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Abstract: The application of a recent field theory of deformation and fracture to nondestructive testing
(NDT) is discussed. Based on the principle known as the symmetry of physical laws, the present field
theory formulates all stages of deformation including the fracturing stage on the same theoretical
basis. The formalism derives wave equations that govern the spatiotemporal characteristics of the
differential displacement field of solids under deformation. The evolution from the elastic to the
plastic stage of deformation is characterized by a transition from longitudinal (compression) wave
to decaying longitudinal/transverse wave characteristics. The evolution from the plastic to the
fracturing stage is characterized by transition from continuous wave to solitary wave characteristics.
Further, the evolution from the pre-fracturing to the final fracturing stage is characterized by
transition from the traveling solitary wave to stationary solitary wave characteristics. In accordance
with these transitions, the criterion for deformation stage is defined as specific spatiotemporal
characteristics of the differential displacement field. The optical interferometric technique, known as
Electronic Speckle-Pattern Interferometry (ESPI), is discussed as an experimental tool to visualize
those wave characteristics and the associated deformation-stage criteria. The wave equations are
numerically solved for the elastoplastic stages, and the resultant spatiotemporal behavior of the
differential displacement field is compared with the experimental results obtained by ESPI. Agreement
between the experimental and numerical results validates the present methodology at least for the
elastoplastic stages. The solitary wave characteristics in the fracturing stages is discussed based on
the experimental results and dislocation theory.

Keywords: nondestructive evaluation; comprehensive description of deformation and fracture;
electronic speckle-pattern interferometry; field theory of deformation and fracture

1. Introduction

Structures collapse unexpectedly. Continuous application of external loads, even if their strength
is considerably lower than the ultimate strength of the material, causes fractures. The current load level
observed or associated deformation data is not reliable information to predict fracture. It is known that
fracture is led by a defect and that defects grow in the scale level from the atomistic to macroscopic.
Dislocations [1] are typical atomistic defects and their propagation is responsible for the deformation
to evolve from the elastic to plastic regime. It is known that in the plastic regime the dislocations
react to the stress field and lead to the generation of macroscopic defects. Egorushkin [2] formulates
the dynamics of dislocation as a wave phenomenon. However, it is difficult to connect dislocation
behaviors and macroscopically observable phenomena. In other words, on the one hand we know that
the propagation of dislocation initiates plastic deformation. On the other hand, we cannot identify the
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initiation of plastic deformation as a macroscopically observable quantity, except as the yield point on
the stress–strain curve. From the nondestructive testing (NDT) perspective, it is unrealistic to measure
the stress-stain characteristics of test objects in the field. It is desirable to develop a methodology
that allows us to diagnose the initiation of plastic deformation and the subsequent evolution of the
deformation toward the final fracture.

One immediate problem in such methodological development is that prevailing deformation
theories are phenomenological and, thereby, stage specific. Elastic theories [3–5] describe the stress
strain relationship in the elastic regime. Most plastic deformation theories [6,7] describe plastic behavior
by either mathematically modeling the constitutive relation in the plastic regime or formulating the
plasticity based on the energy dissipation. Fracture [8] is treated as an independent phenomenon of
deformation. This situation makes it difficult to describe the transition from one deformation regime
to another.

In this work, we propose that the application of a recent field theory [9] of deformation and
fracture can be a solution to the problem. Being based on the physical principle known as the local
symmetry of theory [10–12] (See Appendix A), this theory has a mechanism to describe deformation
and fracture on the same theoretical basis. It formulates all stages of deformation and fracture based
on the wave equation derived from the equation of motion that governs the dynamics of a unit volume
in a deforming object. Different stages of deformation are characterized by different forms of resistive
force that the unit volume exerts in response to the external load. This difference in the resistive
force alters some terms of the wave equation yielding different wave solutions. Details about the
wave equation and wave solutions will be discussed later in this paper. In short, the elastic stage is
represented by non-decaying longitudinal waves, the early stage of plastic deformation is by decaying
longitudinal and transverse waves, the developed plastic stage (the pre-fracture stage) is by travelling
solitary waves, and the fracturing stage is by standing solitary waves. In all stages, these waves carry
the stress energy that is caused by the external load.

These forms of deformation waves in association with the corresponding deformation stages have
been observed by several authors. In a tensile experiment of an aluminum alloy specimen, we [13]
observed that a transverse displacement wave started to appear near the yield point and decayed
towards the final fracture of the specimen. In refs. [14–16], the authors identified a solitary-wave like
pattern in the displacement field of tensile loaded metal plate specimens and observed that the pattern
becomes stationary when the specimen broke. Ref. [17] reports simlar observation of a solitary-wave
like pattern in the displacement field for a cyclic loaded metal specimen. Ref. [18] explains these
experimentally observed behaviors of the solitary-wave like patterns based on a Korteweg-de Vries
(KdV)-type [19] solitary wave solution. The formation of solitary waves from non-solitary waves has
also been reported. Ziv and Shmuel [20] discuss the coalescence of longitudinal and shear waves to
form shock waves in soft materials. Lints [21] et al. discuss the formation of solitary waves in a carbon
fiber reinforced polymer with non-solitary ultrasonic excitation.

The use of the above-mentioned, stage-specific behavior of deformation waves makes the present
NDT unique. Various waves are widely used in conventional NDT methods. In these methods, a linear
wave is typically applied to the test object as the input and the reflected or transmitted (the output) wave
is monitored. The structural or mechanical properties of the object are diagnosed through analysis
of the output wave based on a certain property of the wave. Acoustic imaging [22,23] identifies
abnormality from the difference in the acoustic impedance, which alters the reflection coefficient for
the input wave; hence, making a contrast in the output wave. Scanning Acoustic Microscopy [24,25]
uses the interference between the input and reflected ultrasound waves to characterize the property of
the subsurface region of a specimen. X-ray diffractometry [26,27] uses diffraction to find the lattice
constant of the object material. In relatively new methods, solitary waves are also used as the input
wave [28–30]. As a nonlinear wave, a solitary wave changes its wave form depending on the material’s
property. This feature makes it possible to detect abnormality that linear input waves are unable
to detect.
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The present NDT algorithm is intrinsically different from these methods in the following sense.
Instead of analyzing the output signal that results from a certain input wave, it analyzes the materials’
self-generated deformation waves. In other words, while conventional techniques analyze the
material’s response to the input wave, the present method characterizes the material’s response
to the applied load as a wave phenomenon. Thus, the observed wave exhibits the dynamics that
governs the deformation behavior for the respective stages. By knowing the dynamics for each stage
and the associated features of the deformation wave, we can diagnose the current status of deformation
and its future trend.

Based on the stage-specific specific behaviors of the deformation wave, we have derived field
theoretical criteria of deformation stages [31]. The criteria describe the spatiotemporal behavior of
the displacement field in the elastic, plastic, pre-fracture, and fracture stages. In accordance with the
above-mentioned form of the displacement wave, the displacement field expressed in the principal
coordinates is rotation-free (because the wave is longitudinal) in the elastic stage, rotational (because the
wave has transverse component due to the shear strain) in the plastic stage, localized in a small region
(because the wave is a solitary wave), but dynamic in the pre-fracture stage, and localized in a small
region and static (because the solitary wave becomes standing) in the fracture stage (more detailed
descriptions of the characteristics of the displacement field will be discussed later in this paper).

In refs. [31,32], we demonstrated the deformation stage criteria based on these qualitative
features of the displacement field. Using the optical interferometric technique known as Electronic
Speckle-Pattern Interferometry (ESPI) [33–35], we continuously visualized the displacement field of
metal plate specimens as the test machine applied a tensile load. With a pre-defined time interval small
enough to resolve the stress-strain curve, the ESPI setup displayed the displacement field as full-field,
two-dimensional optical interferometric image data. This arrangement is convenient for the diagnosis
against the deformation stage criteria because the interferometric fringes, which represent contours of
differential displacement components, readily exhibit the qualitative features of the displacement field
(rotation-free etc). The diagnosed deformation stages were found to be consistent with the stress–strain
characteristic obtained during the same tensile experiment.

In this study, the idea of using the ESPI fringe patterns is extended in order to visualize the wave
characteristics of the displacement field. We analyzed the fringe pattern for several consecutive time
steps in several deformation stages, and compared the spatiotemporal behavior of the displacement
field against numerically generated deformation wave forms. Here, the numerical wave forms were
obtained by solving the above-mentioned wave equation without assuming a constitutive model
(except for the use of Poisson’s effect). It has been found that the visualized displacement field shows
the same spatiotemporal behavior as the numerical wave forms. This allowed us to confirm the validity
of the proposed wave-dynamics based diagnosis of deformation status via direct comparison with
the wave forms. The aim of this paper is to report our observations in this investigation. The present
paper is organized in the following way. Section 2 presents the gist of the field theory, including the
deformation stage criteria and the explicit form of the wave equation for all the stages. Section 3
describes the experimental and numerical methods that were used in this study. Section 4 presents
the experimental and numerical results and discusses the observations based on the wave dynamics.
The semi-quantitative agreement between the experimentally observed displacement field and the
numerical result obtained as solutions to the wave equation encourages further investigation of the
subject toward the development of more quantitative NDT algorithm based on the present field theory.

2. Field Theory of Deformation And Fracture

2.1. Field Theory Overview

The present field theoretical approach has been derived from the concept of physical
mesomechanics. Panin et al. [36] are the first to introduce the concept of mesoscopic scale-level
to deformation dynamics and developed physical mesomechanics. In his paradigm of deformation,
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Panin characterizes plastic deformation as shear instability associated with the finite volume defined as
the deformation structural element (DSE). When a deformation enters the plastic regime, the solid gains
rotational degrees of freedom in the deformation dynamics and the DSE is the unit volume of material
rotations. Applying the concept of the (gauge) field theory [11], he formulates dynamics of plastic
deformation as the spatiotemporal behavior of the compensation (gauge) field that accommodates the
rotational degree of freedom in the linear (non-rotational) elastic theory.

