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Abstract: Based on various carbon nano materials, the ternary composite functionalized carbon
nanotubes (FMWCNTs) @ carbon quantum dots (CQDs) @ polyaniline (PANI) was prepared by
in-situ polymerization and hydrothermal method. The carbon-based material was made into an
electrode sheet. The morphology and microscopic nanostructures were characterized by FTIR,
field emission scanning electron microscopy and field emission transmission electron microscopy.
Cyclic voltammetry and the galvanostatic charge discharge method was adapted to study the
electrochemical properties of these active materials. Our results showed that the specific capacitance
of FMWCNTs @ CQDs @ PANI was as high as 534 F/g, while it was 362 F/g, 319 F/g and 279 F/g
for PANI @ FMWCNTs, PANI @ CQDs and polyaniline. This means that the specific capacitance of
FMWCNTs @ CQDs @ PANI is increased by 47.5%, 67.4% and 91.4% comparing with the capacitance
of PANI @ FMWCNTs, PANI @ CQDs and polyaniline, respectively. Moreover, the specific capacitance
retention rate of the ternary active electrode after 1000 times of constant current charge and discharge
cycle reached 86%, while it was 60% for PANI @ FMWCNTs, 72% for PANI @ CQDs and 65%
for polyaniline.

Keywords: carbon quantum dots; functionalized multi-walled carbon nanotubes; polyaniline;
composite electrode material; specific capacitance

1. Introduction

The research on carbon-doped materials has received more and more attention from academia.
Especially, the interaction between conductive polymers, such as polyaniline (PANI) and carbon
nanomaterials, such as multi-walled carbon nanotubes (MWCNTs) and carbon quantum dots (CQDs),
has been researched hotspots since its discovery [1]. Due to the unique physical and chemical properties
and their being easy to synthesize and obtain, MWCNTs are broadly applied for the preparation
of various composite materials [2,3]. The electrical conductivity, thermal stability and mechanical
strength of the composite, which included nanotubes and conjugated polymers, has been improved
since plenty of work has been devoted to the development of see-through materials [4]. Especially
after the combination of MWCNTs and conductive polymer PANI and other carbon nanomaterials,
it can be used in supercapacitors [5] and effective adsorbents [6].
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The rapid development of new supercapacitor has been widely favored with energy storage
devices, which contains many advantages such as large charge and discharge current, high power
density and long cycle life [6]. The electrochemical performance of supercapacitors mainly depends
on the electrode materials [7,8], which are required to have a large specific surface area, excellent
conductivity, rich pore size distribution and a stable structural system [9,10]. With the high specific
surface area of carbon nanotubes (CNTs), relatively high electrical conductivity and significant
chemical stability [11,12], it provides the possibility to prepare excellent electrochemically active
materials [7]. However, the energy storage performance of CNTs is reduced dramatically by the defects
of agglomeration resulting in bending and winding. Therefore, MWCNTs have been preliminarily
functionalized. The bonds on the walls of MWCNTs are broken [13] and the specific surface area is
increased with more active sites and better interface binding energy [14]. Therefore, the interaction
between the surface and the conductive polymer modified layer is enhanced [2]. Among various
conductive polymers, PANI has the advantages of easy preparation, low cost, reversibility [15–17] and
good redox properties [17–20]. In addition, PANI is an ideal choice for preparing composite materials
with good electrical and optical properties [1,21,22], as well as good environmental stability [23,24].
Nevertheless, the internal resistance and the volume expansion changes greatly in the process of using
PANI, which makes the molecular chain of PANI breakdown and the performance of cycle stability
insufficient [17,25]. In view of this, the performance of composite materials shows better performance
than single components, based on the excellent synergistic effect of the combination of CNTs and
PANI [1,26]. Similarly, with CNTs, the new type of carbon nanomaterial CQDs also have a large specific
surface area [27] and good electrical conductivity [28]. In addition, it provides more space for electron
transport and storage compared with CNTs.

In this experiment, FMWCNTs @ CQDs @ PANI, a new type of carbon matrix composite material,
was compounded by PANI, FMWCNT and CQDs with in-situ polymerization and the hydrothermal
method. After successful preparation, the composite material was fabricated into an electrode material,
and its electrochemical performance was characterized.

