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Featured Application: The method proposed in our paper is mainly applied to intelligent driving,
driving training and other fields. Our method greatly solves the problems of complex information
processing and massive consumption of computing resources in the field of intelligent driving. We
can find the area that drivers are most interested in among many items of complicated information.
The application of our method can reduce the cost of driverless driving, thereby promoting the
early realization of unmanned driving. The method can also be applied to the field of driving
training, for example, a novice driver can use our method to judge whether the driver’s attention
area is correct and ensure driving safety.

Abstract: The current intelligent driving technology based on image data is being widely used.
However, the analysis of traffic accidents occurred in intelligent driving vehicles shows that there
is an explanatory difference between the intelligent driving system based on image data and the
driver’s understanding of the target information in the image. In addition, driving behavior is the
driver’s response based on the analysis of road information, which is not available in the current
intelligent driving system. In order to solve this problem, our paper proposes a driver attention area
extraction method based on deep network feature visualization. In our method, we construct a Driver
Behavior Information Network (DBIN) to map the relation between image information and driving
behavior. Then we use the Deep Network Feature Visualization method (DNFV) to determine the
driver’s attention area. The experimental results show that our method can extract effective road
information from a real traffic scene picture and obtain the driver’s attention area. Our method can
provide a useful theoretical basis and related technology of visual perception for future intelligent
driving systems, driving training and assisted driving systems.
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1. Introduction

Traffic driving scene is an extremely complex scene, which is characterized by three-dimensional
diversification and rapid change of information. In the current field of intelligent driving, the target
detection algorithm based on YOLO [1,2] and the target detection algorithm based on SSD [3] both
detect all targets, which not only increase the calculation cost due to processing a lot of useless
information, but also cannot extract the effective information from the outside and make corresponding
driving behaviors like a real driver. Human visual selective attention mechanism is an important neural
mechanism for a visual system to extract key scene information and filter redundant information. The
combination of human visual selective attention mechanisms and intelligent driving technology can
greatly reduce the cost of intelligent driving and promote the popularization of intelligent driving
technology. Furthermore, it can also promote the interpretive approach of artificial intelligence in the
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field of intelligent driving, which is helpful to develop safer and more intelligent driverless vehicles.
Therefore, the extraction methods of driver’s attention area in traffic driving scenes have gradually
become the research hotspot of intelligent driving vehicles, and many experts and scholars have carried
out extensive research on the subject.

Yun S.K. et al. [4] obtained a series of physiological parameters such as electroencephalogram
(EEG), electrooculogram (EOG) and electrocardiogram (ECG) through the driver wearing various
types of medical monitoring equipment, which were used to detect the driver’s attention. By analyzing
those detected physiological parameters, it can be concluded that the ECG will change significantly
when the driver is accelerating, braking and steering. When the driver is tired, their heart rate will
decrease significantly. Obviously, when the driver is tired or distracted, their physical parameters
will change significantly. Bibhukalyan Prasad Nayak et al. [5] concluded the following from their
experiment: when the driver is in a state of severe fatigue and the concentration is significantly
reduced, the high-frequency ECG component will drop sharply. Qun Wu et al. [6] used principal
component analysis method based on kernel function to analyze ECG signals, and separated fatigue
state from normal state, thus detecting driver’s distraction. Li-Wei Ko [7] developed a single-channel
wireless EEG solution for mobile phone platform, which can detect driver’s fatigue state in real time.
Moreover, Degui Xiao et al. [8] suggested that it is the driver’s distraction during driving that is the
main cause of traffic accidents, so they proposed an algorithm to detect whether a driver is distracted.
The algorithm can track the driver’s gaze direction and detects moving objects on the road through
motion compensation.