The present field theory is an extension of Panin’s paradigm to all stages of deformation and
fracture. The wave characteristics of the deformation field for each stage of deformation can be
summarized, as follows. In the elastic regime, the solid responds to the external force with elastic
oscillatory motion that is transferred as a longitudinal wave known as the elastic compression wave.
This dynamics is described by Young’s modulus and Poisson’s ratio. In the principal coordinate system,
this leads to zero shear components in the distortion tensor. In the plastic regime two things happen.
First, the material loses the shear stability, and consequently, the shear components become active in
the distortion tensor. In the wave dynamics, this generates a transverse wave. Second, the material
exhibits energy damping that is associated with the nonlinear behavior of the velocity filed. This makes
the deformation irreversible, causing the longitudinal and transverse waves to decay. In the late
stage of plastic deformation (the pre-fracture stage), the material’s elasticity becomes nonuniform.
This induces dispersion (as the elasticity is not represented by a single constant), as is the case of the
classical dispersion observed in a string on an elastic medium [37] or in a granular chain [38]. When the
nonlinear term associated with the above-mentioned energy damping mechanism and the dispersion
term of the wave equation satisfy a certain condition, the decaying wave takes the form of a solitary
wave that travels carrying the stress energy. Fracture is characterized as the final stage of deformation
where the material loses the mechanism to dissipate the stress energy in the form of traveling wave.
Consequently, the mechanical wave, at this stage it is a solitary wave, becomes standing and unable to
carry the stress energy. As a result, the stress becomes motionless at a certain location of the material.
It follows that the generation of discontinuity becomes the only mechanism for the material to balance
the energy.

Figure 1 illustrates the gist of the present field theory. The theory postulates that a solid at
any stage of deformation possess local elasticity. The dynamics of local elasticity is represented by
the deformation gradient tensor Ui,j = ∂x′i/∂xj that describes Hooke’s law [39]. Here, x′i and xj
represent the coordinates of a reference point, expressed with the local coordinate system, after and
before the deformation occurs, respectively. Hooke’s law is orientation preserving [4], because the
applied force and the resultant stretch or compression are parallel to each other. In other words,
it describes translational dynamics. Continuum mechanics extends Hooke’s law by expressing
the compression (stretch) in orthogonal directions to the applied tensile (compressive) force with
a Poisson’s ratio. The deformation in the orthogonal directions are parallel to the corresponding
orthogonal axis, and hence the dynamics is still translational. The three elliptical shapes in Figure 1
represent three segments inside the same solid object that undergo elastic deformation in their own
orientation. Being a tensor describing an orientation preserving phenomenon, the deformation gradient
tensor for one segment cannot describe other segments unless they are oriented in the same direction.
Figure 1 illustrates the situation, where the three elastic segments are not oriented in the same direction.
This means that, in this situation, the elasticity of the three segments cannot be described by a common
(global) coordinate system.

Consider how we can describe the elasticity of all the segments commonly with a global coordinate
system. A solution is that we align all of the segments to the same orientation by introducing an
additional field. This type of field is referred to as a connection (gauge) field [11], as they logically
“connect” local dynamics. We can incorporate the dynamics that are associated with the connection
field by considering the effect as a potential [11]. In Figure 1, “Potential A” represents this potential.
In other words, we incorporate the dynamics associated with difference in the actual orientation among
the segments into the effect of the potential and interpret that the three segments are experiencing
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elastic deformation at the global level. In this fashion, we can formulate the nonlinearity in the
plastic regime by finding the dynamics that the connection field obeys. Note that the irreversibility of
plastic deformation is not formulated by the connection field. Instead, it is represented by the energy
dissipative part of the dynamics of the connection field. By applying the Lagrangian formalism to
the dynamics of the connection field, a set of field equations that are discussed in the next section
are derived.

A

B

A

B

Potential 𝑨

𝑈𝑖𝑗 =
𝜕𝑥′𝑖
𝜕𝑥𝑗

Figure 1. Concept underlying present field theory. Potential associated with connection field logically
connects local elastic deformations.

2.2. Field Equations

The detailed procedure to derive the field equations is described elsewhere [9,40,41]. In short,
it can be described as follows. The first step is to find the Lagrangian associated with the potential A.
As clear from its role to rotate the local segments so that they are all aligned in a common orientation
and, therefore, the dynamics can be formulaically expressed by Hooke’s law, A has a dimension of
displacement. In general, Lagrangian takes the form of kinetic energy minus potential energy. In the
present case, it is natural to interpret that the kinetic energy is associated with the temporal derivative
(the velocity) of A. On the other hand, the potential energy depends on the type of the dynamics,
as will be discussed below for elasto-plastic dynamics and fracture dynamics. The second step is to
derive the field equations by using the Lagrangian in the Euler-Lagrangian equation of motion for the
given dynamics. The active terms in the Euler-Lagrangian equation of motion also depends on the
type of the dynamics that the system experiences.

2.2.1. Elasto-Plastic Dynamics

A rigorous analysis that is based on the gauge theoretical approach identifies the Lagrangian
density for the elasto-plastic dynamics, as follows.

Lep =
ρv2

2
− Gω2

2
+

G
c

j0 A0 + Gji Ai (1)

Here, G is the shear modulus, c =
√

G/ρ is the phase velocity of the wave characteristics, and j0 and ji

are the temporal and spatial components of the charge of symmetry, respectively. v and ω are related
to A, as follows.

v = Ȧ (2)

ωk =
∂Aj

∂xi −
∂Ai

∂xj , (3)

Here, indexes i, j, k represent the spatial coordinate variables.
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The Euler–Lagrangian equation of motion in this case is given as follows.

∂t

(
∂L

∂(∂t Aµ)

)
+ ∂x

(
∂L

∂(∂x Aµ)

)
− ∂L

∂Aµ
= 0 (4)

where µ = t, x, y, z. Substitution of Equation (1) into Equation (4) yields the following field equations.

∇ · v = −j0 (5)

∇×ω = − ρ

G
∂v
∂t
− j (6)

Multiplication of G on both-hand sides allows us to rewrite Equation (6) in the following form.

ρ
∂v
∂t

= −G(∇×ω)− Gj (7)

The left-hand side of Equation (7) is in the form of mass times acceleration. Thus, Equation (7) can be
interpreted as an equation of motion. The first and second terms on the right-hand side of Equation (7)
can be interpreted as the transverse (shear) force and longitudinal force acting on the unit volume that
is represented by density ρ (see Chapter 5 of ref. [9]). Analysis indicates that the longitudinal force
takes the following forms in the pure elastic and pure plastic dynamics, respectively.

Gje = −(λ + 2G)∇(∇ · ξ) (8)

Gjp = σ0ρ(∇ · v)v (9)

Here, λ is the Lamé’s first parameter, σ0 is a material constant (See Chapter 5 of ref. [9]), ξ is the
displacement vector. In Appendix B, conceptual images of the shear force that are represented by
G∇×ω and the longitudinal fore represented by (λ + 2G)∇(∇ · ξ) are illustrated. (ξ appearing on
the right-hand side of Equation (8) is the displacement vector associated with elastic force law and v on
the right-hand side of Equation (9) is the temporal derivative of vector potential A whose dimension is
displacement. Strictly speaking, the physical meaning of displacement A is different from ξ. However,
recent theoretical consideration indicates that, formulaically, we can replace A with ξ and interpret it
as the total displacement vector (see Appendix C). Hereafter in this paper, ξ is used to represent the
displacement vector and v = ξ̇).

Equations (8) and (9) indicate that the form of the longitudinal force term differentiates plastic
deformation from elastic deformation. When the deformation is elastic, the longitudinal force is
proportional to the differential displacement ∇ · ξ, which is interpreted as the three-dimensional
stretch or compression of a unit volume. When the deformation is plastic, the longitudinal force is
proportional to the velocity through a variable coefficient (∇ · v). This relation can be interpreted as
the proportionality is not connected by a constant but a variable coefficient. These two longitudinal
forces are interpreted as material’s resistant force; with the elastic dynamics the unit volume resists
the external force exerted by the neighboring unit volume via elastic force (8), and with the plastic
dynamics the unit volume resists the external force via the velocity damping force (9). The former
force induces traveling waves and the latter force causes the wave to decay. More will be discussed
regarding the wave dynamics below.

2.2.2. Fracture Dynamics

The Lagrangian for the fracture dynamics is as follows.

Lep =
ρv2

2
− Gω2

2
+

G
c

j0 A0 + Gji Ai +
E
2

(
∂2

xs ξ
)2

(δxs∆xs) (10)
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As compared with Lagrangian density (1), expression (10) has the extra term at the end of the
right-hand side. This term represents the potential energy that is associated with the secondary spatial
derivatives of displacement. Because the first-order derivative of displacement is strain, this term
represents the potential energy associated with the spatial gradient of the strain. In the pre-fracturing
stage, deformation becomes so nonuniform that the differential strain generates potential energy.
In other words, this term represents how nonuniform the deformation field becomes.

In this case, since the Lagrangian density has a term depending on the second-order spatial
differential term, the Euler–Lagrangian equation of motion has the extra term.

