We originally developed a UVA irradiation disinfection system based on a light-emitting diode
(UVA-LED) [14]. This system was capable of disinfection, and was specifically useful for the elimination
of enteropathogenic bacteria, including Escherichia coli or Vibrio parahaemolyticus [18,19]. Our findings
and those of other groups revealed that UVA irradiation induces cellular membrane damage and
indirectly results in delayed growth by increasing intracellular levels of reactive oxygen species (ROS),
including superoxide anion radicals (O,°”), hydroxyl radicals (OH®), hydrogen peroxide (H;O5),
and singlet oxygen (10,) [14,18,19]. Furthermore, we recently reported that bacterial systems that
were effective for repairing DNA damage secondary to UVC irradiation were not effective against
damage elicited by UVA-LED irradiation [18]. Unfortunately, we found that UVA-LED irradiation
had lower bactericidal efficiency than UVC did against V. parahaemolyticus [18,19]. As such, we
performed the current study in order to learn more about bacterial sensitivity to UVA-LED. We were
particularly interested in exploring factors underlying the UVA sensitivity of V. parahaemolyticus.
As such, the aim of this study was to identify genes encoded by V. parahaemolyticus that are associated
with UVA sensitivity. Toward this end, we constructed a V. parahaemolyticus mutant library using
a transposon mutagenesis method; we then identified mutant strains with increased sensitivity to
UVA-LED irradiation. In this study, we isolated and characterized six bacterial strains that displayed
increased sensitivity to UVA-LED irradiation; among these were strains with mutations in genes
encoding the FoF;-type ATP synthase subunits (atp) as well as those involved in the biosynthesis of
ubiquinone (ubi) and the general secretion pathway (gsp) genes. The goal of this study was to clarify
how to modulate sensitivity to UVA-LED irradiation by the genes and gene products.

2. Materials and Methods

2.1. Microbial Strains and Cell Preparation

The wild-type (WT) strain of V. parahaemolyticus, RIMD2210633, was obtained from the Research
Institute for Microbial Diseases (RIMD), Osaka University, Japan [20]. The bacteria and plasmids used
in this study are listed in Table 1. Genetically modified organisms (GMOs) are regulated under the
Cartagena Domestic Law. This study was conducted in conformity with the guidelines for the care
and use of GMOs of the Institute of Biomedical Sciences, Tokushima University Graduate School
(No. 27-375). Bacteria were cultured in Luria-Bertani (LB) broth or on LB agar plates, which contain 1%
tryptone (BD, Franklin Lakes, NJ, USA), 0.5% yeast extract (BD), and 0.5 to 3% NaCl (Nacalai Tesque,
Kyoto, Japan). WT and mutant strains were cultured at 37 °C for 18 h in order to reach stationary
phase; antibiotics were added as appropriate.



Appl. Sci. 2020, 10, 5549 30f15

Table 1. Bacterial strains and plasmids used in this study.

Strain and Plasmid Description Source or Reference

Vibrio parahaemolyticus strains
KP-positive, serotype O3:K6; clinical isolate; Wild-type

RIMD2210633 strain in this study Makino et al. [20]
RIMD2210633 mutant #0002, .
VP0097 Ez-Tn5 DHFR-1 insertion to VP0097, Tmp® This study
RIMD2210633 mutant #0358, .
VPo136 Ez-Tn5 DHFR-1 insertion to VP0136, Tmp* This study
RIMD2210633 mutant #0521, .
VPO140 Ez-Tn5 DHFR-1 insertion to VP0140, Tmp* This study
RIMD2210633 mutant #0092, .
VPO315 Ez-Tn5 DHFR-1 insertion to VP0315, Tmp* This study
RIMD2210633 mutant #0078, .
V3069 Ez-Tn5 DHFR-1 insertion to VP3069, Tmp* This study
RIMD2210633 mutant #0229, .
VP3075 Ez-Tn5 DHFR-1 insertion to VP3075, Tmp* This study
Plasmids
pSA19CP Expression vector; Cm” Nakano et al. [21]
PSA19CP expressing VP0097, .
pVP0097 controlled by the tdhA promoter; Cm* This study
PSA19CP expressing VP0136, .
pVPO136 controlled by the tdhA promoter; Cm"* This study
PSA19CP expressing VP0140, .
pVPOL40 controlled by the tdhA promoter; Cm"* This study
PSA19CP expressing VP0315, .
pVPO3I5 controlled by the tdhA promoter; Cm" This study
pVP3069 PSA19CP expressing VP3069, This study

