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Featured Application: lithium-ion batteries.

Abstract: In many papers for forecasting remaining capacity of lithium-ion batteries, various analytical
models are used based on the Peukert equation. In this paper, it is shown that the classic Peukert
equation is applicable in two ranges of discharge currents. The first range isis the battery released
capacity and ) to currents at which the discharge capacity of battery begins to rapidly decrease.
The second range of discharge currents is from the inflection point of experimental curve to the highest
currents used in the experiments. In the first range of discharge currents, both the classic Peukert
equation and the Liebenow equation can be used. The operating range of the discharge currents
for commercial automotive-grade lithium batteries is in the first range. Therefore, in many of the
analytical models, the classic Peukert equation (taking into account the temperature) is successfully
used to estimate the remaining capacity of these batteries. An analysis and evaluation of advantages
and disadvantages of all the most popular generalized Peukert equations is presented. The generalized
Peukert equation with allowance for temperature is established, which makes it possible to estimate
the released capacity with high accuracy for lithium-ion batteries.
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1. Introduction

From the creation of lithium-ion batteries until now, their scope of use has constantly expanded,
and they often supersede the batteries of other electrochemical systems (both alkaline and acidic).
First, this is connected with their high specific capacity and power. At present, lithium-ion batteries
dominate in the segment of small-format batteries (smartphones, household appliances, etc.) [1,2].

In recent years, in connection with the severe environmental situation (first, in large cities),
the intensive development of environmentally clean transportation means started: hybrid electric
vehicles (HEVs), battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) [2–5].

However, for adequate battery management in different technical systems, a reliable battery
model is necessary. In addition, the model must be able to provide an accurate evaluation of the state
of charge (SoC), as this parameter largely determines the performance of the whole system.

Many methods and models for the SoC evaluation have been developed and proposed.
The simplest method of the SoC evaluation is based on the open circuit voltage [6]. However,
this method is not accurate because of the relaxation processes, especially under a dynamic load
(error of 20% or more) [7]. In addition, this method is not suitable for batteries with a flat discharge
curve, in particular for lithium-iron-phosphate batteries (LFP) [8]. Another widespread method of SoC
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evaluation is using models based on the Kalman filter and fuzzy logic [8–13]. These models provide
much better SoC evaluation [11] than the previous methods, especially at dynamic loads. However,
in our experiments, the relative error of SoC evaluation by this method was about 10%, which is
quite high.

The modern method of SoC evaluation relies on the combination of the following two methods:
counting of ampere hours and use of voltage profiles. However, this method makes the SoC calculation
a difficult problem, and it has known accuracy problems [1].

From the theoretical point of view, the most accurate battery models can be obtained only with
use of the electrochemical laws of molecules and ions transport with due account of all the internal
characteristics of batteries, i.e., with use of the electrochemical method of modeling [14–17]. However,
for their service, these models require powerful computing systems not typical for modern mobile
vehicles and appliances. Thus, they are unacceptable for electric vehicles, airplanes and other mobile
systems containing the batteries. They are inconvenient to use in practice, too, as they require a long
calibration and finding out of all internal parameters of a battery [18].

An alternative to the above-described methods can be the analytical models based on various
generalizations of the Peukert equation [18–21] or on other empiric equations [22]. However, even when
modeling batteries by the electrochemical method, one is often forced (within the frameworks of
those models) to use additional analytical models when it is necessary to take into account such
poorly studied processes as the thermal runaway [23–25], the accumulation of hydrogen in battery
electrodes [26,27] and the gas generation during lithium-ion battery cycling [28,29].

Analytical models are often used for SoC evaluation in the lithium-ion batteries [18,19]; moreover,
the temperature of the batteries is also taken into account. We believe the most promising method is
the analytical model of Hausmann [18]. This model is specifically designed to evaluate the remaining
capacity of batteries in electric vehicles. This model is based on the classic Peukert equation. However,
the classic Peukert equation does not correspond to experimental data for lithium-ion batteries at any
discharge current.