∂t

(
∂L

∂(∂t Aµ)

)
+ ∂x

(
∂L

∂(∂x Aµ)

)
− ∂xx

(
∂L

∂(∂xx Aµ)

)
− ∂L

∂Aµ
= 0 (11)

Tensile experiments [14–17] indicate that under the pre-fracture condition, (∇ · v) is one-
dimensional and oriented at approximately 45◦ to the tensile axis. Under the one-dimensional
condition, the substitution of Equation (10) into Equation (11) yields the following field equation
corresponding to (7).

ρ
∂v
∂t

= −G(∇×ω)
λ + 2G

ρ

dξs

dxs
− σ0ρ

dvs

dxs
vs − (Eδxs∆xs)

(
∂4

xs ξ
)

(12)

Here, xs is the axis set along the one-dimensional (∇ · v). Accordingly, dξs/dxs and dvs/dxs in
the first and second terms on the right-hand side are the one-dimensional form of (∇ · ξ) and (∇ · v)
appearing in Equations (8) and (9), respectively. It is reasonable to assume that a fracturing unit volume
does not exert elastic resistant force proportional to the volume expansion. When the volume is about
to fracture, the resistant force does not increase as the volume stretches. Instead, the surrounding unit
volumes that border the fracturing unit volume at xs and xs + ∆xs exert elastic force proportional to
the local stretch occurring within the small region expressed by δxs (in other words, the strain energy
is associated with the differential strain, not strain. See Figure 2 and the associated text). The third
term on the right-hand side of Equation (12) represents this force. Thus, we can set the first term on
the right-hand side of Equation (12) to null and rewrite the equation, as follows.

ρ
∂v
∂t

= −σ0ρ
dvs

dxs
vs − (Eδxs∆xs)

(
∂4

xs ξ
)

(13)

As will be discussed later in this paper this assumption is consistent with the experiment.

∆𝑥

𝛿𝑥𝛿𝑥

Figure 2. Conceptual illustration of potential energy associated with gradient of normal strain.
∆x represents width of harder portion and δx represents width of softer portion.

2.3. Conditions for Deformation Stages and Wave Equations

2.3.1. Linear Elastic Stage

When the deformation dynamics is linear elastic, Hooke’s law and Poisson’s effect are the only
governing laws. Under this condition, the dynamics can be expressed in one coordinate system for
the entire object. In terms of the concept that is depicted by Figure 1, there is no distinction between
the global and local coordinate systems. In this situation, rotation ω represents rigid-body rotation,



Appl. Sci. 2020, 10, 5524 8 of 30

as defined by continuum mechanics. The entire entity (in the present context the block for which
stress and strain are argued) undergoes a common rotation. Therefore, its spatial dependence is null.
The force law is described by means of elastic force proportional to the local stretch or compression.
Thus, we can express the linear elastic condition, as follows.

∇×ω = 0 (14)

Gj = Gje = −(λ + 2G)(∇ · ξ) (15)

When the principal axis coordinate system is used to express the dynamics, the corresponding
stress and strain tensors are diagonal. They have only normal components and all shear components
become null. This is contrastive to the elasto-plastic dynamics, as discussed in the following section.
In Appendix D, a short argument is made to show that the same physical elastic deformation raises
shear components in the stress and strain tensors when a non-principal axis coordinate system is used.

2.3.2. Elasto-Plastic Stage

The ∇× ω term in field Equation (6) represents shear elastic force. When this force is active,
the deformation becomes nonlinear at the global level. Accordingly, in principle, we can define a
nonlinear elastic condition. However, tensile experiments [13] indicate that, when the deformation
shows a nonlinear behavior represented by ∇×ω 6= 0 (the shear component becomes non-zero when
expressed in the principal coordinate system), the stress–strain curve exhibits irreversible stretch.
Thus, it is reasonable to combine the nonlinear elasticity and plasticity. Accordingly, we express the
elasto-plastic condition, as follows.

∇×ω 6= 0 (16)

Gj = Gjp = σ0ρ(∇ · v)v (17)

The meaning of condition (16) is straightforwardly understood by recalling that Hooke’s law is
orientation preserving, as mentioned earlier in this paper. When different blocks start to undergo
linear elastic deformation in their own orientations, as schematically illustrated in Figure 1, it becomes
impossible to describe the dynamics at the global level based on an orientation-preserving force law.
This is when the vector potential A plays its role as the orientation aligner. Referring to Figure 1,
we can argue ∇×ω, as follows. Assume that the plane that is illustrated in Figure 1 is the xy plane
of a Cartesian coordinate system. The rotation vector ω for each of the three blocks has only a z
component. Under this situation, with the negative sign in front, the force term −G∇×ω in equation
of motion (7) can be interpreted as the elastic resistive force that the material exerts at the boundary of
two neighboring unit volumes (see Figure A2a) to oppose the rotational deformation. This resistive
force has in-plane components, as shown on the right-hand side of Equation (18), because the rotations
that the force opposes are around an out-of-plane axis.

∇×ω =
∂ωz

∂y
î− ∂ωz

∂x
ĵ (18)

While condition (16) illustrates the non-linear elastic resistive behavior of plasticity, condition (17)
illustrates the linear energy-dissipative behavior of plasticity. Being proportional to the particle velocity
v, it represents that the material exerts a velocity-damping, longitudinal force as an energy dissipative
resistive force. Importantly, the damping coefficient (∇ · v) is a variable depending on the divergence
of the particle velocity vector field. The quantity (∇ · v) can be interpreted as the rate of the local
volume expansion. This variable nature of the damping coefficient has a significant meaning in the
late stage of plastic deformation. The higher the volume expansion rate the greater the damping effect.
This causes the self-driven nature of the evolution to fracture at this stage of deformation; the higher
the volume expansion rate, the more energy dissipative the dynamics becomes. Hence, this makes
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the energy balance with the external load tend toward irreversible energy consumption as opposed to
recoverable elastic energy. Note that this damping force can be interpreted as the energy dissipative
resistive force that the material exerts making the resultant deformation irreversible.

2.3.3. Fracturing Stage

When a unit volume is fracturing, the elastic force terms become inactive. It is possible that the
velocity damping force is still active in the one-dimensional form used in Equation (13). Thus, we can
express the fracture condition, as follows.

∇×ω = 0 (19)

Gjs = σ0ρ
dvs

dxs
vs (20)

The first fracture condition (19) indicates that when the fracture condition is satisfied the material
does not exert elastic resistive force. The second fracture condition (20) indicates that the material exerts
energy dissipative force in response to the external load. The second condition is further classified into
recoverable fracture and final fracture conditions.

Recoverable fracture condition : Gjs 6= 0, vs 6= 0 (21)

Final fracture condition: Gjs 6= 0, vs = 0 (22)

In conditions (21) and (22), Gjs 6= 0 ensures Newton’s third law. The energy dissipative force
Gjs is the reaction to the external force. Condition (22) is interpreted as the final fracture condition
because of the following argument. In condition (20), if the left-hand side is non-zero and vs = 0 on
the right-hand side, it follows that dvs/dxs → ∞. This condition means that the particles diverge
at the infinite rate from the unit volume, which apparently indicates the generation of material
discontinuity. It is interesting to note that material fracture resembles electric discharge of gasses [42].
More specifically, recoverable fracture resembles spark discharge [43] and final fracture resembles arc
discharge. Spark discharge in gas media is similar to arc discharge, but it does not cause electrical
breakdown of the gas [44]. These resemblances between fractures and electric discharges are not
coincidence. Rather, they come from the similarity of the above field equations to Maxwell’s equations
of electrodynamics [45]. Appendix E describes spark discharge and discusses the similarity between
the present deformation dynamics and Electrodynamics.

2.4. Wave Equations

The wave dynamics of the differential displacement originates in the equation of motion. In this
section we derive the wave equation for each stage of deformation.

2.4.1. Linear Elastic Stage

Using linear elastic conditions (14) and (15) and taking the divergence of the resulting equation,
we can rewrite the equation of motion (7), as follows.

∂2(∇ · ξ)
∂t2 =

λ + 2G
ρ
∇2(∇ · ξ) (23)

Equation (23) is the well-known equation of compression waves.

2.4.2. Elasto-Plastic Stage

Substituting Equation (2) for dv/dt, Equation (3) for ω (with the replacement of A with ξ) and
using the mathematical identity∇× (∇× ξ) = ∇(∇ · ξ)−∇2ξ, we can eliminate ω from Equation (7)
and rewrite it, as follows.
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∂2ξ

∂t2 −
G
ρ
∇2ξ = −G

ρ
∇(∇ · ξ)− Gj (24)

Using both Equations (8) and (9) for Gj , we can further rewrite Equation (24), as follows.

∂2ξ

∂t2 + σ0(∇ · v)
∂ξ

∂t
− G

ρ
∇2ξ = −G

ρ
∇(∇ · ξ) + λ + 2G

ρ
∇(∇ · ξ) (25)

Equation (25) can be viewed as the equation of a wave that travels with the phase velocity
√

G/ρ

and the damping coefficient σ0(∇ · v). The plastic longitudinal force appears as the damping term on
the left-hand side. The right-hand side of Equation (25) can be viewed as the source term of the wave
equation. Here, the first term originates from the elastic transverse force G(∇×ω) and the second
term is the elastic longitudinal force (8). Because both terms have ∇(∇ · ξ), we can combine the two
terms, which indicates that, when the elastic and plastic dynamics coexist, the overall elastic constant
is λ + G. If the dynamics is purely elastic, the elastic constant is λ + 2G, higher than the elasto-plastic
case by G. Thus, introducing the elastic factor α (0 ≤ α ≤ 1), we can rewrite Equation (25) for the
elasto-plastic dynamics, as follows.