controlled by the tdhA promoter; Cm*

Note: KP, Kawasaki phenomenon; Cm", chloramphenicol resistant; Tmp", trimethoprim resistant; tdhA, thermostable
direct hemolysin A; DHFR-1, dihydrofolate reductase-1.

2.2. Construction of the V. parahaemolyticus Mutant Library and Screening of the Mutants for High Sensitivity
to UVA

A transposon mutation kit, Ez-Tn5™ DHFR-1 Tnp Transposome kit (Epicentre Biotechnologies,
Madison, WI, USA), was used in this study. After an 18-h culture in LB broth at 37 °C, the WT strain
was diluted 20 times in LB broth containing 0.5% NaCl and cultured at 37 °C for an additional 2.5 h.
The cells were collected by centrifugation (7740x g for 2 min) and washed three times with 1 mL of
ice-cold electroporation (EP) buffer, containing 272 mM sucrose, 1.12 mM NaH;POy, 5.88 mM NaHPO;,
1 mM MgCl2, and 7% dimethyl sulfoxide (DMSQO). The cells were then suspended in 100 uL of EP
buffer containing 1% TransposomeTM solution and 1% TypeOne™ Restriction Inhibitor (Epicentre
Biotechnologies) at 4 °C for 10 min and transformed by EP using a Gene Pulse apparatus (Bio-Rad
Laboratories, Hercules, CA, USA), at 1000 Ohms, 25 pF, and 1300 V. Following EP, the cells were
transferred into 500 pL of LB broth containing 1% NaCl and incubated for 1.5 h at 37 °C. To isolate
the Ez-Tn5™ DHFR-1 transposon mutants, the cells were incubated on LB agar containing 1% NaCl
and 15 pg/mL trimethoprim (TMP) at 37 °C for 18 h. The isolated colonies were cultured individually
with LB containing 3% NaCl and 15 pg/mL TMP and stored frozen in 8% glycerol. Mutants with
high sensitivity to UVA were identified using a two-step screening process, as indicated in Figure 1.
To identify the mutation-inserted genes, genomic DNA of the high UVA-sensitive mutants was purified
using a QlAamp DNA mini kit (Qiagen, Valencia, CA, USA); the DNA sequences flanking the Ez-Tn5™
DHER-1 transposon were evaluated according to the manufacturer’s instructions.
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Figure 1. Selection of highly UVA-sensitive mutants from a V. parahaemolyticus transposon-mutant
library. Highly UVA-sensitive mutants were separated from the mutant library by a two-step screening
process. (a) First-round screening as shown. The bacterial cell numbers in each of the samples were
not adjusted prior to UVA irradiation and the number of colony-forming units (CFUs) detected after
culture of the UVA-irradiated samples was not determined. (b) Second-round screening. The bacterial
cell concentrations were adjusted to 10 CFU/mL prior to UVA irradiation; CFUs in each sample both
with or without UVA irradiation were counted.

2.3. Gene Complementation in the Mutants

Relevant genes were amplified by polymerase chain reaction using the primers listed in Table 2
and cloned into the pSA19CP vector [19,21]. Plasmids were introduced into the transposon mutants via
EP using a Gene Pulse apparatus (Bio-Rad); transfected bacteria were selected on LB agar containing
10 pg/mL chloramphenicol (Cm). Gene expression in these plasmids was under the control of the
thermostable direct hemolysin A (tdhA) gene promoter; this promoter is well-characterized and is
highly active during stationary growth [7,21].

Table 2. Oligonucleotide primers for gene complementation.