2. Experimental

2.1. Materials and Preparation Method

We prepared a new composite electrode material by using CQDs, PANI and functionalized CNTs
in this experiment. Under the power of 560 W, 200 mL CQDs were prepared by microwave method
with carbon source glycerin (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) and trisodium
phosphate (Fuchen Chemical Reagent Co., Ltd., Tianjin, China) and the reaction time was set at 25 min.
The MWCNTs (Main Range of Diameter: 10–30 nm, Length: >2 µm, Purity: >97%, Ash: <3%, Special
Surface Area: 160–200 m2/g) were oxidized and refluxed for 7 h in concentrated nitric acid vapor
at 110 ◦C to get FMWCNTs. The composite material PANI @ CQDs and PANI @ FMWCNTs was
prepared by in-situ polymerization under acidic and ice bath conditions for 24 h, while the FMWCNTs
@ CQDs was prepared with hydrothermal method at 150 ◦C for 3 h. Based on the composite material
FMWCNTs @ CQDs, the ternary composite material FMWCNTs @ CQDs @ PANI was obtained by the
following steps. First, the composite powder was synthesized with in-situ polymerization under acidic
and ice bath conditions for 24 h. Second, it was rinsed with absolute ethanol and deionized water to
neutral. Third, vacuum filtration, drying and grinding was completed in turn. To obtain the electrode
sheet, FMWCNTs @ CQDs @ PANI, acetylene black and polyvinylidene fluoride (PVDF) were grinded
with the mass ratio at 8:1:1. Then, appropriate N-methylpyrrolidone (NMP) was added dropwise
according to the mass ratio and grinded for additional 15 min. After that, the grinded materials were
evenly applied to a stainless-steel mesh (304 stainless steel wire mesh), pressed and dried.



Appl. Sci. 2020, 10, 5462 3 of 10

2.2. Characterization

The type characteristics and material structure of the functional groups were studied and analyzed
by conventional tests (7800–350 cm−1) in FTIR (Nicolet iSr50, USA). The electrochemical performance
of these materials was analyzed using an electrochemical workstation (CHI660e, Shanghai Chenhua
Instrument Co., Ltd., Shanghai, China) to measure the CP curve, Cyclic voltammetry curve and
constant current cycle curve.

3. Results and Discussion

3.1. FTIR Analysis

The FTIR spectra of the ternary composites FMWCNTs @ CQDs @ PANI, the composite materials
PANI @ FMWCNTs and PANI @ CQDs, and the monolithic material PANI are shown in Figure 1.
The absorption peaks of 3851 cm−1, 3728 cm−1 and 3626 cm−1 in the composite material PANI @
FMWCNTs spectrum correspond to free OH, while the absorption peak 1655 cm−1 corresponds
to C=O stretching vibration. The 1644 cm−1, 1402 cm−1 and 1047 cm−1 of the composite material
PANI @ CQDs spectrum correspond to C=O stretching vibration, O-H blending and C-O stretching,
respectively [1,6,16,28–30]. It can be seen from the figure that the absorption peak is broad and strong
for the composite sample, but a very weak spectrum for pure PANI, which may be related to the
interaction between PANI and CNS, involves “charge transfer” [31]. When FMWCNTs and CQDs are
attached to the surface of PANI, the intensity of the band will be increased in different degrees while
introducing the characteristic functional groups. For the ternary composite FMWCNTs @ CQDs @
PANI, the functional group type and peak intensity have been strengthened, and the absorption peak is
also clearer. In the FTIR spectrum, the composite material’s spectrum contains the characteristic peaks
of PANI, indicating that the generated PANI is wrapped on FMWCNTs and CQDs after polymerization
with the aniline monomer. The inhibited growth and suppressed atomic vibration resulted in some
absorption peaks in the composite material spectrum being similar, and absorption peaks of hydroxyl
functional groups also appeared in the PANI @ FMWCNTs spectrum. Considering all the factors,
the composite material was proven to be successfully prepared.
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3.2. Electrochemical Performance

Figure 2 shows the constant current charge and discharge curves of the electrode sheets prepared
by the monolithic material PANI, the composite materials PANI @ CQDs and PANI @ FMWCNTs,
and the ternary composite material FMWCNTs @ CQDs @ PANI in a 1 M H2SO4 electrolyte. At a
current density of 0.5 A/g, the specific capacitances of the four materials were measured at 279 F/g,
319 F/g, 362 F/g, and 534 F/g, respectively. Compared to PANI, PANI @ CQDs, and PANI @ FMWCNTs,
the specific capacitance of FMWCNTs @ CQDS @ PANI was increased by 91.4%, 67.4% and 47.5%,
respectively. What is more, the capacitance retention rate of FMWCNTs @ CQDS @ PANI reached 86%
after 1000 cycles, which was higher than 72% of PANI @ CQDs, 60% of PANI @ FMWCNTs and 65%
of pure PANI. In addition, it can be seen from the constant current charge–discharge curves of the
electrode materials PANI, PANI @ CQDs and PANI @ FMWCNTs that their charging time is much
longer than the discharge time, while the constant current charge and discharge curve of the ternary
electrode material shows a near perfect state—almost symmetry [32]. This phenomenon reflects the
synergistic effect between monomers [1,29]. More importantly, compared with PANI, PANI @ CQDS
and PANI @ FMWCNTs, FMWCNTs @ CQDS @ PANI electrode has obvious linear deviation on GCD
curve, indicating that FMWCNTs @ CQDs @ PANI has significant pseudo capacitance characteristic [16].
The reason for this is likely to be manifested in two aspects: (I) as the nature of the material itself is
not good enough, the dispersion is poor in the process of preparing the electrode material, and the
specific surface area is limited, thereby making its electrochemical performance is affected; (II) because
of its large electrical resistance, the electrochemical reversibility is poor, which affects the cycle life and
capacity attenuation of the electrode.
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Figure 2. Constant current charge and discharge curves of PANI, PANI @ CQDs, PANI @ FMWCNTs
and FMWCNTs @ CQDs @ PANI in 1 M H2SO4 electrolyte.