∂2ξ

∂t2 + σ0(∇ · v)
∂ξ

∂t
− G

ρ
∇2ξ = −G

ρ
∇(∇ · ξ) + α

λ + 2G
ρ
∇(∇ · ξ) (26)

In the elasto-plastic regime, the higher the elastic factor α, the more effective the elastic longitudinal
force is. Note that, for the purely elastic dynamics, condition (14) drops the third term on the left-hand
side and the first term on the right-hand side, and condition (15) drops the second term on the left-hand
side and set α = 1 (because Gj = Gje with Gjp = 0). The application of divergence (∇·) to the resulting
equation yields the linear elastic wave Equation (23).

2.4.3. Fracturing Stage

Using fracture criterion ∇×ω = 0, one-dimensional ∇ · v and

∂ξs

∂xs
=

∂ξs

∂t
dt

dxs
=

1
cs

∂ξs

∂t
, (27)

we can put Equation (12) in the following form.

ρ(∂tvs) + (σ0ρ)vs(∂xs vs) +
Eδxs∆xs

cs
(∂3

xs vs) = 0 (28)

Here, cs is the wave velocity in the direction of xs axis. Equation (13) is in the form of a wave
equation known as the Korteweg-de Vries (KdV) equation [19] that has a solitary wave solution of the
following type.

vs = a sech2 (b(xs − cwt)) (29)

Here a is the amplitude, b is a shape constant and cw is the propagation velocity of the solitary wave.
The substitution of solution (29) into the wave Equation (28) yields the following relations.

cw =
σ0a
3

(30)

b =
(σ0a

3

)√ ρ

4Eδxs∆xs
= cw

√
ρ

4Eδxs∆xs
(31)

A solitary wave, in general, is formed when the nonlinearity and dispersion interact with each
other and, consequently, the wave form becomes unchanged as the wave travels [21]. It is interesting
to discuss the sources of nonlinearity and dispersion in Equation (28). On the left-hand side of this
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equation, the second term represents nonlinearity and the last term dispersion. The nonlinear term
originates from the energy damping longitudinal force (9), σ0ρ(∇ · v)v. This force is apparently
nonlinear with respect to the particle velocity v. As discussed in Appendix E, this term is analogous to
the Ohmic loss in a conductive gas medium, which takes the form proportional to the product of the
electric charge density ρ = ε(∇ · E) and the current density J = σeE.

The dispersive term originates from the last term of the Lagrangian density expression (10),
which represents the potential energy that is associated with the spatial gradient of the strain. In a
linear elastic medium, the normal stress is the product of a Young’s modulus and normal strain,
Eεxx, and the potential energy is determined by the normal strain and the normal stress in this
form. When the gradient of the strain becomes significant, the material is no more a continuum
represented by a single elastic modulus (if so, the stretch would be uniform). Under a certain condition,
the material consists of a hard portion of width ∆x sandwiched by softer portions of width δx [41].
Figure 2 illustrates the situation This situation resembles a string on an elastic medium [37] as the
material is represented by two elastic media or a granular chain [38], both are classical examples of
dispersive system.

3. Experimental and Numerical Methods

In this and the next sections, we examine the above-discussed conditions of deformation stage in
conjunction with the wave characteristics of differential displacement via experiments and numerical
analysis. The experiment has been conducted for a plate metal specimen with a monotonic tensile
load. An optical interferometric setup recorded the differential displacement field of the specimen
continuously until the specimen broke. The above-derived wave equations indicate the type of waves
in each stage. However, in realistic situations the boundary conditions are not simple and the actual
solution cannot be easily obtained. Thus, in this study, we constructed a simple Finite Element Model
(FEM) using the elasto-plastic wave equation as the governing equation, and ran the FEM under a
monotonic loading condition. Here, we will compare the resultant differential displacement field with
the corresponding experimental results.

3.1. Experimental

Figure 3 illustrates the experimental arrangement. An aluminum alloy plate specimen was
mounted on a test machine for a tensile load. An optical interferometric technique, known as the
Electronic Speckle-Pattern Interferometry (ESPI), was used to record the differential displacement
field. Two sets of optical interferometers were configured. The first set was sensitive to the in-plane
displacement component perpendicular to the tensile axis and the second set is sensitive to the
in-plane displacement component parallel to the tensile axis. The laser beam (wavelength 660 nm)
was split into two beams by a 50% transmissive beam splitter for each interferometer and the two
beams were recombined on the specimen surface. The recombined image (the interferogram) was
a superposition of two speckle fields formed by the respective beams. The ESPI setup recorded the
interferogram continuously with a preset time interval. The CCD camera captured the interferogram
of the perpendicular and parallel components individually in order to separate the perpendicular and
parallel components. The captured images were sent to computer memory where the image taken
at a time step was subtracted from the image taken at a later time step. The subtracted image frame
exhibits the so-called fringe patterns that represent contours of differential displacement components.
More details about this ESPI technique can be found elsewhere [33–35].
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Figure 3. In-plane sensitive Electronic Speckle-Pattern Interferometric setup.

3.2. Finite Element Model

In a Cartesian coordinate system in two dimensions, we can express Equation (25), as follows.

∂2ξx

∂t2 + σ0(∇ · v)
∂ξx

∂t
− G

ρ

(
∂2ξx

∂x2 +
∂2ξx

∂y2

)
= −G

ρ

∂

∂x

(
∂ξx

∂x
+

∂ξy

∂y

)
+ α

(λ + 2G)

ρ

∂

∂x

(
∂ξx

∂x
+

∂ξy

∂y

)
(32)

∂2ξy

∂t2 + σ0(∇ · v)
∂ξy

∂t
− G

ρ

(
∂2ξy

∂x2 +
∂2ξy

∂y2

)
= −G

ρ

∂

∂y

(
∂ξx

∂x
+

∂ξy

∂y

)
+ α

(λ + 2G)

ρ

∂

∂y

(
∂ξx

∂x
+

∂ξy

∂y

)
(33)

Using Poisson’s ratio ν, we can rewrite the volume expansion term appearing on the right-hand
side in the following form. Here, y is chosen to be the axis along which an external load is applied to
the specimen.

∂ξx

∂x
+

∂ξy

∂y
= −ν

∂ξy

∂y
+

∂ξy

∂y
(34)

Using Equation (34), canceling common terms from the left and right-hand sides and further
simplifying several terms, we can rewrite Equations (32) and (33), as follows.

∂2ξx

∂t2 + σ0(∇ · v)
∂ξx

∂t
− G

ρ

∂2ξx

∂y2 = −G
ρ

∂2ξy

∂x∂y
+ α

(λ + 2G)(1− ν)

ρ

∂2ξy

∂x∂y
(35)

∂2ξy

∂t2 + σ0(∇ · v)
∂ξy

∂t
− G

ρ

∂2ξy

∂x2 =
Gν

ρ

∂2ξy

∂y2 + α
(λ + 2G)(1− ν)

ρ

∂2ξy

∂y2 (36)

Equation (36) indicates that the longitudinal displacement component travels as longitudinal and
transverse waves. The transverse wave characteristics comes from the ∂2ξy/∂x2 term on the left-hand
side of the equation. The longitudinal wave characteristics comes from the first term on the right-hand
side. It is important to note that the quantities multiplied to the secondary spatial derivative (∂2ξy/∂y2)
term on the right-hand side represents the phase velocity of the longitudinal wave. It depends on the
shear modulus G, the Poisson’s ratio ν, the density ρ, the degree of the elastic force contribution α,
and the Lamé’s parameter λ. The phase velocity of the transverse wave is determined by the quantity
multiplied to ∂2ξy/∂x2 term on the left-hand side. Hence, the transverse wave velocity only depends
on G and ρ.

The transverse component ξx is in a different situation according to Equation (35). While the
secondary spatial derivative (∂2ξx/∂y2) term on the left-hand side generates transverse wave
characteristics, the right-hand side of this equation does not cause wave dynamics, as it does not
contain the secondary spatial derivative of ξx. Instead, the entire right-hand side is a function of the
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secondary spatial derivative of ξy. This indicates that the spatiotemporal behavior of the transverse
component depends on that of the longitudinal component.

Thus, we built a two-dimensional FEM using a Partial Differential Equation (PDE) solver in the
coefficient form [46], and solved the pair of wave Equations (35) and (36). Figure 4 illustrates the
geometry of the numerical model. The load application was simulated by making the entire Boundary 1
displaced in the positive x-direction at a constant rate. Boundary 2 and 3 were the free boundaries.
Boundary 4 was fixed in both x and y directions. To assimilate previous experiments [13], we used the
set of parameters shown in Table 1. This combination of G and ρ yields the transverse wave velocity of
10 cm/min., which is of the same order as the experimental values reported in ref. [13]. The pulling
rate of 35 µm/s is also of the same order as these experiments.

1

2

3

4 𝜉𝑥 𝜉𝑦

𝑥

𝑦

(1,0) (1,2)

(0,2)(0, 0)

Figure 4. Finite Element Model used in the present study. The numbers 1 – 4 placed near the sides of
rectangle denote boundary 1 – boundary 4.

Table 1. Elastic conditions.

σ0 G (N/m2) λ (N/m2) ρ (kg/m3) ν α Pulling Rate (µm/s)

1× 10−8 2.8× 10−6 4.2× 10−6 1 0.3 1 35

4. Results and Discussions

4.1. Transition from Linear Elastic to Elasto-Plastic Regime

Figure 5 shows the sample fringe patterns obtained with the use of the experimental arrangement
(Figure 3) along with the stress-strain characteristics. The specimen was a dog-bone shaped plate
of 25 mm in the gauge length, 10 mm in the gauge width and 5 mm in thickness. The material
was an industrial Al-Zn-Mg-Cu alloy AA 7075 [47,48]. The base material was solid-solution treated
and hardened up to the peak hardness by non-scale precipitates. After being cut into the final size,
the specimen was over-aged at 400 ◦C for 30 min., so that the matrix was softened through coarsening
of the precipitates. These treatments were performed to make the alloy macroscopically homogeneous.
The specimen was pulled at a constant rate of 1 mm/min.