Sequence (5'-3')

Gene
Forward Reverse
VP0097 5-TCTAGA 5-GAATTC
ATGACGCCAGCAGAATTAAAGC-3 CTATTGACGATAAGCTCGCCAAC-3
VPO136 5-TCTAGA 5'-GAATTC
ATGAAATTTAAGCGTAGTAAGC-3' TTATTGGAAGTCTTGCATGTTCCA-3’
VPO140 5-TCTAGA 5'-GAATTC
ATGGCTAATCGTCAGCGCGGT-3’ CTACTCAGCCGAACGGTCAGAAA-3
5-TCTAGA , ,
VP0315 ATGCACAACAAAATACAACCC—3’ 5 -GGATCC TCACGAGCGCTGGTCATA-3
VP3069 5'-GGATCC 5-GAATTC
ATGGCTACAGGTAAGATCGTAC-3’ TTATAGCTTCTTCGCATTCTCG-3’
VP3075 5-TCTAGA 5-GAATTC

ATGGCTGCGCCAGGTGAA-3’

TTAATGATCAGAGTCTTCGTGTGC-3’

Note: Restriction sites are in bold type.
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2.4. UV Irradiation

UVA light was emitted by a UVA-LED device developed as previously reported [18,19]. UVA-LED
was pointed upward from the bottom of a 96-well plate; light intensity was maintained at 420 W/m?
at the bottom of the well with an average peak wavelength of 365 nm (Supplementary Material
Figure Sla). UVB or UVC light was emitted downward and pointed at the surface of the solution
in each well using a low-pressure UV lamp (3UV-38; UVP, Upland, CA, USA) at an intensity of 0.9
or 0.7 W/m? and with average peak wavelengths of 302 and 254 nm, respectively (Supplementary
Material Figure S1b,c). UV intensities were measured using a multiple wavelength photometer (MCPD
3700A; Otsuka Electronics, Osaka, Japan) and the handheld power meter NOVA II (Ophir Japan, Tokyo,
Japan).

2.5. Measurement of Sensitivities to UV Irradiation

Sensitivities to UV irradiation were determined as bactericidal activity using a colony-forming
assay. V. parahaemolyticus strains were collected by centrifugation (7740x g, 2 min, 25 °C) and
washed three times with sterile phosphate-buffered saline (PBS). Then, 15 min before UV irradiation,
the bacterial cells were treated with or without 20 mM L-serine (Supplementary Material Figure S2).
The WT or the mutant strains were both adjusted to 10° CFU/mL in PBS. The irradiant fluences of
UVA, UVB, and UVC were 126, 0.27, and 0.063 kJ/m?, respectively. After UV irradiation, bacterial
suspensions were diluted appropriately, plated on LB agar plates with or without 20 mM L-serine,
and incubated at 37 °C for 18 h. Following the incubation, the colonies were counted, and the log of
the survival ratio was calculated as follows:

Log survival ratio = logyg (N¢/Np), 1)

where N; is the colony count of the UV-irradiated sample, and Nj is the colony count of the sample
that had not undergone UV irradiation.

2.6. Intracellular ATP Concentration

Intracellular concentrations of ATP were measured for each of the V. parahaemolyticus mutants using
a Kinsiro ATP Luminescence kit (TOYO B-Net, Tokyo, Japan) in accordance with the manufacturer’s
instructions. After exposure to 20 mM L-serine or the diluent control, the mutant bacteria were
collected by centrifugation (7740x g, 2 min, 25 °C), washed twice with PBS, resuspended in 1.2 mL
of PBS, and stored at —80 °C until measurements could be performed. To measure intracellular ATP
concentrations, samples were homogenized by ultrasound (Branson Ultrasonic, Danbury, CT, USA).
After centrifugation (22,000 g, 10 min, 4 °C), the supernatants remaining were normalized for protein
concentration using the bicinchoninate (BCA) method (Pierce, Rockford, IL, USA). Then, 20 uL of each
sample that was normalized for total protein concentration was mixed with 180 puL luciferase/luciferin
reaction solution; luminescence intensities were measured using a Varioskan Flash (Thermo Fisher
Scientific, Waltham, MA, USA).