Most of the above methods focus on the detection of whether the driver’s attention is focused,
and there is no discussion about the driver’s attention area. Meng-Che Chuang et al. [9] used the
driver’s gaze direction as an indicator of the driver’s attention, and defined a feature descriptor for
SVM gaze classifier training, which takes eight common gaze directions as the output. Francisco
Vicente et al. [10] proposed a low-cost vision-based driver sight detection and tracking system, which
can track the driver’s facial features, and can use the tracked landmarks and three-dimensional face
model to calculate the head position and gaze direction. Sumit Jha and Carlos Busso [11] constructed
a regression models to estimate the driver’s line of sight based on the head position and direction
from the data in the natural driving record to determine the driver’s area of interest. Tawari et al. [12]
recorded the eye movement data of the driver using head-mounted cameras and google glasses. Then
they used eye tracking technology to detect the target of interest to the driver, and finally determined
whether the target was located in the center of the driver’s attention. However, the above methods all
require complicated instruments and equipment, so that experiments cannot be carried out on real
roads. Moreover, they ignore the complex traffic scenes and have certain limitations.

In recent years, there have been few studies on the driver attention area based on real traffic scenes.
Lex Fridman et al. [13] focus on a driver’s head, detecting facial landmarks to predict driver attention
area. Nian Liu et al. [14] put forward a novel computational framework, which uses a multiresolution
convolutional neural network (Mr-CNN) to predict eye gaze. Zhao, S. et al. [15] proposed a driver
visual attention network (DVAN), which can extract the key information affecting the driver’s operation
by predicting the driver’s attention points. The above method provides a new idea for the driver’s
attention area extraction but there is no certainty about the adherence of predictions to the true gaze
during the driving task. Andrea Palazzi et al. [16] published the data set of DR(eye)VE, which is a
traffic scene video database for predicting the attention position of drivers. The DR (eye)VE data set
contains 74 traffic driving videos, each of which lasts 5 min, and records the eye movement data of
eight drivers during real driving. The data set is not only composed of more than 500,000 images, but
also records the driver’s gaze information and its geographic location information, driving speed and
driving route information; this information is not recorded in other data sets. In the follow-up work,
they used the ready-made Convolutional Neural Network (CNN) algorithm to train on their database
to predict the location of the driver’s attention area in the driving scene [17,18]. Tawari and Kang [19]
further improved the prediction results of driver’s attention area on DR(eye)VE data set based on
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Bayesian theory. However, for the study of predicting driver’s attention area in the driving scenes,
each video only includes the eye movement data of a single driver, which not only makes the eye
movement experimental data too limited, but also is easily affected by individual differences, resulting
in some important traffic scene information being ignored.

In our paper, we propose a driver attention area extraction method based on deep network feature
visualization. This method mainly includes the Driving Behavior Information Network (DBIN) and
the Deep Network Feature Visualization Method (DNFV). Firstly, we use the DBIN and DBNet data
set [20] to construct the relationship between driver’s horizon information and driving behavior. Then,
we use the DNFV to obtain the driver’s attention area. Finally, we analyzed the predicted results based
on the real traffic scene and driving behavior.

2. Driver Attention Area Extraction Method

To solve the problems that the current intelligent driving field cannot effectively locate and
identify the driver’s attention area during the target information extraction process, and the fact that
the information processing process is complicated and expensive, we propose a driver attention area
extraction method based on deep network feature visualization. This method mainly includes the
Driving Behavior Information Network (DBIN) and the Deep Network Feature Visualization Method
(DNFV). Among them, the role of DBIN is to determines the correspondence between driver’s horizon
information and driving behavior, and the role of DNFV is to determine the driver’s attention area.
Figure 1 shows the overall structure.

Figure 1. The overall structure of driver attention area extraction method.

2.1. Driving Behavior Information Network (DBIN)

Our paper proposes a Driving Behavior Information Network (DBIN) and uses DBIN to train the
DBNet data set, taking the driver’s horizon information (video frames captured by the driving recorder)
as input, and driving behavior (steering wheel angle and speed) for output. In this way, the one-to-one
correspondence between the driver’s horizon information and driving behavior is determined.

The driver’s horizon information first passes through a 7 × 7 Convolutional Layer (CON),
a BatchNorm layer (BN), and a 3 × 3 Maximum Pooling Layer (MP). The output of the MP will enter
an inception block [21] which contains four parallel lines. The first three lines use CON with window
sizes of 1 × 1, 3 × 3, and 5 × 5, respectively, to extract different spatial scale information, which makes
the extracted information more complete and reduce the model parameters. The two middle lines
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will use 1 × 1 CON to reduce the number of input channels, thereby reducing the complexity of the
mode. The fourth line uses a 3 × 3 MP and 1 × 1 CON connection to change the number of channels.
Appropriate padding is selected for all four lines to keep the height and width of input and output
consistent. Finally, the output of each line is combined on the channel dimension to obtain the output
layer (MO).