In Figure 5, the fringe images are paired being labeled u and v. Here, u and v represent
the horizontal and vertical differential displacement u = dξx and v = dξy with reference to
Figure 3. The number shown above each pair of images indicates the point on the stress–strain
curve. The numbers match those indicated in the stress-strain curve. Apparently, (1) and (2) are in the
linear elastic regime of the stress-strain curve, (3)–(5) are in the pre-yield regime, and (6)–(8) are in the
post-yield regime. The dark fringes observed in each regime can be argued in conjunction with the
linear elastic and elasto-plastic conditions that are discussed above.

(1)–(2)

The u fringes are vertical and linear indicating that ∂ξx/∂y = 0. The v fringes are horizontally
parallel at an approximately constant interval, indicating that ∂ξy/∂y =constant and ∂ξy/∂x = 0.
All of these conditions are consistent with linear elastic condition (14), i.e., shear strain is zero and
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∇×ω = 0. The number of the u fringes is less than the v fringes in accordance with Poisson’s ratio.
The number of the u fringes is approximately one over 10 mm and the number of the v fringes is 7 over
25 mm. The Poisson ratio can be estimated as (1/10)/(7/25) = 0.35. This value is close to a literature
value of 0.33 [48].

(3)–(5)

At this stage, the u and v fringes start to show shear strain. The slant features seen in both fringes
indicate ∂ξx/∂y 6= 0 and ∂ξy/∂x 6= 0, hence elasto-plastic condition (16) is satisfied. Notice that the u
fringes are much more horizontal and v fringes are much more vertical as compared with (1) and (2).
The u fringes at stage (5) clearly indicate the semi-circular feature (near the right-upper shoulder) that
represents a transverse wave, as will be discussed shortly. It is likely that the region near this shoulder
undergoes plastic deformation at a higher degree than the rest of the specimen. This is reasonable
because the shoulder part of a dog-bone specimen is a spot of stress concentration in general.

(6)–(8)

The u fringes are vertical and slightly curved, and the v fringes are approximately horizontally
parallel like the elastic stages (1) and (2). The u fringe pattern indicates that the deformation is still
plastic satisfying condition∇×ω 6= 0, but the degree of the plastic deformation is much less than that
observed near the right-upper shoulder in (5).

While the v fringes display the same general pattern (horizontally parallel) as the elastic stages,
the number of fringes is much higher than the elastic stages. Because the fringe patterns are formed
with the same time interval and the pulling rate is constant, the total elongation at this stage is the
same as the elastic stage. The much higher number of v fringes indicates that the specimen undergoes
compression and stretch. This can be explained, as follows. The v component of the differential
displacement exhibits longitudinal wave characteristics as in the elastic stage. However, because the
elastic constant is much lower than before the yield point, the wave velocity, which is in the form of
the square root of the elastic constant divided by the density, is significantly lower. The frequency of
the longitudinal wave is determined by the external load and, therefore, more or less the same as the
elastic stage. Consequently, the wavelength is significantly shorter than the elastic stage. This situation
results in the higher fringe density. We can intuitively understand that the lower elastic constant
shortens the wavelength by imagining pulling two springs of different strengths. First, pull one end of
the stronger spring holding the other end stationary. The spring is stretched uniformly. Every part of
the spring along its length is elongated at the same time. Now, pull the weaker spring in the same
fashion at the same pulling speed. It is easy to imagine that the part of the spring closer to the moving
end is stretched first and then the stretching pattern moves towards the other end along the length of
the spring. Moreover, as the next section is stretched the first section tends to be compressed due to
the recoiling motion of the spring. Consequently, we see a higher number of compression and stretch
patterns. In a solid material, the same feature can be observed. The pattern of compression and stretch
represents longitudinal wave characteristics. It is well known that the longitudinal wave velocity is the
square root of the ratio of the Young’s modulus over density. The longitudinal wave travels at a lower
velocity in a softer (less stiff) material. Because the wavelength is proportional to the wave velocity,
the softer the material the shorter the wavelength. If the wavelength is shorter for a given material
length, a higher number of waves are excited by the pulling action. The higher fringe density that is
discussed above corresponds to a lower stiffness.
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(1) (2) (3) (4) (5) (6) (7) (8)

(8)(7)(6)

(3) (4)
(5)

(1) (2)

u         v  

(a)

(b)

Figure 5. (a) Stress–strain curve and (b) fringe images representing contour of differential displacement
in (1), (2): Elastic stage (Equations (14) and (15)); (3)–(5): pre-yield stage and (6)–(8) post-yield stages
(Equations (16) and (17)). Numbers that are placed above fringe images correspond to numbers in
stress-strain curve. For each pair of fringe images left is u-fringes and right is v-fringes.

4.2. Propagation of Elasto-Plastic Wave

Figure 6 shows the propagation of u and v fringe patterns observed in post-yield stages of
deformation in the same experiment, as in Figure 5. The three rows of u and v fringe patterns are
formed successively with the same interval corresponding to an increment of 0.045% in the normal
strain εxx. Each row represents a specific stage of deformation as indicated as “stage 1” through
“stage 3” in the stress–strain curve at the top of Figure 6.

Stage 1 (2.19% < εxx < 2.41%)

In stage 1, both u and v patterns travel upward at a constant rate. The u pattern is characterized by
two half-circles located at the same horizontal position. The pair of half-circles occupies approximately
a quarter of the vertical length of the specimen, and moves upward without changing their shapes.
The v pattern is characterized by concentrated horizontal fringes located at approximately the same
vertical position of the specimen as the pair of half-circles in the u pattern. The concentrated fringes
move together with the pair of the half-circles in the u pattern.

Figure 7 shows numerically obtained differential displacement patterns that result from the FEM
computation conducted with the parameters listed in Table 1. The patterns labeled u correspond to
the experimental u pattern discussed above, and the ones labeled v correspond to the experimental v
patterns. The numerical results show qualitative agreement with the experimental patterns that are
shown in Figure 6 in the following sense. (a) the u pattern consists of a pair of half-circles that move
upward along the length of the specimen and (b) the v pattern consists of partially concentrated fringes
that move in the same direction as the pair of half-circles in the u pattern. The FEM simply solves
the wave equations for the horizontal (u) and vertical (v) components of the differential displacement
without using a deformation model (except for the Poisson’s effect). The agreement between the
experimental and numerical results proves that the u and v fringe patterns observed in stage 1
represent the longitudinal and transverse waves. At t = t5, the numerical u pattern shows another
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pair of half-circles that are not seen in the experimental result. It is not clear why the second pair does
not appear in the experiment.

Stage 1 (moving, symmetric)

Stage 2 (moving, asymmetric)

Stage 3 (stationary)

Stage 1

Stage 2
Stage 3

u v

Figure 6. Change in wave motion. For each stage pairs of fringe patterns are arranged.

u

v

t =      t1 t2 t3                    t4                  t5 

Figure 7. Propagation of Finite Element Modeled (FEM) u and v wave-like pattern.

Stage 2 (2.86% < εxx < 3.08%)

In this stage, the u pattern still shows a pair of half-circles moving upward on the specimen.
However, the half-circles are not horizontally symmetric, and the pair of half-circles are divided
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by a group of approximately linear and slanted fringes. The slanted fringes indicate a shear band.
The reason for this asymmetry is not fully understood at this time. However, it is interesting to
note that the linear pattern possibly represents strong shear deformation and, within this region,
the fracture condition (19) is satisfied in the recoverable mode (21). Perfectly-linear fringes make ω

defined by Equation (3) a constant, and therefore ∇×ω = 0. It is likely that the formation of the slant
linear pattern (called the shear band) displaying the recoverable fracture condition is responsible for
the sharp stress drop observed in the stress-strain curve in Figure 6. This type of sharp stress drop
followed by immediate recovery is known as the serration. Propagation of the half-circle pair repeats
a number of times between Stage 2 and Stage 3, where some of them exhibit the symmetric feature,
like Stage 1, and others exhibit the asymmetry feature, like Stage 2. The symmetric and asymmetric
features alternate in a random fashion. Although clear correlation has not been found between the
serration and the formation of shear band at this time, this alternating behavior of the symmetric and
asymmetric patterns involving the shear band formation makes us believe that the establishment of
the recoverable fracture condition is closely related to the serration.
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Figure 8. (a) Shear band propagation speed as a function of time for different pulling rates. (b) Typical
Electronic Speckle-Pattern Interferometry (ESPI) image showing a shear band.

The shear band (the slanted linear fringe pattern) can be interpreted as displaying the solitary wave
solution (29). As mentioned above and confirmed in a number of experiments [14–16], the propagation
speed of these solitary waves decreases with the development of deformation and the final fracture
occurs when the wave becomes stationary. Thus, the slanted linear fringes can be used as an early
indicator of deformation behavior in conjunction with the final fracture. The initial propagation
speed is proportional to the pulling rate of the specimen. This proportionality has been qualitatively
explained based on the field theory [18]. An interesting aspect that is related to this is that the temporal
behavior of the decrease in the propagation speed is independent of the pulling rate and obeys a single
function of time. Figure 8 [49] shows the propagation speed of shear bands observed in the same
type of experiment as above. The material was an aluminum alloy plate (A5083) [47]. The shear band
propagation speed is plotted as a function of the elapsed time from the beginning of the tensile loading
for five different pulling rates, 3, 1, 0.5, 0.3, and 0.1 mm/min. Table 2 lists the onset times (when the
shear band appears for the first time since the beginning of the tensile loading), the total elongation
computed as the product of the pulling rate and the onset time for each pulling rate, and the average
normal strain evaluated by dividing the total elongation by the gauge length of 25 mm. Apparently,
the shear band starts to appear at different total elongations (i.e., the averaged strain) among different
pulling rates.