The purpose of this paper is to find the ranges of discharge currents in which the classic Peukert
(and Liebenow) equation is applicable for lithium-ion batteries, since the classic Peukert equation is
very often used in various analytical models of lithium-ion batteries [18]. In addition, this paper aims
at weighing the advantages and disadvantages of the most popular generalized Peukert equations and
choosing an optimal equation for SoC evaluation in the lithium-ion batteries (at any discharge current),
for example, based on the analytical models proposed in [18,19].

2. Generalized Peukert’s Equations

Consider the most well-known empirical equations for calculation of the batteries released capacity
at different discharge currents:

- Peukert equation [30]

C =
A
in

(1)

- Liebenow equation [31]

C =
A

1 + n · i
(2)

- generalized Peukert equations [32,33]

C =
A
in

tanh
(( i

B

)n)
(3)

C =
A

1 + B · in
(4)

where i is the discharge current, C is the battery released capacity and A, B and n are the empiric
constants. It should be noted that Equations (1) and (2) were obtained based on the experimental
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research of lead-acid batteries. However, afterwards, they were used for capacity evaluation of other
types of batteries, too (e.g., lithium-ion [18,34]). Of course, there exist other calculation methods for the
battery released capacity [35–37]; however, as a rule, they are either a combination or particular case of
Equations (1)–(4).

The battery discharge process is the phase transition; however, the phase transitions are often
described by the complementary error function [38]

C(i) =
A
2
· er f c

(
i− i0
√

2σ

)
(5)

where σ is the standard deviation and i0 is the mean value of the statistical variable i. That is why we
are investigating this equation too.

3. Experimental

In our experiments, we used lithium-ion cells of various manufacturers, capacities and formats
(the manufacturers, models and nominal capacities of the studied cells are presented in Tables 1 and 2).

The charge procedure consisted of using the constant current/constant voltage (CC/CV) mode.
The charge was conducted as follows: the direct current 0.5Cn to a voltage value of 4.2 V and step CV
until the current falls to 0.025Cn (Cn is the nominal cell capacity).

The discharge procedure consisted of applying the constant current (CC) mode. The discharge
was conducted as follows: the direct current was applied down to the voltage value 2.75 V. In the
course of the cells study, the discharge currents were in the range from 0.2Cn to the currents at which
the released capacity was approximately C≈Cn/10. The cells were cycled inside of the climatic chamber
Binder MK240 (BINDER GmbH, Germany).

Experimental studies of the cells were performed in accordance with the following algorithm.
First, the cells were cycled at least ten times to stabilize cell parameters in connection with

the SEI layer formation. The cycling was stopped when, in three consecutive cycles, the measured
capacity differed by less than 5%. These training cycles were implemented in accordance with the
cell’s operation manual (charge: the standard mode described above; discharge: direct current equal to
0.2Cn to a voltage value of 2.75 V).

Second, to decrease a random scatter of the measured cell capacity, the discharge capacity of
the cell (at a certain discharge current) was obtained as the average value of the measured capacities
obtained for three consecutive charge–discharge cycles. Nevertheless, if in these three cycles the
measured capacity differed more than by 5%, additional training cycles were implemented and the
experiment was repeated again (or the cell was replaced with another more stable cell and in this case
the experiment was implemented from the very beginning).

Third, to prevent a mutual influence of the charge–discharge cycles (via various residual
phenomena), before each value change of the discharge current or the cell temperature, the training
cycles were implemented. The training cycles were performed until the measured capacity in three
consecutive cycles began to differ by less than 5%.

In any batch of the same cells, statistical scatter exists of cells measured capacities, which is
attributed to many random factors such as the cell’s parameter’s statistical scatter in the course of the
cells production, the cell’s operation duration, the cell’s operation modes, etc. To decrease this random
scatter as much as possible, we standardized the experimental cell’s obtained capacities by their top
capacity Cm (which was found experimentally for every cell individually). In this case, the above
listed random factors were eliminated to a large extent and the empiric curves were constructed more
reliably. This method is used in Section 4.2 to study the dependence of cell released capacity on
discharge current.
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4. Results and Discussion

The cell released capacity depends on the cell temperature [13,39–41]. As cell temperature lowers,
the cell released capacity decreases because of slowing down of the chemical reactions [13]. This fact is
ignored completely in the classic Peukert Equation (1). However, it can result in considerable errors in
the case of an ambient temperature change or self-heating effects in the cell [42].