The output of MO will first pass through six Information Extraction Blocks (IEB) and one
Conversion Layer (CL), then through twelve IEBs, and finally through the MP and the full connection
layer (FCL) to obtain the final output. The conversion layer (CL) consists of two neural network layers,
which is a BN followed by a 1 × 1 CON. Accordingly, this procedure controls the number of output
channels and prevents the number of channels from being too large. As shown in Figure 2. An IEB
module includes five neural network layers, as shown in Figure 2, where ACT and DRO, respectively,
represent the Activation Layer and the Dropout Layer. We have adopted a dense connection mode
between each IEB, connecting any layer with all subsequent layers, so that the information is retained
to the greatest extent without losing the key information concerning the driver’s attention. The dense
connection mode is shown in Figure 3.

Figure 2. The structure diagram of IEB.

Figure 3. The demonstration diagram of dense connection mode.

The lt layer receives the feature maps of all previous layers, and its mathematical feature map
is expressed as Formula (1), where [x0, x1, . . . , xt−1] represents the feature mapping from l0 to lt−1

layer, xt is the output of lt, Ht represents connecting the information of the previous layer in the channel
dimension. The final Information Extraction Blocks (IEB) will go through Global Average Pooling
(GAP) and FCL to get the final output.

xt = Ht([x0, x1, . . . xt−1]) (1)

2.2. The Deep Network Feature Visualization Method (DNFV)

After using DBIN to accurately construct the one-to-one correspondence between driver’s horizon
information and driving behavior, we use the Deep Network Feature Visualization Method (DNFV) to
determine the driver’s attention area. After passing the IEB, we map all the feature maps generated
by the convolution through GAP, and send the mapping results to the FCL. According to the weight
matrix W of the FCL, the final output driving behavior is determined. After DBIN training is completed
and high accuracy is obtained, we project the W of the output layer into the convolution feature map,
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weight the feature map with W, and then superimpose it with the original image frame to display the
driver’s attention area. The mathematical feature mapping of this process is expressed as Formula (2).

It
out = It

∗
{
[W] × [FP]

}
(2)

The It
out represents the output image superimposed with the feature map at time t. It represents

the input image at time t. [W] are the weight matrix of the last output layer, and [FP] represents the
feature map of the last IEB output.

As shown in Figure 4, when the model started training, the W matrix had just been initialized.
At this time, the model listened to the W matrix, and may choose the No. 12/15/19 feature map as
the basis for determining the output. The output driving behavior may be described, however, the
predicted loss is very large at this time, so the W matrix is constantly updated in the subsequent back
propagation, and the No. 10/20/50 feature map is gradually used as the basis for judgment. As the
value of loss decreases and the accuracy increases, the model will choose a more suitable feature map
as the judgment basis, and the driver’s attention area will become more and more accurate.

Figure 4. Deep network feature visualization (DNFV) schematic diagram.

3. Experiment

3.1. Dataset Description

DBNet (DB is the abbreviation of driving behavior) data set was jointly released by SCSC Lab of
Xiamen University and MVIG Lab of Shanghai Jiaotong University, and is specifically designed to
study strategy learning for driving behavior. DBNet records video, lidar point cloud, and the actual
driving behavior of the corresponding senior driver (over 10 years of driving experience). It also solves
the problem of an end-to-end method proposed by Nvidia researchers [22] in 2015 without data sets.
The data scale of DBNet is about 10 times that of KITTI [23,24]. DBNet not only can provide training
data for learning the driving model of senior drivers, but also evaluate the difference between the
driving behavior predicted by the model and the real driving behavior of senior drivers. In our paper,
we select a part of the training set of DBNet to remake the training set, validation set and test set used
in our research, and remove the point cloud data, so that training set: validation set: test set = 6:1:1.
The part of the data set is shown in Figure 5.
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Figure 5. The part of data set display diagram.