On the other hand, as indicated by the trend line that is drawn in Figure 8, a single function fits
the data for all of the five pulling rates. Numerical curve fitting indicates that a function in the form of
A/(t + B) fits the best. Here, A and B are constants and t is the elapsed time. This particular form of
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the function is of great interest, because the average speed of mobile dislocations, < vmd >, can be
expressed, as follows [1].

sinsinglesi < vmd >=
L

(t + ts)
(37)

Here, L is the average distance between neighboring barriers and ts is the interaction time with each
barrier. The observed good fitting indicates that the shear band is formed in a process that is closely
related with mobile dislocation’s dynamics and its propagation speed is strongly related to the amount
of the mobile dislocations. This argument is consistent with the prevailing theory regarding the
micromechanism [50–56]. It is also consistent with the above-mentioned (see the paragraph under
Equation (18)) self-driven nature of the evolution of deformation to fracture in association with an
increase in the volume expansion rate (∇ · v). The generation of dislocations forms a new source of
(∇ · v).

Table 2. Various quantities at onset of shear band propagation. Quantities in the top three rows
are found directly from experimental data. Quantities in the bottom three rows are evaluated based
on theories.

Pulling Rate (mm/min) 3 1 0.5 0.3 0.1

Onset time (s) 6.6 31.1 150.1 456.2 2415
Elongation (mm) 0.55 0.51 1.25 2.28 4.02
Normal strain (%) 2.2 2.0 5.0 9.1 16.1

Dislocation velocity (cm/s) 1.92 7.16×10−1 1.77×10−1 6.03×10−2 1.16×10−2

Dislocation density (cm−2) 3.6×104 3.3×104 6.6×104 1.2×105 2.0×105

Solitary wave amplitude (mm/min) 11.5 4.29 1.06 0.36 0.07

The function A/(t + B) has the best fit to the experimental data in Figure 8 when A = 280 mm
and B = 8 s. As the average distance between neighboring barriers for mobile dislocations, 280 mm is
unrealistically long. However, notice that the value of this function remains unchanged if the same
factor m is multiplied to L, t and ts as mL/(mt + mts). This allows for us to make the following
hypothesis, i.e., a shear band is formed every time mobile dislocations interact with barriers m times.
With this hypothesis, we can estimate the average velocity of mobile dislocations at the onset of shear
band propagation by substituting L = 280, ts = 80, and the onset time that is shown in Table 2 for t
into the < vmd > expression (37). The fourth row of Table 2 lists the value of < vmd > estimated in this
fashion for all puling rates.

The dislocation density can be related to the average velocity of mobile dislocation, as follows
(See Section 2.3 Dislocation Velocity on p. 17 of ref. [1] ).

n =
γ̇ex

bB < vmd >
(38)

Here, n is the dislocation density γ̇ex is externally imposed rate of deformation by the tensile machine
and bB is the magnitude of Burger’s vector. Equation (38) indicates that the average velocity of mobile
dislocations decreases in proportion to the mobile dislocation density. This explains the decrease in the
shear-band propagation velocity with the passage of time for a given pulling rate.

Using the above estimated < vmd >, the average deformation rate (the tensile machine’s pulling
rate divided by the gauge length of the specimen, 25 mm ) and 0.286 nm for bB (see p. 83 of ref. [47]),
we can estimate the dislocation density at the beginning of the shear band propagation for each pulling
rate. The results are shown in the fifth row of Table 2. The dislocation density for pulling rates of 3
and 1 mm/min. is close to the initial (before deformation) dislocation density of copper discussed by
Suzuki et al. (See p. 25 of ref. [1]). When the pulling rates are lowered to 0.5, 0.3, and 0.1 mm/min.,
the onset dislocation density increases in this order by factor of two to five. These observations are
consistent with the third row of Table 2, which indicates that the onset normal strain also increases in
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this order. Figure 9 explicitly illustrates that the onset normal strain is approximately equal to the yield
strain for pulling rates of 3 and 1 mm/min. and that the onset normal strain lags behind the yield
point for pulling rate of 0.3 and 0.1 mm/min., where the amount of lag is greater for 0.1 mm/min.

(a) 3 mm/min (b) 1 mm/min

(d) 0.1 mm/min(c) 0.3 mm/min

Figure 9. Shear band pattern location on specimen and loading curve. Pulling rate is (a) 3.0 mm/min,
(b) 1.0 mm/min, (c) 0.3 mm/min and (d) 0.1 mm/min.

With the hypothesis that a solitary wave represents a shear band, we can discuss the parameters
used in the solitary wave solution (29) semi-quantitatively. The quantity σ0 appearing in the solitary
wave velocity expression (30) has been found in the neighborhood of 300 (See p. 179 of ref. [9]). Using
the onset shear band velocity in Figure 8 and σ0 = 300, we can estimate the solitary wave amplitude a
for each pulling rate, as follows.

a =
3cw

σ0
=

3cw

300
(39)

The sixth row of Table 2 shows the value of the solitary wave amplitude evaluated in this fashion
in the unit of mm/min. It is seen that the solitary (velocity) wave’s amplitude is of the same order as
the pulling rate, which is understandable because the particle velocity is caused by the pulling action of
the tensile machine. The observed solitary wave velocity is a factor of four higher than the pulling rate
at pulling rates of 3 and 1 mm/min., a factor of two higher at pulling rate 0.5 mm/min., approximately
equal to at pulling rate 0.3 mm/min. and 30% lower at pulling rate 0.1 mm/min. We speculate that
the reason why the peak particle velocity (the amplitude of the solitary wave) can be higher than the
pulling rate is that the formation of a shear band involves a snapping motion of the material. On the
formation of a shear band, the material experiences a recoverable partial fracture and this causes the
particles on the opposite sides of the partial fracture to recoil sharply, as if a stretched spring breaks.
This speculation is consistent with the instantaneous stress drop accompanied by the formation of
a shear band, as a number of authors [54–57] observed. The reduction in the amplitude of solitary
wave relative to the pulling rate indicates that the increase in the mobile dislocation density lowers the
amplitude of the solitary wave (because the onset mobile dislocation density is higher for the lower
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pulling rate). The precise mechanism underlying the relation between the solitary wave amplitude
and the mobile dislocation density has not been understood at this time.

Solitary wave solution (29) indicates that the width of solitary wave is inversely proportional
to parameter b. In refs. [14,57], the authors observed that the shear band width decreased as the
tensile deformation advances toward the final fracture. This reduction is understandable, because it
is expected that the stress concentration enhances toward the fracture. Equation (31) indicates two
possibilities for b to increase; hence, the solitary wave becomes narrow. The first is an increase in cw

and the second is a decrease in Young’s modulus E. These two factors behave oppositely with the
development of deformation. As plastic deformation advances, the shear band (solitary wave) velocity
cw decreases as the mobile dislocation density increases (as argued above), and Young’s modulus
E also decreases as the stress strain curve flattens. The former reduces b and the latter increases it.
Figure 10 plots the change in the shear band width as a function of time. It is seen that the shear band
width decreases with time. Moreover, a comparison with Figure 9 indicates that the rate of decrease
in the shear band width accelerates when the shear band’s propagation velocity (the slope of the
time-shear band position plots) decreases for the last time before the shear band becomes stationary,
but not yet stationary. It is possible that, at this point, the mobile dislocation density reaches some
critical value that makes the effect of E significantly exceed the effect of cw, resulting in the drastic
reduction in the width of the shear band.

(a) 3 mm/min (b) 1 mm/min

(d) 0.1 mm/min(c) 0.3 mm/min

Figure 10. Temporal change in shear band width. Pulling rate is (a) 3.0 mm/min, (b) 1.0 mm/min,
(c) 0.3 mm/min and (d) 0.1 mm/min.

The loading curves in Figure 9 show the zigzag behavior of the stress known as the serration.
The authors of refs. [54–57] made thorough analyses on the relation between the appearance of shear
bands and serration and found clear correlation between them. Basically, a shear band is formed when
the stress drops sharply, and it disappears when the stress rises again. This phenomenon is similar to
spark discharge in a gas medium and its recovery. When a local region of the gas medium experiences a
spark discharge, the voltage drops sharply as the conductivity rises. As the spark discharge disappears
for some mechanism that decreases the number density of free charges, the gas medium recovers from
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the temporary partial breakdown. In the present context, the free charge (∇ · E) corresponds to ∇ · v,
which, in the one-dimensional form in a shear band, is ∂vs/∂xs. The disappearance of a shear band
corresponds to the decrease in free charges, and is accompanied by a stress rise that corresponds to
the voltage rise. The above-discussed narrowing of the shear band corresponds to the increase in the
electric charge density, which triggers the positive feedback (self-enhancing) mechanism (an increase
in conductivity increases the charge density that, in turn, increases the conductivity) that leads to
the final arc discharge (See Appendix E). The final sharp shear band narrowing corresponds to this
self-enhancing effect. If a deforming solid enters this stage, there is no more recovery; the solid
will break.

Stage 3 (18.69% < εxx < 18.91%)

This is the stage when the stress is at the peak on the stress-strain curve. From this point onward,
the stress decreases monotonically until the specimen breaks. In this stage, both the u and v fringe
patterns are stationary. At the same time, the shear band pattern becomes more prominent, and the u
and v fringes start to be similar to each other.