4.1. Dependence of Released Capacity on Cell Temperature

Consider the temperature effect to the released capacity of the lithium-ion cells. The cells were
cycled in the training mode inside of the climatic chamber Binder MK240 (BINDER GmbH, Germany) at
various temperatures. The cell temperature was determined using LM35 temperature sensor attached
to the cell. The obtained experimental results are given in Figure 1. In the experiments, batteries were
used with LiMn2O4 (IMR) and LiNiMnCoO2 (INR) cathodes.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 14 

This fact is ignored completely in the classic Peukert Equation (1). However, it can result in 
considerable errors in the case of an ambient temperature change or self-heating effects in the cell 
[42]. 

4.1. Dependence of Released Capacity on Cell Temperature 

Consider the temperature effect to the released capacity of the lithium-ion cells. The cells were 
cycled in the training mode inside of the climatic chamber Binder MK240 (BINDER GmbH, Germany) 
at various temperatures. The cell temperature was determined using LM35 temperature sensor 
attached to the cell. The obtained experimental results are given in Figure 1. In the experiments, 
batteries were used with LiMn2O4 (IMR) and LiNiMnCoO2 (INR) cathodes. 

 

Figure 1. Dependence of cell released capacity on temperature of studied cells at discharge current 
0.2 Cn (Cn is cell nominal capacity): (a) cell with cathode LiMn2O4 (IMR); and (b) cell with cathode 
LiNiMnCoO2 (INR). 

According to the authors of [19], the dependence of the released by lithium-ion cells capacity on 
temperature is described by the equation 

β

β












−
−+−












−
−

=

Lref

L

Lref

L

mref

TT
TTK

TT
TT

KCC

)( 1

 (6) 

where Tref is a reference temperature of cell, Cmref is top capacity released at temperature Tre and TL is a 
temperature at which C = 0, i.e., temperature, at which all the electrochemical processes stop. 

In the temperature range from Tref to infinity, the capacity C in Equation (6) changes from Cmref to 
CmrefK, thus parameter K shows how many times (theoretically) the capacity C can be increased with 
the increase in cell temperature. 

Based on the obtained experimental data (Figure 1), the optimal parameters for Equation (6) 
were found by the least square method and the Levenberg–Marquardt optimization procedure. The 
optimal parameters are listed in Table 1. 

Figure 1. Dependence of cell released capacity on temperature of studied cells at discharge current
0.2 Cn (Cn is cell nominal capacity): (a) cell with cathode LiMn2O4 (IMR); and (b) cell with cathode
LiNiMnCoO2 (INR).

According to the authors of [19], the dependence of the released by lithium-ion cells capacity on
temperature is described by the equation

C = Cmre f K

(
T−TL

Tre f−TL

)β
(K − 1) +

(
T−TL

Tre f−TL

)β (6)

where Tref is a reference temperature of cell, Cmref is top capacity released at temperature Tre and TL is a
temperature at which C = 0, i.e., temperature, at which all the electrochemical processes stop.

In the temperature range from Tref to infinity, the capacity C in Equation (6) changes from Cmref to
CmrefK, thus parameter K shows how many times (theoretically) the capacity C can be increased with
the increase in cell temperature.
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Based on the obtained experimental data (Figure 1), the optimal parameters for Equation (6) were
found by the least square method and the Levenberg–Marquardt optimization procedure. The optimal
parameters are listed in Table 1.

According to the conducted research (Figure 1), in the temperature range 25–55 ◦C, the relative
deviation of capacity from its average value is less than 1%. Thus, in this temperature range, it is
possible to neglect the influence of temperature when studying the dependence of the cell released
capacity on the discharge current. This statement is correct for all cells studied by us (Tables 2–4).

Table 1. Optimal values of parameters for Equation (6).