2.7. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Silver Staining

After bacteria reached the stationary phase (grown for 18 h in LB broth at 37 °C), the cultures
were divided into pellets and supernatants by centrifugation (7740x g, 2 min, 25 °C) to facilitate the
detection of both intracellular and extracellular protein, respectively. In order to remove any residual
intact bacterial cells, the supernatants were filtered with 0.22-um pore filters and mixed with 10%
trichloro acetate, which resulted in the 10-fold concentration of extracellular protein. After centrifuging
at 17,500 g for 10 min at 4 °C, pellets were washed twice with ice-cold acetone. The extracted
extracellular or intracellular proteins were separated using SDS-PAGE and visualized by silver staining
(ATTO, Tokyo, Japan).
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2.8. Ubiquinone-8 Measurements

For quantitative determination of UQ-8, the lipid phase was extracted from WT and mutant
strains and analyzed liquid chromatography-time of flight mass spectrometry (LC-TOFMS). After
culturing to the stationary phase in LB broth for 18 h at 37 °C, WT or the mutants were collected by
the centrifugation (7740x g, 2 min, 25 °C), and washed three times with sterile PBS; the lipid phase
was then extracted as previously reported [22]. The samples were analyzed by an Agilent LC-TOFMS
system 6200 with ZORBAX Eclipse Plus C18 column (Agilent Technologies, Santa Clara, CA, USA)
at a flow rate of 1 mL/min using water-methanol (40:60) as the initial mobile phase. After sample
injection, the percentage of methanol was increased to 100% over 10 to 30 min and then maintained
for an additional 20 min. Agilent jet-stream electrospray ionization (Dual AJS ESI) was used as a
source of ions. The ESI source was operated in positive mode, including spray voltages of 3500 V
for the capillary entrance and 500 V for the nozzle, with a nitrogen sheath gas temperature at 250 °C
and a flow rate of 12 L/min. Nitrogen drying gas was introduced at 150 °C at a flow rate of 10 L/min,
with the nitrogen nebulizer at 45 psig. UQ-8 purified from E. coli (Avanti Polar Lipids, Alabaster, AL,
USA) was used to generate a standard curve for determining UQ-8 concentrations. An extracted ion
chromatogram (EIC, + 1 ppm) of UQ-8 and integral analysis of peak areas were generated by Agilent
MassHunter software (Agilent Technologies).

2.9. Statistical Analysis

Statistical analyses included ANOVA with Bonferroni’s multiple comparison tests using Statview
5.0 software (SAS Institute Inc., Cary, NC, USA). Student’s t-tests were used for paired data when
appropriate. Values of p < 0.01 or p < 0.05 were considered to be statistically significant.

3. Results

3.1. Screening of the Mutants with High UVA Sensitivity

Highly UVA-sensitive mutants were identified in the mutant library using a two-step screening
process (Figure 1). Fourteen mutants were selected as candidates for high sensitivity to UVA irradiation
after the first round of screening. In the second round of screening, eight mutants were identified that
exhibited similar or lower sensitivities to UVA irradiation that was exhibited by the WT (Supplementary
Material Figure S3). The other six mutants were identified as highly sensitive to UVA irradiation;
these mutants include those whose chromosomal DNA was modified by transposon insertion into
VP0097 (#0002), VP0136 (#0521), VP0140 (#0358), VP0315 (#0092), VP3069 (#0078), or VP3075 (#0229;
Figures 2 and 3a). Information provided by the National Center for Biotechnology Information,
Kyoto Encyclopedia of Genes and Genomes, and RIMD facilitated the classification of these six
mutant strains into three functional/orthologous groups. Specifically, VP3069 and VP3075 were
functionally classified as being associated with FyF;-type ATP synthase, VP0136 and VP0140 with
general protein secretion pathways, and VP0097 and VP0315 with the biosynthesis of ubiquinone
and/or other terpenoid-quinones (Table 3).