3.2. Experimental Details

The input of Driving Behavior Information Network (DBIN) is the video frame of DBNet. We
change the original size to make the input size 224 × 224 × 3. Epoch is set to 100. The labels of
training data are driving behaviors (speed and steering wheel angle), in which the steering wheel
angle indicates turning right and turning left with positive and negative values. The loss function is
the Mean Square Error (MSE), which can evaluate the degree of data change. The smaller the MSE
value, the better the accuracy of the experimental data described by the prediction model. The MSE
mathematical expression is shown in Equation (3), where k represents the dimension of the data, yt

represents the label of the training data (driving behavior), and yp represents the predicted value of the
driving behavior information network (DBIN).

MSE =
1
k

∑
k

(yt − yp)
2 (3)

In order to prevent the value of the loss function from being too large and increase the effect of
data fitting, we conduct some processing on the driving behavior data in DBNet. The mathematical
expression of the processing process is shown in Equation (4), where v and Ang represent the actual
collected speed and steering wheel angle, and Vr and Angr represent the processed speed and steering
wheel angle. The hardware configuration of the experimental environment is NVIDIA GTX1080 video
card and 16 GB of memory; the programming environment is Tensorflow.

Vr =
v− 20

v

Angr = Ang×
π

180
(4)

3.3. Experimental Results and Analysis

We constructed the Driving Behavior Information Network (DBIN), which is used to establish the
one-to-one correspondence between driver horizon information and driving behavior. The change of
loss function during training is shown in Figure 6a. The accuracies are measured within 6◦ or 5 km/h
biases. In addition, the results of the accuracy of the test set and classical convolutional networks,
such as DensNet169 [25], incidence v3 [26] and VGG16 [27] are compared. The results are shown in
Figure 6b.
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Figure 6. The Experimental results. (a) Description of the change of loss function during training; (b)
Description of the comparison of accuracy.

It can be seen from Figure 6a that as the training progresses, the value of the loss function continues
to decrease and eventually stabilizes when iterating over 100 epochs. Moreover, we can clearly see
from Figure 6b that DBIN has higher accuracy than several other models, and obtains good results.

In Figure 7, the red area represents the driver’s main attention area and it can be seen that the
current traffic scene depicts our car following the white vehicle through the zebra crossing. At this
moment, the driver will pay more attention to the distance from the vehicle and observe whether there
is a pedestrian on the zebra crossing. After analysis, we can see that the driver’s main attention area
obtained by our method accords with the driver’s selective attention mechanism. Because the accuracy
of DBIN is higher, the display effect in Figure 7d is the best, and the determined driver’s main attention
area is also the most accurate.

Figure 7. The comparison graph of different network test results. (a–d), respectively, represent the
experimental results of DensNet169, VGG16, InceptionV3 and Driver Behavior Information Network
(DBIN).

Figure 8 shows the comparison graph of DBIN experimental results at different training stages.
Among them, Figure 8a–c represent the early, middle and last three stages of training, respectively.
It can be clearly seen from the figure that the driver’s main attention area is incomplete and inaccurate
in the early stage of training. Some images show that the attention area is only a tiny part of the
front windshield, and some show the full screen as the attention area, which is obviously abnormal.
However, with the training, the driver’s attention area gradually changes and eventually becomes
accurate and complete.
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Figure 8. The comparison graph of DBIN experimental results at different training stages. (a–c)
represent the first, middle and last three stages of training, respectively.

In Figure 8, there are three traffic scenarios from top to bottom. The first and second traffic
scenarios are similar in that our car passes on the road where the vehicle stops on the right side, but
the difference is that our car in the first scenario is closer to the parked vehicle on the right side. For the
first traffic scene, the driver’s speed is 4 km/h, and the steering wheel turns 30◦ to the left. Obviously,
the driver is slowly moving the vehicle to the left to prevent the collision with the vehicle on the right.
Therefore, the driver’s main attention area will be in the right front of the vehicle. While in the second
traffic scene, our car is far away from the vehicle on the right and the front view is wide. At a speed of
20 km/h, the driver turns the steering wheel 5◦ to the left, and it is obvious that the driver is crossing
the street at a low speed. Therefore, the driver puts the main attention area in front of the car. The third
traffic scene is that our car passes through the bridge, which is dangerous to some extent. In this scene,
there are no vehicles around, and the driver has a wide field of vision. At the moment, the speed of the
car is 57 km/h, and the steering wheel turns 7◦ to the left. It can be seen that the driver is crossing the
bridge at normal speed. Therefore, the driver will only focus on the lane ahead and the distance from
the vehicle ahead.