Model Tref (K) Cmref (Ah) β TL (K) K δ1 (%)

Aucooma IMR18650 298 2.8 3.012 239.022 1.049 2.001
Samsung INR18650-13Q 298 1.3 3.101 240.225 1.048 2.512

1 Relative error of experimental data approximation by Equation (6) in Figure 1.

4.2. Dependence of Cell Released Capacity on Discharge Current

To decrease the temperature changes during cell discharge by high currents, we used a number of
methods. Firstly, cells were cycled at the temperature T = 25 ◦C inside of the climatic chamber Binder
MK240 (BINDER GmbH, Germany). Secondly, modified heat sinks were used (usually applied for
refrigeration of processors in computing systems). The heat sinks were fastened to the cells using a
specially manufactured clamp and MX-2 heat-conducting paste produced by ARTIC. This arrangement
greatly increased the thermal flux from the cells and accelerated their refrigeration. These measures
allowed keeping the cell temperature below 55 ◦C in all our experiments.

It should be noted that all the cells studied by us had no protection; therefore, it was possible to
discharge them with high currents.

For convenience of comparison between the experimental data and Equations (3)–(5), we rewrite
them in the following form

C =
Cm

(i/B)n tanh
(( i

B

)n)
(7)

C =
Cm

1 +
(

i
B

)n (8)

C =
Cm

erfc(−B/n)
erfc

( i− B
n

)
(9)

For Equations (7)–(9), the condition C(0) = Cm is true, i.e., Cm is the maximum cell capacity.
The obtained experimental data are given in Figure 2. In Figure 2, the experimental data are

compared with Equation (9), as this equation had the least relative error of approximation of the
experimental data in all our experiments (Table 2).

Based on the obtained experimental data (Figure 2), the optimal parameters for Equations (7)–(9)
were found using the least square method and the Levenberg-Marquardt optimization procedure.
The optimal parameters are shown in Table 2.

Standardization of the released capacity and the cell discharge current by the top capacity reduces
the investigation of a particular cell to studying the cell with unit capacity. Hence, in the standardized
coordinates, the cells should have the same experimental function f(i) = C(i/Cm)/Cm, provided that the
electrodes and the electrolyte are the same for these cells. For example, in Figure 2a, the experimental
functions f(i) = C(i/Cm)/Cm for the cells TrustFire IMR16340 and Aucooma IMR18650 coincide within
the limits of the experimental error. Notwithstanding that these cells differ with their capacity and
format, as well as are made by different manufacturers, they have the same type of cathodes (IMR).
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Table 2. Optimal parameters of generalized Peukert Equations (7)–(9) for lithium-ion cells.

Manufacturer and Model Cn (Ah)1 Cm (Ah) B (A) n δ2(%)

Equation (7)

TrustFire IMR16340 0.65 0.610 5.385 3.242 4.000
Aucooma IMR18650 2.8 2.807 25.912 3.326 2.627

Keeppower IMR26650 4.2 4.033 27.169 3.161 2.753
Samsung INR18650-13Q 1.3 1.31 18.741 4.305 3.312

Sony US18650VT3 1.5 1.49 27.208 4.41 2.776

Equation (8)

TrustFire IMR16340 0.65 0.614 6.644 5.028 2.520
Aucooma IMR18650 2.8 2.807 31.866 5.513 1.837

Keeppower IMR26650 4.2 4.037 33.684 5.262 1.741
Samsung INR18650-13Q 1.3 1.299 22.052 6.914 2.622

Sony US18650VT3 1.5 1.494 31.799 7.062 1.61

Equation (9)

TrustFire IMR16340 0.65 0.620 6.748 3.041 0.510
Aucooma IMR18650 2.8 2.833 32.222 13.543 1.076

Keeppower IMR26650 4.2 4.073 34.027 14.864 0.542
Samsung INR18650-13Q 1.3 1.319 22.123 7.854 1.886

Sony US18650VT3 1.5 1.494 32.122 10.676 0.789
1 Nominal cell capacity. 2 Relative error of experimental data approximation by Equations (7)–(9).