The similarity between the u and v fringe patterns is very interesting from the field theoretical
viewpoint. This condition indicates that u and v can be expressed with the same function f (x, y).
Consider the volume expansion and shear strain under this condition.

∇ · ξ =
∂u
∂x

+
∂v
∂y

=
∂ f
∂x

+
∂ f
∂y

(40)

εxy =
∂v
∂x

+
∂u
∂y

=
∂ f
∂x

+
∂ f
∂y

(41)

Apparently, the two quantities take the identical form. The (∇ · v) term in the plastic energy dissipative
term is the time derivative of the volume expansion.

∇ · v =
∂

∂t
(∇ · ξ) (42)

This means that, under this condition, the shear strain causes energy dissipation. This is
interesting, because it is consistent with the concept of plastic deformation proposed by Panin [58];
plastic deformation is shear instability. It is also consistent with the the field theoretical interpretation
of the onset of plastic deformation discussed above; the deformation transitions from elastic to plastic
when the strain tensor expressed in the principal coordinate system starts to have shear components.

In addition, u and v constitute the x and y components of the differential displacement vector at a
given point. Having the same x and y components, the differential displacement vector is directed
at 45◦ to the x axis. This is why the linear fringe patterns run in 45◦ to the tensile axis, or along the
maximum shear stress.

Figure 11 shows three stationary u and v patterns observed in Stage 3. Note that the shear band
pattern runs from the bottom left to the top right when εxx = 18.88%, it disappears and, consequently,
the half-circle patterns become symmetric when εxx = 18.92%, and it runs from the bottom right to the
top left when εxx = 18.94%. It seems that approximately 45◦ is the preferred orientation for the linear
fringes to run. Notice that the shear band does not run vertically when the two half-circle patterns are
symmetric at εxx = 18.92%. This is consistent with the above argument regarding the similarity of the
u and v fringes (Equations (40) and (41)).
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e = 0.1888 e = 0.1892 e = 0.1894

Figure 11. Shear band pattern changes orientation.

5. Summary and Concluding Remarks

Fringe patterns obtained from ESPI for a tensile experiment are analyzed in detail based on
the field theoretical criteria of deformation stages. The wave equations that are derived by the field
theory are solved numerically as a two-dimensional finite element model. The numerical results show
semi-quantitative but clear agreement with the experimentally observed spatiotemporal behaviors
of the differential displacement under elasto-plastic dynamics. This agreement confirms that the
displacement field obeys the wave dynamics in the elasto-plastic regime, as predicted by the field
theory. The analysis led to the following specific findings.

1. The fringe patterns obtained at approximately one-third of the yield strain exhibit the elastic
deformation criterion.

2. The fringe patterns obtained at 80–90% of the yield strain indicate ∇ × ω 6= 0, one of the
conditions constituting the plastic deformation criterion. The u (the differential displacement
component perpendicular to the tensile axis) fringe patterns obtained at approximately 95% of
the yield strain show a circular pattern that represents the transverse-wave in the plastic stage.
These observations indicate that plastic deformation starts 10–15% prior to the yield point.

3. When the normal strain reaches 2.19% past the yield strain of 1.0%, the u and v fringe patterns start
to show traveling wave like behaviors. The numerical solutions to the wave equations confirm
that these fringe patterns represent the transverse wave characteristics in the u-component and
the longitudinal wave characteristics in the v-component of the differential displacement vector.
The transverse and longitudinal waves propagate along the length of the specimen at the same
speed. From this post-yield stage onward until the stress reaches the peak on the stress-strain
curve, the wave motions repeat.

4. In the above-mentioned post-yield stage, the u and v fringe patterns are not uniformly distributed
along the length of the specimen. This makes the u fringe consist of two half-circle patterns
and the v fringe concentrated over approximately half the length of the specimen. The pair
of half-circles in the u pattern is initially horizontally symmetric, and it propagates along the
specimen length maintaining the half-circle shape. As the stress increases, the semi-circle patterns
become asymmetric, and approximately linear slant fringe patterns (shear bands) appear between
the asymmetrically located semi-circle patterns. The shear band propagates at the same speed as
the semi-circle patterns.

5. The shear band propagation speed decreases towards the final fracture as a function of the
elapsed time from the beginning of tensile loading. This behavior strongly indicates that the
shear band formation and propagation are related to the mobile dislocation dynamics.

The results of this study confirm the usefulness of the present field theoretical approach for
diagnosis of deformation status. Especially, when combined with the ESPI for the visualization of
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displacement field, it provides us with a quick way to make diagnosis. As a possible application of
this combination of ESPI and wave dynamic diagnosis, we can consider the use of Artificial Neural
Network (ANN) algorithm for an automated diagnostic system. We can use typical fringe patterns for
the respective stages in one of the hidden layers of a pattern-recognition type of ANN algorithm [59] to
train the system, so that it makes a judgment of a given ESPI fringe image for the stage of deformation.
This is on our list of the future plan for this research.
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Appendix A. Local Symmetry

Symmetry in physical laws means that every physical law is invariant under certain operations.
In the present context, we can discuss symmetry under coordinate transformations. Consider a
spring is placed along the x axis of an xy coordinate system with its one end fixed at the origin
(Figure A1). You stretch the spring by pulling the other end along the x axis in the positive x direction.
According to Hooke’s law, we can express the force-stretch relation as f = −ks where f , k and s are the
force vector, spring constant and stretch vector, respectively. With the unit vector notation (x̂ and ŷ),
f = f x̂ + 0ŷ and s = sx̂ + 0ŷ. Now consider that you rotate the coordinate system by π/4 from the
positive x axis toward the positive y axis and call the new axes x′ and y′ axes. During this operation,
the stretched spring is intact. With the new coordinate system, the force and stretch vectors become
f ′ = ( f /

√
2)x̂′ − ( f /

√
2)ŷ′ and s′ = (s/

√
2)x̂′ − (s/

√
2)ŷ′. This indicates that the coordinate rotation

does not keep the components of the force or stretch vector invariant, but keeps vectors themselves
unchanged. This is because vectors are physical quantities but their components are not (because they
can change as we define the coordinate system, which is not a physical quantity). Since Hooke’s law
relates the two vectors, it is also invariant under this coordinate transformation. We say that Hooke’s
law is symmetric under the coordinate axis rotation.

This type of symmetry is referred to as global symmetry because the coordinate transformation
is performed globally. If the entire spring is divided into n segments and a local coordinate system
is defined for each segment, the situation is fundamentally different under coordinate axis rotations.
Unless all the local coordinate systems undergo the same axis rotation so that they are aligned with
one another (i.e., x′1 is parallel to x′2 · · · x′i · · · x′n ), even if the physical phenomenon (the stretch of
the spring) remains the same during the coordinate rotations, Hooke’s law cannot be expressed by a
common coordinate system.

The same problem arises if segments of the spring undergoes physical rotations during the
stretching action. (This time segments of the spring under go rotation, not coordinate axes.) In this
case the entire spring does not keep the linear shape. It takes a zigzag shape after the stretch. In this
case, if we set up a local coordinate system for each segment of the zigzag shape, Hooke’s law can still
be expressed in each individual local coordinate systems for the corresponding segments (because the
local coordinate system sees only the linear stretching of the corresponding segment). At the global
level, however, it is impossible to express the liner relation between the force and total stretch. (We can
say that this is because Hooke’s law describes linear force law; the stretch vector and the force vector is
always parallel.) We say that the physical system loses local symmetry because the stretching operation
makes the spring in a zigzag shape.

The concept of gauge theories fixes the problem by introducing a force that somehow reshapes
the spring linear (this is a fake force because physically the spring is zigzag). In this way, we can
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formulaically express the force stretch relation with Hooke’s law with the global coordinate system.
This type of fake force is referred to as a compensation (gauge) field. We say that with the introduction
of a gauge field, the system regains the local symmetry. This fake effect is important because it contains
the information of the effect that makes the spring zigzag. By applying a certain operation to the gauge
field (in the present case applying the least action principle), we can describe the effect (dynamics)
that makes the spring zigzag. More specifically, in the present context we request that Lagrangian
is invariant under transformation representing deformation (the deformation gradient tensor) [9,41].
When Lagrangian is invariant under transformation, we can always find the conserved quantity known
as the charge of symmetry [11].

As a very simple-minded analogy, we can think of the following operation. You tried to stretch an
elastic rope straight. However, you notice the band is curved near the middle of its length. Instead of
measuring the curvature of this part, you can correct the shape by pushing back the curved part little
by little. In each pushing operation you record how much you push back. You keep doing this until
the rope is perfectly straighten up. From the total amount of the pushing (correction) you can know
the curvature of the curved rope.

𝑥

𝑥′

𝑦

𝑦′

𝑓

−
𝑓

2

𝑓

2

𝑥

𝑥′

𝑦

𝑦′

(𝑎) (𝑏)

Figure A1. Conceptual illustration of symmetry in law (a) spring is stretched along x axis and (b) in xy
coordinate system force vector’s y component is zero. in x′y′ coordinate system neither component of
force vector is zero.

Appendix B. Elastic Shear and Longitudinal Forces

Figure A2 illustrates the shear elastic force represented by G∇×ω and longitudinal elastic force
represented by (λ + G)∇(∇ · ξ). The former is proportional to the differential displacement along the
boundary of two unit volumes that undergo mutually opposite rotations. The latter is proportional to
the gradient of volume expansion (∇ · ξ) that the unit volume undergoes.

(a) (b)

Figure A2. Conceptual illustration of (a) shear force and (b) longitudinal elastic forces.
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Appendix C. Vector Potential and Displacement Vector

The physical meaning of the relation between the vector potential and displacement vector is not
straightforward. The former is associated with the gauge field and the latter is with the material field.
As far as the field equation is concerned, the following argument holds, which allows us to replace A
with ξ.