Appl. Sci. 2020, 10, 5549 7 0f 15

VP0095  VP0096 VP0097 VP0098 VP0099 VP0100 VP0101

—>h

#0002
T T T T T T T T T T
106,000 108,000 Chromosome | (base)
VP0314 VP0315 VP0316 VP0317 VPO31B
| |
#0092
T T T T T T T T T T T T
310,000 312,000 314,000 Chromosome | (base)
VP0135 VP0136 VP0137 VP0138 VP0139 VP0140 VP0141
#0358 #0521
T T T T T T T T T T T
148,000 150,000 152,000 Chromosome | (base)
VP3068 VP3069 VP3070 VP3071 VEO?Z V23073 VP3074 VP3075 VP3076
] |<'F:| <:I
#0078 #0229
T T T T T T T T T T T T T T
3,278,000 3,280,000 3,282,000 Chromosome | (base)

Figure 2. Map of Vibrio parahaemolyticus genes associated with the highly UVA-sensitive mutants.
Arrows indicate open reading frames of V. parahaemolyticus genes. Arrow heads and gray arrows
indicate mutant genes associated with high UVA sensitivity; the white arrows denote other genes with
Ez-Tn5 DHFR-1-insertions.

Table 3. Putative product and functional classification of the Ez-Tn5 DHFR-1-inserted genes in highly
UVA-sensitive mutants.

Genes Orthologous Genes Product Functional Classification
VP3075 atpB ATP synthase FyF; subunit alpha Oxidative phosphorylation
VP3069 atpD ATP synthase FyF; subunit beta F-type Hf -transporting ATPase
VP0136 gspG general secretion pathway protein G Bacterial secretion system
VP0140 gspK general secretion pathway protein K Type Il secretion system
VP0097 ubiB ubiquinone biosynthesis protein UbiB Ubiquinone and other

3-polyprenyl-4-hydroxybenzoate Terpenoid-quinone biosynthesis

VP0315 ubiX carboxy-lyase UbiX

Note: ATP, adenosine triphosphate.

3.2. Sensitivities to Different UV Wavelengths

To investigate relative sensitivities to different wavelengths of UV irradiation, the six mutants
selected were irradiated with UVA, UVB, or UVC, and the survival ratios were measured. All of the six
mutants were more sensitive to the lethal impact of UVA irradiation than the WT; their sensitivities
to UVB and UVC could not be distinguished from those of the WT (Figure 3). From these results,
we conclude that the UV sensitivities of the mutants VP0097, VP3069, VP0136, VP0315, VP3075,
and VP0140 might be restricted to UVA-associated wavelengths.
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Figure 3. Sensitivities of six V. parahaemolyticus mutants to different wavelengths of UV light.
(a) Responses to UVA-LED irradiation at 126 kJ/m2, (b) responses to UVB at 0.27 kJ/m2, (c) responses
to UVC at 0.063 kJ/m?. The sensitivities to UV irradiation were presented as a logarithmic (logj)
analysis of the survival ratio as described in the materials and methods. The detailed emission spectra
of UVA-LED, UVB, and UVC are shown in Supplementary Material Figure S1. Values shown are means
+ SD; n = 3-6, where n = number of independent replicates. * p < 0.05 or ** p < 0.01 versus WT.

3.3. Evaluation of Intracellular ATP Concentration and Sensitivity to UVA Irradiation in Strains with
Mutations in FgF;-Type ATP Synthase Genes