Thus, from the coincidence of the experimental functions f(i) = C(i/Cm)/Cm for the cells TrustFire
IMR16340 and Aucooma IMR18650 (Figure 2a), it follows that these cells have the same electrodes
and electrolytes, while the difference in the cell capacities is connected only with the different areas of
their electrodes.
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However, if the electrodes are constructively different (for example, having different thickness
of active mass), the cells have electrodes of different types (for example, the cathodes IMR and
INR) or different additions to their electrolytes and their active mass of electrodes were used [43,44],
the experimental function f(i) = C(i/Cm)/Cm for these cells must be different. This difference is seen for
all other cells in Figure 2.

In Table 2, it is seen that Equations (7)–(9) correspond well to the experimental data at any
discharge currents with the relative error of approximation—as a rule—less than 4%, which is sufficient
for any practical purpose. Therefore, these equations correspond to the nature of the electrochemical
processes at discharge of the lithium-ion cells. Thus, they can be used in various models for the
cells SoC evaluation. However, it should be noted that, in all our experiments, the relative error of
approximation of the experimental data by Equations (7)–(9) becomes less and less in the sequence:
Equation (7), Equation (8), Equation (9). Thus, Equation (9) best corresponds to the experimental data
(Table 2).

4.3. Analysis of the Use of the Peukert and Liebenow Equations for Lithium-Ion Cells

Now, consider the possibility of using the Peukert Equation (1) and the Liebenow Equation
(2) for the lithium-ion cells. Neither Equation (1) nor Equation (2) can describe the experimental
curves shown in Figure 2 over the entire variation range of the discharge current. For Equation (1),
as the discharge current decreases, the cell released capacity tends to infinity, which does not make
physical sense. Besides, at medium currents, the experimental curves are convex (Figure 2), while both
Equations (1) and (2) give only concave curves (at positive values of all constants). As shown in
Figure 2, the experimental curves are concave only starting from inflection point of the function C(i)
and keep this form to infinity, as well as at small discharge currents. Hence, it is only possible to use
Equations (1) and (2) in these intervals of the discharge currents.

Let us check the possibility of using Equations (1) and (2) in these particular intervals of the
discharge current values (Figure 3).
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The optimal parameters of Equations (1) and (2) for the lithium-ion cells in the interval of the
discharge current values from the inflection point of the experimental curve to the highest currents
used in experiments are presented in Table 3, and for small discharge currents in Table 4.

At small discharge currents, the function C(i) is concave in the range from zero to the value of the
discharge current at which function C(i) begins to decrease sharply (Figure 3). This range is different
for different cells. It depends on the type of electrodes used, the design of the cells, their capacity, etc.
We conducted experimental studies in the range of discharge currents from 0.2Cn to the maximum
currents imax. The research results are presented in Table 4.

Table 3. Optimal parameters of Equations (1) and (2) for lithium-ion cells in the range of discharge
currents from inflection point of experimental curve to the highest currents used in experiments.

Manufacturer and Model Cn (Ah)1 A n δ2(%)

Equation (1)

TrustFire IMR16340 0.65 634.76 4.00 7.20
Aucooma IMR18650 2.8 1.07*107 4.52 4.77

Keeppower IMR26650 4.2 1.56*107 4.46 5.48
Samsung INR18650-13Q 1.3 8.88*106 5.28 6.72

Sony US18650VT3 1.5 4.64*108 5.80 5.70

Equation (2)

TrustFire IMR16340 0.65 92.42 47.81 39.4
Aucooma IMR18650 2.8 791.32 28.10 30.8

Keeppower IMR26650 4.2 887.50 21.36 22.8
Samsung INR18650-13Q 1.3 750.57 62.49 44.5

Sony US18650VT3 1.5 984.76 53.06 39.6
1 Nominal cell capacity. 2 Relative error of experimental data approximation by Equations (1) and (2).

Table 4. Optimal parameters of Equations (1) and (2) for lithium-ion cells at small currents, in the range
of experimental discharge currents from 0.2Cn to imax.