The resistive forces exerted by an elasto-plastic material are the following three.

Fe
l = −Gje = (λ + 2G)∇(∇ · ξe) (A1)

Fp
l = −Gjp = −σ0ρ(∇ · v)

∂ξp

∂t
(A2)

Fp
t = −G(∇×ωp) (A3)

Here, Fe
l is the elastic longitudinal force, Fp

l is the plastic (energy dissipative) longitudinal force,
and Fp

t is the transverse elastic force in the plastic regime. If we consider the total displacement,
the equation of motion becomes as follows.

ρ
∂2(ξe + ξp)

∂t2 = (λ + 2G)∇(∇ · ξe)− σ0ρ(∇ · v)
∂ξp

∂t
− G(∇×ωp) (A4)

Use the following conditions.

(λ + 2G)∇(∇ · ξp) = 0 (A5)

−G(∇×ωe) = 0 (A6)

−σ0ρ(∇ · v)∂ξe
∂t

= 0 (A7)

Adding Equations (A5)–(A7) into Equation (A4) and defining toal displacement and rotation
vectors as ξt ≡ ξe + ξp and ωt ≡ ωe + ωp, rewrite equation of motion (A4) as follows.

ρ
∂2ξt
∂t2 = (λ + 2G)∇(∇ · ξt)− σ0ρ(∇ · v)∂ξt

∂t
− G(∇×ωt) (A8)

By dropping suffix t, and rearranging terms, we obtain the following wave equation.

ρ
∂2ξ

∂t2 + σ0ρ(∇ · v)∂ξ

∂t
= (λ + 2G)∇(∇ · ξ)− G(∇×ω) (A9)

Using the mathematical identity ∇× ω = ∇(∇ · ξ)−∇2ξ and dividing by ρ, we can rewrite
Equation (A9) as follows.

∂2ξ

∂t2 + σ0(∇ · v)
∂ξ

∂t
− G

ρ
∇2ξ =

λ + G
ρ
∇(∇ · ξ) (A10)

Equation (A10) is identical to wave Equation (25). It should be noted that the material constant λ

and G can be considerably different from those defined in elastic theories as this formulation includes
plastic dynamics. It is necessary to evaluate these quantities experimentally.

Appendix D. Strain Tensor and Coordinate System

In Figure A3 xy-axes are principal axes. Tensile force acts on the block along the x-axis.
Consequently, Hooke’s law stretches the block along the x axis in proportion to the applied force
and compresses along the y-axis according to Poisson’s effect. Hence, u and v represent the x and y
components of displacement vectors (u and v) resulting from this tensile load, and in this case v is
negative. Since xy is the principal axis coordinate system, the y component of u and the x component
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of v are null. Coordinate system x′y′ is rotated from xy coordinate system by angle θ. It is clear that the
same physical vectors u and v have both x′ and y′ components when expressed by the non-principal
axis coordinate system. The same argument holds for the stress vector. Formulaically, the appearance
of shear components in x′y′ coordinate system can be expressed as follows.

ε′xy = εxy

(
cos2 θ − sin2 θ

)
+
(
εyy − εxx

)
cos θ sin θ (A11)

σ′xy = σxy

(
cos2 θ − sin2 θ

)
+
(
σyy − σxx

)
cos θ sin θ (A12)

In Equations (A11) and (A12), εij and σij represent the strain and stress tensor components.
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Figure A3. Strain vector components expressed with principal and non-principal axis coordinate systems.

Appendix E. Analogy to Electrodynamics

Field Equation (6) is analogous to Ampère’s law with the Maxwell’s correction term [45].

1
µ
∇× B = ε

∂E
∂t

+ J (A13)

Here µ is the magnetic permeability, B is the magnetic field, E is the electric field, ε is the electric
permittivity, J is the conduction current density. The conduction current density can be expressed with
the conductivity σe of the medium as follows.

J = σeE (A14)

Being proportional to the conductivity this term causes the electric field to decay when an
electromagnetic wave travels through a conductive medium (as you experience your mobile phone’s
signal is weaker when you are inside a conductive object such as a building). The associated loss
in the electromagnetic energy is known as the Ohmic loss. The first term on the right-hand side of
Equation (A13) is known as the displacement current. (It is not an actual electric current but it induces
a magnetic field as a conduction current does.) This term does not cause the electric field to decay.
It induces a time-varying magnetic field via Equation (A13). Through Faraday’s law the time-varying
magnetic field in turn induces a time-varying electric field. This synergetic interaction between the
electric and magnetic field generates an electromagnetic wave. In this mechanism the conduction
current term J = σeE plays a role as an energy damper.
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Apply the above mechanism to an Alternating Current (AC) circuit shown in Figure A4
(See Section Maxwell’s equations on p. 322 of ref. [45]). An air-gap capacitor is connected to an
AC power supply through a conductive wire. An AC current flows through the wire according to the
total impedance. In the air-gap either conduction current, displacement current or both currents flow.
Here, some current must flow through the air-gap because otherwise the law of charge conservation
(law of current continuity) is broken. The carrier of a conduction current is free charges (electrons)
and that of a displacement current is bound charges (electrons). The amperage of the conduction
current is proportional to the conductivity σe of the air-gap and that of the displacement current is the
electric permittivity ε of the air-gap. The more conductive the air in the gap becomes, the portion of
the conduction current increases.

While both conduction and displacement currents can satisfy the current continuity condition,
there is a crucial difference between them in the way they grow (increase in the magnitude).
The displacement current grows when the time derivative ∂E/∂t increase. However, if for any reason
∂E/∂t changes, Faraday’s law induces a magnetic field in such a way that it suppresses the change
in the electric field. It is a self-stabilizing effect generally referred to as Lenz’s law. In other words,
if an electric field increases over time for some reason, a negative feedback algorithm kicks in via
Faraday’s law and the increase is suppressed. On the other hand, if a conduction current increases in a
gas medium, the situation is completely different. As mentioned above, the carrier of a conduction
current in a gas medium are free charges. The more free charges exist in a unit volume, the gas medium
becomes more conductive. This means that if for some reason a conduction current increases in a gas
medium, that makes the medium more conductive. Consequently, the conduction current increases
further. In other words, unlike the case of displacement current, a positive feedback mechanism
kicks in when the conductivity of a gas medium increases. This can trigger a rapid growth of the
conductivity, leading to electrical breakdown of the gas medium known as the arc discharge [60].
Lightning is an example of arc discharge in nature.

Under some conditions, however, the above mentioned positive feedback mechanism can stop
when the density of free charges is relatively low. In this case, an arc-discharge like phenomenon
can occur in a local region of a gas medium for a short duration, but it does not lead to electrical
breakdown of the entire volume. It disappears and the gas medium regains the less conductive state.
This type of discharge is called the spark discharge. Any mechanism that reduces the number of free
charges (electrons) can prevent such a local arc-like discharge from growing to the global scale that
leads to electric breakdown of the gas medium.

The analogy between the present field Equation (6) and Ampère law (A13) is not a formulaic
coincidence. Compare the conduction current expression (A14) and the longitudinal force expression
for plasticity (9). Both represent longitudinal energy damping effects, and we find the following
correspondence.

σ0ρ(∇ · v)v↔ σeE (A15)

Comparison of the present field equations and Maxwell equations indicates that the electric field
E and magnetic field B correspond respectively to particle velocity v and rotation ω. Based on this
correspondence, we can interpret that (A15) indicates that the damping effect in the deformation
field corresponds to a quantity proportional to (∇ · E). According to Gauss’ law, (∇ · E) = ρe (charge
density). In other words, the energy dissipative dynamics in the deformation field is equivalent to
Ohmic loss in electrodynamics. Above we discussed that when a shear band appears intermittently in
association of serration the phenomenon can be interpreted as recoverable fracture. In electrodynamics,
this corresponds to a spark discharge which eventually develops to an arc discharge followed by
electrical breakdown. This transition corresponds to a transition from recoverable fracture to final
(unrecoverable) fracture.

At a more profound level of physics, the above similarity can be argued as follow. The present
gauge field makes Hooke’s law locally symmetric. The vector potential A aligns all the deformation
structural elements (DSE) so that the deformation in the plastic regime can be expressed at the global
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level based on Hooke’s law. The electromagnetic field is a gauge field that makes Shrödinger equation
locally symmetric [11]. Consider that an electron orbiting an atom changes its orbit for some reason
(such as a positive ion attracts it). Then the question arises; “Do all other electrons know this orbital
change?” The answer is “Yes, they know because they feel a change in the electric potential due to this
electron.” We can also answer the question saying that the distance from this electron changes for all
the other electrons. Those electrons for which the orbital change makes the distance from this electron
shorter (longer) feel a stronger (weaker) Coulomb force. The important point is that Shrödinger
equation cannot describe this electron-electron interactions. Electrodynamics does. In this dynamics,
the electric charge is the conserved quantity, the charge of symmetry. Its temporal component is the
electric charge density and spatial component is the electric current density. In the present case, j0

(the deformation charge density) corresponds to the electric charge density and j to the current density.
All deformation charges know each others’ behavior through vector potential A. The interactions
between deformation charges somewhat resembles dislocation-dislocation interaction. Charges of the
same (opposite) sign repel (attract) each other as dislocations of the same (opposite) sign repel (attract)
each other. More detailed discussions can be found in ref. [9].

𝑞𝑏

𝑞𝑓

𝑉𝑠

𝐼𝑐

Figure A4. Conceptual illustration of conduction and displacement currents in an air-gap in an
Alternating Current (AC) circuit. The conduction current is carried by free charges (filled circles) and
displacement current is carried by bound electrons (open circles).
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