To investigate the relationship between sensitivity to UVA and mutations in genes encoding
FoF;-type ATP synthase, we measured the intracellular ATP concentrations in the mutants VP3069
and VP3075. Intracellular ATP concentrations were significantly lower in both VP3069 and VP3075
mutants than in the WT (Figure 4a,b). The gene complementation of VP3069 (pVP3069/VP3069) or
VP3075 (pVP3075/VP3075) restored the intracellular ATP concentrations and decreased UVA sensitivity,
although not to the same extent as observed in the WT (Figure 4a). To determine the relationship
between the intracellular ATP concentration and UVA sensitivity, both mutant strains were treated
with L-serine (Supplementary Material Figure S2) [23]. The 20 mM L-serine treatment increased the
intracellular ATP concentrations and decreased the UVA sensitivities in both VP3069 and VP3075
(Figure 4b,d). These results suggested that intracellular ATP concentrations regulated by FyF;-type
ATP synthase might be associated with sensitivity to UVA.
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Figure 4. Intracellular ATP concentration and sensitivity to UVA irradiation in the mutants of FyF;-type
ATP synthase genes. (a,b) ATP concentrations in response to gene complementation of FyF;-type ATP
synthase gene mutations, pVP3069/VP3069 and pVP3075/VP3075. (c,d) WT and mutant strains in the
absence (m) or presence of 20 mM L-serine (O). Intracellular ATP concentration was measured by a
luciferase/luciferin reaction as described in the materials and methods section. (c,d) Sensitivity to UVA
irradiation was measured as described in the materials and methods section. Values shown are means
+ SD (n = 3-7, n = number of independent experimental replicates). * p < 0.05 or ** p < 0.01 versus WT.

3.4. Evaluation of Extracellular Protein Content and Sensitivity to UVA among Mutants of General Secretion
Pathway Genes

To investigate the relationship between sensitivity to UVA and the mutation of the general
secretion pathway gene, we measured the extracellular protein of the VP0136 and VP0140 mutants.
The content of extracellular protein in the VP0136 and VP0140 mutants was significantly higher than
that in WT (Figure 5a), but the intracellular proteins were not different among WT and the mutants
(Figure 5b). The gene complementation of VP0136 (pVP0136/VP0136) or VP0140 (pVP0140/VP0140)
significantly decreased the content of extracellular protein and increased UVA sensitivity (Figure 5a,c),
whose levels were the same levels in WT (Figure 5a,c). From these results, membrane permeability
controlled by the proteins of general secretion pathway might be associated with UVA sensitivity.

3.5. Intracellular Concentrations of Ubiquinone-8 and Sensitivity to UVA Irradiation among Strains with
Mutations in Ubiquinone Biosynthesis Genes

In E. coli and Vibrio spp., the UQ tail includes eight isoprene groups and as such is designated
UQ-8 [24]. Biosynthesis of UQ-8 in E. coli relies on ubi genes [25]. In order to explore the relationship
between sensitivity to UVA and mutations in genes responsible for ubiquinone biosynthesis, we
measured intracellular concentrations of UQ-8 (Cs;H7,05) in VP0097 and VP0315 by LC-TOFMS.
The positive ions associated with UQ-8 (mass-to-charge ratio [m/z] = 727.5673 [M + H] and 749.5490
[M + Na]) were detected at a retention time = 44.8 min (Figure 6a). We detected a lower concentration
of UQ-8 in the VP0315 mutant than in the WT; interestingly, the VP0097 mutant exhibited a higher
UQ-8 concentration than the WT (Figure 6a,b). The gene-complemented strains, pVP0097/VP0097 and
pVP0315/VP0315, maintained levels of both the intracellular UQ-8 concentration and UVA sensitivity
that were similar to the WT (Figure 6b,c). From these results, we conclude that both VP0097 and
VP0315 serve to regulate UQ-8 concentrations and also the sensitivity to UVA irradiation.