Manufacturer and Model Cn (Ah)1 A n imax(A) δ2(%)

Equation (1)

TrustFire IMR16340 0.65 0.612 0.015 3 0.49
Aucooma IMR18650 2.8 2.839 0.013 15 0.79

Keeppower IMR26650 4.2 4.073 9.06*10−3 15 0.67
Samsung INR18650-13Q 1.3 1.325 0.015 10 0.60

Sony US18650VT3 1.5 1.504 6.73*10−3 15 0.28

Equation (2)

TrustFire IMR16340 0.65 0.625 0.015 3 0.18
Aucooma IMR18650 2.8 2.862 4.04*10−3 15 0.33

Keeppower IMR26650 4.2 4.099 2.94*10−3 15 0.15
Samsung INR18650-13Q 1.3 1.334 4.58*10−3 10 1.44

Sony US18650VT3 1.5 1.509 1.78*10−3 15 0.42
1 Nominal cell capacity. 2 Relative error of experimental data approximation by Equations (1) and (2).

Equations (1) and (2) were obtained based on experimental investigations of the lead-acid
batteries [30,31]. For lead-acid batteries, the Peukert equation is correct in the broad range of the
discharge currents. Only at very small discharge currents, the Peukert equation does not correspond to
the experimental data as the cell released capacity (in this equation) tends to infinity, which does not
make physical sense. However, at all working discharge currents for lead-acid batteries, the Peukert
equation corresponds to the experimental data quite well [30,31]. At low discharge currents for lead-acid
batteries, the Liebenow equation corresponds well to experimental data [31]. Thus, the Peukert equation
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and Liebenow equation complement each other when describing the released capacity of lead-acid
batteries at any discharge currents.

For lithium-ion cells, the experimental dependence C(i) of the cell released capacity on the
discharge current differs significantly (Figure 2) from C(i) for lead-acid batteries. For lithium-ion cells,
the function C (i) is concave at small discharge currents, convex at medium discharge currents and
again concave at high discharge currents. However, both Peukert Equation (1) and Liebenow Equation
(2) describe only concave curves. Thus, theoretically, the Peukert Equation (1) and the Liebenow
Equation (2) can describe the experimental function C(i) (Figure 2) only from the discharge currents
corresponding to the inflection point of the function C(i) to infinity, as well as at small discharge
currents. In these ranges of the discharge current values (according to our research results given in
Figure 3 and Tables 3 and 4), indeed, the Peukert equation corresponds well to the experimental data.
The relative error of approximation of the experimental data by Equation (1) is less than 7.2% (Table 3)
for high discharge currents and less than 1% (Table 4) for small discharge currents.

The range of small discharge currents for some lithium-ion cells is quite large (Table 4), and it
sometimes completely covers the usual working discharge currents of these cells. This is why many
authors [18] use the Peukert equation to estimate the capacity of lithium-ion cells. Nevertheless, studies
have shown that the scope of the Peukert equation for lithium-ion cells is limited.

The Liebenow Equation (2) poorly corresponds to the experimental data in the area of high
discharge currents, where the function C(i) is concave (Figure 3 (2) and Table 3). The relative error of
approximation of the experimental data by Equation (2) is more than 22% (Table 3). However, in the
range of small discharge currents, the Liebenow equation can be used to estimate the capacity of
lithium-ion cells (Figure 3 (1) and Table 4).

4.4. Improvement of the Hausman Analytical Model for Calculating the Remaining Capacity of Lithium-Ion
Batteries Based on the Obtained Experimental Data

In many studies [18–21,40], the cell remaining capacity is evaluated based on analytical models
relying on the Peukert equation. We believe the most promising method is the analytical model of
Hausmann [18]. This model is specifically designed to evaluate the remaining capacity of batteries in
electric vehicles. In electric vehicles, batteries operate in dynamic mode, i.e., discharge currents can
change quickly, and the temperature of the batteries must also be taken into account. A. Hausman’s
model [18] for calculating the remaining battery capacity has the form

Ct = Cm −

t∑
i=0

Ie f f (ii, Ti)∆t, Ie f f (it, Tt) = f1(it) f2(Tt) = γ(it)
α
(Tre f

Tt

)β
(10)

where Cm is an absolute capacity of a fully charged battery; Ct, it and Tt are the battery remaining
capacity, current and temperature in an instant of time t, respectively; Tref is the reference temperature
for an investigated battery; ∆t is the summing interval; and α, β and γ are empirical constants.