4. Validation

In order to better validate that our method is also effective in different traffic scenarios, we show
that our method extracts the driver’s attention area information in various traffic scenarios in Figure 9.
In Figure 9a, the vehicle speed is 8 km/h, and the steering wheel does not turn left and right. It can be
clearly seen from Figure 9a that our car is driving forward on the road, and a white car is coming from
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the left at the intersection of the road in front. If the driver does not handle it properly, it is very easy to
cause a traffic accident. Therefore, the driver’s main attention area will be placed on the upcoming
white vehicle. At the same time, the driver will reduce the speed to prevent traffic accidents. The
behavior in Figure 9b is that the vehicle speed is 28 km/h, and the steering wheel turns 5◦ to the left.
Although there are parked vehicles on the right side of the road, it is more important that our car is
slowly approaching to the left, which is very close to the white vehicle in the adjacent reverse lane and
thus, to the white vehicle and the fence on the left. Figure 9c shows that the vehicle speed is 34 km/h,
and the steering wheel turns 5◦ to the right. It can be clearly seen from Figure 9c that our car turns
right and will cross the crosswalk, but there is also a white vehicle in front to the right. In order to
avoid traffic accidents, the driver’s main attention area will be on the crosswalk and the white vehicles.

Figure 9. The display diagram of various scenes. (a–f) shows six different situations, respectively.

Compared with the above three traffic scenes, the traffic scenes in Figure 9d–f are relatively simple
with fewer vehicles, but they are often encountered in real life. The behavior shown in Figure 9d is that
the vehicle speed is 0 km/h, and the steering wheel does not turn left and right. It can be clearly seen
from Figure 9d that our car is parked waiting for pedestrians to pass the crosswalk. Therefore, the
driver will put the main attention area on the crosswalk to prevent traffic accidents with pedestrians.
The behavior in Figure 9e is that the vehicle speed is 28 km/h, and the steering wheel turns 10◦ to the
left. It can be clearly seen from Figure 9e that our car turns to the left, and the surrounding view is
wide. There is only a black car parked in front of the left. At this time, the driver will put the main
attention area on the left, observe the distance from the left road and the distance from the black car to
avoid traffic accidents. In addition, in Figure 9f the vehicle speed is 25 km/h, and the steering wheel
turns 20◦ to the left. It can be clearly seen that there is a white car driving in the same direction directly
in front of our car, and a bus starting to move in the front right. This is a very common traffic scene in
daily life. At this time, the driver will keep the distance of the vehicle ahead and approach slowly to
the left. In order to avoid the occurrence of traffic accidents, the driver’s main attention area will be in
the area between their own vehicle and the vehicle ahead to maintain a safe distance.
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5. Conclusions

At present, there is a problem that the driver’s attention area cannot be determined in the field of
intelligent driving. To solve this problem, our paper proposes Driver Attention Area Extraction Method
Based on Deep Network Feature Visualization. In our paper, we first determine the correspondence
between driver’s horizon information and driving behavior by building a Driving Behavior Information
Network (DBIN), and then use the Deep Network Feature Visualization Method (DNFV) to determine
the driver’s attention area. In the experimental part, we first use the DBNet data set for training, and
conduct a comparative analysis with a variety of classic convolutional neural networks. Finally, we
combine the current driving behavior and traffic scenarios to analyze our experimental results; the
experimental results show that our method can accurately determine the driver’s attention area no
matter if it is in a complex or simple traffic scene. Our research can provide a useful theoretical basis
and related technical means of visual perception for future intelligent driving vehicles, driving training
and assisted driving systems.
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