Appl. Sci. 2020, 10, 5549 10 of 15

(a}

pVP0136 VPO140
WT  VPO136 jypg136 VFOT40 jypo1q0

a
2

pVP0136/VP0136
pVPO140/VP0140
pVPG140/VP0140

©
™
2
g
=
i)
(3]
S
QL
=

o

(=}
= 0
& -
o
o
g -2
8
© -3
2
=
S -4 ok sk
& 1 L
5 P<0.05 F<0.01

Figure 5. Extracellular and intracellular protein content and sensitivity to UVA irradiation among strains
with mutations in genes association with general secretion pathways. (a,b) A typical image of protein
content revealed by silver staining after SDS-PAGE. (a) Extracellular proteins and (b) intracellular
proteins were separated as described in the materials and methods section. (c) Sensitivity to UVA
irradiation, as shown in Figures 2a and 3c. Sensitivities of gene-complemented strains of general
secretion pathway genes, pVP0136/VP0136 and pVP0140//, were also evaluated. Values shown are
means + SD (n = 3-5, n = number of independent experimental replicates; ** p < 0.01 versus WT.
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Figure 6. Intracellular ubiquinone-8 concentration and sensitivity to UVA irradiation associated with
strains with mutations in ubiquinone biosynthesis genes. (a) Mass spectra in the target peak area
(white arrow, retention time = 44.8 min) and extracted ion chromatograms (EICs) of ubiquinone-8
(UQ-8, C51H7p Oy, m/z = 727.5665 [M + H]). Gray panel documents the standard curve featuring UQ-8
purified from Escherichia. Coli. (b) Intracellular concentrations of ubiquinone-8. (c) Sensitivity to
UVA irradiation. Intracellular UQ-8 was measured by liquid chromatography-time of flight mass
spectrometry (LC-TOFMS) as described in the materials and methods section. Values shown are means
+ SD (n = 3-5, n = number of independent replicates). * p < 0.05 or ** p < 0.01 versus WT.

4. Discussion

To identify bacterial genes associated with UVA sensitivity, we constructed a transposon-mutant
library and selected mutant strains of V. parahaemolyticus that exhibited high sensitivity to UVA
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irradiation. We selected six mutants that were highly sensitivity to UVA irradiation only, and did
not exhibit increased sensitivity to either UVB or UVC. The six selected mutant strains included the
mutations in genes encoding F-type H*-transporting ATPase (#78; VP3069, #229; VP3075), targets in the
general secretion pathway (#521; VP0136, #358; VP0140), and those involved in ubiquinone and other
terpenoid-quinone biosynthesis (#2; VP0097, #92; VP0315). Gene complementation studies performed
with these mutant strains resulted in decreased sensitivity to UVA irradiation, approaching levels
comparable to the WT. These results suggest that the products of these aforementioned genes serve to
regulate sensitivity to UVA irradiation. We previously reported that UVA-LED irradiation increased
levels of ROS in E. coli. and V. parahaemolyticus [14,19]. In addition, all of the six UVA-sensitive mutants
had highly sensitivity to hydrogen peroxide (Supplementary Material Figure S4). These suggest that
the genes are associated with the sensitivity to both UVA irradiation oxidative stresses.

The enzyme ATP synthase generates ATP from ADP and phosphoric acid via the rotation of the
Fy motor on biological membranes with a hydrogen ion concentration gradient [26]. We detected
remarkable decreases in intracellular ATP concentrations in the mutant strains VP3069 and VP3075
that involve the FoFi-type ATP synthase gene; ATP concentrations increased in response to
gene complementation (Figure 4a). Although the resistance to UVA irradiation was restored by
complementation, the intracellular ATP concentration in the mutants remained lower than that
observed in WT cells. Franziska et al. [27] reported that intracellular ATP concentrations decreased
in response to UVA irradiation and that the concentration was related to resistance against UVA in
E. coli. Furthermore, Bosshard et al. [28] reported that the alpha-subunit of the FyF;-type ATP synthase
underwent aggregation in response to UVA irradiation. From these results, we conclude that FyF;-type
ATP synthase may play an important role in supporting the intracellular ATP concentration during
periods of UVA irradiation/stress. However, the L-serine treatment increased the intracellular ATP
concentration and decreased the sensitivity to UVA irradiation (Figure 4b,d). L-serine treatment
increases the ATP concentration through one-carbon metabolism, which is independent of FyF;-type
ATP synthase [23]. Akhova et al. [29] reported that the ATP/ADP ratio was changed by oxidative stress
under antibiotic treatment in E. coli. From these results, the intracellular ATP concentration controlled
by not only FyF;-type ATP synthase but also other pathways, including one-carbon metabolism, may
be crucial factors for modulating UVA sensitivity.