In paper [18] the following values were used:

Tre f = 298K, ∆t = 1s (11)

In accordance with Equation (10), the equation

∆Cr(i) = f1(i) f2(T)∆t (12)

shows that, as the discharge current increases, the removed effective capacity also increases.
This correlation is in accordance with the commonly-used Peukert Equation (1) justification. In general,
Equations (10) and (12) show that, when battery temperature decreases and load increases, the rate at
which the remaining battery capacity is reduced also increases.
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In addition, dividing the entire battery discharge time into the sum of small time intervals ∆t
allows us to consider (under dynamic load) that at each time interval ∆t the current and temperature
are constant. This makes it possible to use the empirical equations found for constant currents in
Equation (10), in particular the Peukert equation, as shown below.

The model (10) was tested for commercial automotive-grade lithium batteries [18]. The maximal
relative error received under diverse discharge dynamical modes did not exceed 5%.

The authors of [19] showed that the battery discharge capacity C is related to the effective current
Ieff(i,T) by the equation

C =
Cm

Ie f f (i, T)/i
(13)

Thus, the analytical model of Hausmann [18] uses the Peukert equation of the form

C(i, T) =
A
in

(
T

Tre f

)β
, n = α− 1, A = Cm/γ (14)

In Equation (14), the first multiplier is the classic Peukert Equation (1) and the second multiplier
takes into account the dependence of the discharge capacity on temperature. The research presented in
this manuscript showed that the classic Peukert Equation (1) can be used to calculate the discharge
capacity of a lithium-ion battery in the range of currents from 0.2Cn to currents at which the battery
discharge capacity begins to rapidly decrease (Figure 3(1)). This is a rather wide range of discharge
currents, where the Peukert Equation (1) corresponds very well to the experimental data (Table 4).
However, if the battery operates at high dynamic load in an electric vehicle, it is possible that the
discharge currents will go beyond this range. In this case, the remaining battery capacity will not be
calculated correctly. Therefore, in this case, instead of the classic Peukert Equation (1), it is necessary to
use the generalized Peukert Equations (7)–(9), which are valid for any discharge currents (Figure 2 and
Table 2).

From Equation (14), at a constant current I = i0, we obtain an equation for the dependence of the
discharge capacity on the temperature in the form

C(T) = Cmref

(
T

Tre f

)β
, Cmre f = A/i0n (15)

In Equation (15) at T = Tref, the discharge capacity is C = Cmref as in Equation (6). Of course,
Equation (15) with an optimal choice of the empirical constants Cmref and β can describe the experimental
dependence of the discharge capacity on temperature (Figure 1) over a fairly wide temperature range [18].
However, Equation (15) contains two fundamental disadvantages.

First, from dependency (15), it follows that the capacity C reduces to zero at T = 0. However,
from the electrochemical point of view, it is understandable that the capacity C released by the battery
reduces to zero much earlier. As the battery temperature decreases, the available capacity decreases
due to increase of internal resistance of the battery and retardation of the chemical metabolism of the
batteries effectively hindering the chemical reaction rate [13]. Thus, the capacity C released by the
battery is equal to zero at least at temperatures TL not less than an electrolyte congelation point.

Second, with increasing temperature, the discharge capacity C of the battery in Equation (15)
also increases unlimitedly. As the battery temperature increases, the internal resistance of the battery
decreases and the chemical metabolism of the battery grows, thus effectively increasing the capacity
of the battery [13]. Nevertheless, it is evident that the capacity cannot increase constantly with
temperature growth. At reasonably large temperatures, active materials of electrodes start degrading,
as does the electrolyte. Hence, there must exist a maximum temperature limit above which the capacity
released by the battery ceases to increase.

Equation (15) does not take these two factors into account, while Equation (6) does. Therefore,
from a theoretical point of view, Equation (6) more correctly describes the electrochemical processes
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occurring in the battery when their temperature increases. Thus, Equation (6) can more accurately
and over a wider range reflect the change in the discharge capacity of the batteries depending on
the temperature. Thus, the conducted studies showed that, taking into account Equations (6)–(9),
the analytical model of Hausmann [18] can be significantly improved. Indeed, if instead of the classic
Peukert equation, a more correct (for lithium-ion batteries) generalized Peukert equation (for example,
Equation (9)) is used, and, instead of Equation (15), the more correct Equation (6) is used, then, for the
generalized Peukert equation, accounting for the temperature, we obtain from (14) the equation:

C(i, T) =
( Cmre f

er f c(−B/n)
er f c

( i− B
n

))
K

(
T−TL

Tre f−TL

)β
(K − 1) +

(
T−TL

Tre f−TL

)β (16)

In Equation (16), the discharge capacity is C = Cmref at T = Tref and I = 0.
Then, from Equation (16), taking into account Equation (13), for the effective current Ieff (i, T) (10)

of the Hausmann [18] model, we obtain an improved equation.

Ie f f (i, T) = i
er f c(−B/n)

er f c
(

i−B
n

) (
1 +

(Tre f − TL

T − TL

)
(K − 1)

)
(17)

Thus, the use of Equations (7)–(9) and (6) (which most accurately reflect the electrochemical
processes in lithium-ion batteries during their discharge) allows us to improve the analytical model
by Hausmann [18]. This statement is also true for other analytical models of lithium-ion batteries
containing the Peukert equation [20,21,40].

In conclusion, we note that, from the theoretical point of view, the most interesting is Equation
(9). Equation (9) possesses its statistical basis (5) (complementary error function and therefore its
parameters have statistical meaning) unlike Equations (7) and (8), which are just empiric equations.

The lithium-ion cells discharge process is a phase transition: it is the transition from phases of
active mass of electrodes corresponding to cell’s charged state to phases of the active mass of electrodes
corresponding to the cell’s discharged state. For example, in this study, for IMR lithium-ion cells
during the charge–discharge cycle, the following phase transitions were observed regarding the active
mass on the cathode and anode:

2MnO2 + Li+ + e− ↔ LiMn2O4(cathode) (18)

LiC6 ↔ C6 + Li+ + e−(anode) (19)

In physics [38], phase transitions are often described by the complementary error function (5),
which is based on the normal law of distribution. On the level of molecules and ions, the discharge is a
statistical process. Indeed, a statistical exchange process (for ions and molecules) is established at the
interface between the active substance of the electrodes and the electrolyte in accordance with Equations
(18) and (19), which is characterized by the exchange current i0. While the discharge process at the
interface of the active substance of the electrode and the electrolyte is described by the Butler–Volmer
statistical function. Therefore, in general, on the level of molecules and ions, the charge–discharge
process of cells is a statistical process. Thus, it is not surprising that the generalized Peukert equation is
well described by the statistical function (complementary error function (5) or (9)). Hence, judging by
the good coincidence of the experimental data with Equation (9) (Figure 2), it could be concluded that
the cell’s discharge is a statistical process subject to the normal law of distribution. This experimental
fact, it seems to us, is significant for a theoretical explanation of the charge–discharge process in
batteries as well as a better understanding of the Peukert equation.
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5. Conclusions

Several conclusions can be drawn from the studies carried out.
First, for the lithium-ion cells, it is impossible to use the classic Peukert equation in the entire

range of discharge currents as it does not correspond to experimental data for medium and very small
discharge currents (Figure 3).

Second, the generalized Peukert Equations (7) and (9) correspond well to the experimental data at
any discharge currents.

Third, among Equations (7)–(9), the most preferable ones for practical use are the generalized
Peukert Equations (8) and (9). These equations approximate the experimental data with the least
relative error (Table 2).

Fourth, research has shown that, when calculating the remaining capacity of a battery,
its temperature must be taken into account. The dependence of the discharge capacity on temperature is
proposed in [6], which correctly describes this dependence at all temperatures, both very low and high.

Fifth, on the basis of experimental studies, an improved analytical model by Hausmann is proposed
for calculating the remaining capacity of lithium-ion batteries under dynamic loads. The proposed
model is true for any discharge current in a wide temperature range.

Of course, the proposed analytical model requires further experimental and theoretical research,
which is the topic of our further scientific studies.
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