General secretion is also known as the Sec-dependent or the type II secretion system (T2SS). Many
Gram-negative bacteria utilize the T2SS to facilitate translocation of folded proteins from the periplasm
through the outer membrane and likewise inwards from the extracellular environment [30]. Expression
of outer membrane proteins (Omps), OmpU, OmpT, and OmpS, were all decreased and the outer
membrane integrity was compromised in T2SS mutants of V. cholerae [31,32]. In this study, we observed
a drastic increase in the extracellular content associated with mutations in general secretion pathway
genes in V. parahaemolyticus (i.e., VP0136 and VP0140; Figure 5a); Sikora et al. [33] reported similar
findings in V. cholerae. In addition, this group determined that V. cholerae T2SS mutants were more
sensitive to hydrogen peroxide and endogenous ROS formation than the WT strain [33]. From these
results, factors associated with T2SS-regulated outer membrane integrity are likely to be very important
for sensitivity to UVA and oxidative stress. Apart from interactions within the outer membrane and
T2SS proteins, these latter components may also interact with other constituents of the cell envelope.
As but one example, alterations in the structure of lipopolysaccharide (LPS) have an immediate impact
on the function of the T2SS system in Pseudomonas aeruginosa [34,35]. Recently, Johnson et al. [36]
reported that T2SS from V. cholerae supported biofilm formation. Biofilms are microbial communities
that are embedded in polysaccharides, nucleic acids, and associated extracellular protein matrix; they
function to protect the resident bacteria from predators as well as from the effects of extracellular stress,
the actions of antibiotics, and clearance by the immune system [37-39]. Pezzoni et al. [40] reported
that biofilms containing P. aerginosa were more resistant to UVA irradiation than planktonic cells in
culture. From these results, we conclude that biofilms controlled by the general secretion pathway of
V. parahemolyticus may also be associated with sensitivity to UVA irradiation.
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Ubiquinone (UQ), also known as coenzyme Q, is a lipophilic metabolite identified in organisms
ranging from bacteria to mammals that includes a conserved quinone head group and an isoprenoid
hydrophobic tail that varies in length among different species [41]. UQ-8 is located in the bacterial
plasma membrane and has been described as an essential element underlying aerobic respiratory
growth, gene regulation, and processes that rely on proton motive force [42—44]. Biosynthesis of
UQ-8 takes place via a highly conserved pathway that involves a large number of genes (i.e., ubi)
that have been identified by genetic studies [45]. The ubiCA mutants all had altered patterns of UQ-8
biosynthesis and were hypersensitive to HyO,; production of both O, and H,O, was significantly
higher in the mutants than in the wild-type strain [46]. In our study, VP0097 (ubiB) and VP0315
(ubiX) mutants showed similar high sensitivities to UVA-LED that did not correlate with changes
in UQ-8 concentrations (Figure 6). The ubiX gene product catalyzes decarboxylation as part of the
biosynthesis of UQ-8; inactivation of the gene leads to diminished levels of UQ-8 in target E. coli
cells [47]. By contrast, ubiB is believed to be required for the first monooxygenase step in UQ-8
biosynthesis, although the detailed roles played by each of the gene products remain unclear [48].
Taken together, the combined results suggest that functions of the ubi gene product may be related to
the degree of UVA sensitivity.

5. Conclusions

In conclusion, genes associated with FoF;-type ATP synthase, the general secretion pathway,
and ubiquinone synthesis were all identified as candidate genes that modulate sensitivity to UVA
irradiation. A comprehensive review of the genes and gene products modulating these responses will
provide a remarkably improved understanding of the efficiency of sterilization procedures and their
application to resistant bacteria. For example, a combination of UVA-LED irradiation and treatment of
inhibitors against the identified gene products, such as a bacterial FyF;-type ATP synthase inhibitor
piceatannol, which inhibits growth of E. coli and other bacteria [49], may be a good strategy to increase
the efficiency of the bactericidal effect. Further analysis of several of the critical features and functions
of these target genes will be required.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/16/5549/s1,
Figure S1: Emission spectrum of various UV lamps, Figure S2: A flow chart of the experiment of L-serine treatment
for UVA-sensitivity, Figure S3: Sensitivities of mutants from first-round selection to UVA-LED, and Figure S4:
Sensitivities to hydrogen peroxide in highly UVA-sensitive V. parahaemolyticus mutants.
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