The curves obtained by charging and discharging the four electrode materials PANI, PANI @
CQDs, PANI @ FMWCNTs and FMWCNTs @ CQDs @ PANI in a current density of 5 A/g and 1 M
H2SO4 electrolyte for 20 cycles are shown in Figure 3a–d. It can be seen that the time taken for the
20 cycles of the PANI electrode is only 300 s, while the time taken for the 20 cycles of the PANI @ CQDs
electrode and PANI @ FMWCNTs electrode is more than 1000 s and 1200 s separately. There is no
significant difference between the two composite materials. However, the time taken for the 20-cycle
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of the ternary active electrode has reached more than 2750 s, which is more than twice the time spent
on the binary active electrode. In addition, the specific capacitance decreases with the increase in the
number of cycles [33]. There are two possible reasons: (I) the electrolyte decomposes on the surface
of the electrode material during the electrolysis process [34]; (II) the dissolution and stripping of the
active material and the reduction in the active center during the electrolysis process [35].
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Figure 3. Time curves of (a) PANI, (b) PANI @ CQDs, (c) PANI @ FMWCNTs and (d) FMWCNTs @
CQDs @ PANI constant current charge and discharge cycle for 20 periods.

According to Formula (1), there is a direct relationship between the discharge time and the specific
capacitance. Therefore, it is concluded that the electrical activity of ternary composite is better than
that of PANI, PANI @ CQDs and PANI @ FMWCNTs.

Cs =
I∆t

m(U − ∆U)
(1)

For its specific capacitance retention ratio (Figure 4), it can be seen that the composite material
PANI @ FMWCNTs has poor performance of the electrode material after multiple charge and discharge
comparing PANI @ CQDs, even lower than the retention rate of pure PANI. According to the cyclic
voltammetry curve in Figure 5, there is a significant redox peak. The possible reason is a sharp decay
of the cycle life of the electrode material, as that the electrolyte has a large irreversible capacity during
multiple charge and discharge processes, and the embedding of solvent molecules directly leads to the
serious collapse of the electrode material.
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To further compare the electrochemical capacitive behaviors of PANI, PANI @ CQDs, PANI
@ FMWCNTs and FMWCNTs @ CQDs @ PANI electrodes, CV tests were carried out at 10 mv·s−1,
as shown in Figure 5. It can be seen from the figure that there is a significant redox peak in the
FMWCNTs @ CQDs @ PANI curve in the interval of 0.4–0.5 V, indicating that the redox reaction is
reversible. It can also be observed that the cyclic voltammetry curve is approximately embodied
as an isosceles triangle, which reflects the combination of the electric double layer capacitance and
the tantalum capacitance of the composite material, good reversibility [32,36]. It is also obvious that
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FMWCNTs @ CQDs @ PANI electrode has much higher redox peak current, suggesting increased
specific capacitance. There is also a significant redox peak in the PANI @ CQDs and PANI @ FMWCNTs
cyclic voltammetry curve. The two types of electrodes show the same pair of redox peaks, which are
attributed to redox transition of PANI between CQDs and FMWCNTs [37]. In comparison, the redox
peak in the pure PANI is very weak [38], indicating that the redox reaction is less reversible. Combined
with the conclusions obtained in Figure 2, the electrical activity and reversibility of the PANI @
FMWCNTs electrode in the early stage are better than those in the later stage. In addition, from the
active area of the curve, the electrical activity of the ternary active material is better than the composite
materials PANI @ CQDs and PANI @ FMWCNTs, as well as pure polyaniline, with strong energy
storage capacity [32]. Furthermore, it shows that the compounding of three active materials has been
successful. Therefore, the conclusion about the specific capacitance obtained in the constant current
charge and discharge curve of Figure 2 was verified: ternary active electrode > binary active electrode
> pure polyaniline.

Figure 6 shows the cyclic voltammetric curves of PANI, PANI @ CQDS, PANI @ FMWCNTs and
FMWCNTs @ CQDs @ PANI at a series of scanning rate ranging from 5 to 50 mv·s−1. It can be seen
that: (I) the specific capacitance decreases with the increase in scanning rate (Table 1), which may be
due to the superior charge mobilization per unit time [39]; (II) the response current increases with the
increase in scanning rate, which shows that the composite has good electrochemical reversibility and
high-power characteristics [32].
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Table 1. Specific capacitance of pure PANI, PANI @ CQDs, PANI @ FMWCNTs, and FMWCNTs @
CQDs @ PANI nanocomposites at different scan rates.

Sample/Scan Rates 5 mv/s 10 mv/s 20 mv/s 50 mv/s

PANI 185.24 F/g 155.12 F/g 157 F/g 100.75 F/g

PANI @ CQDs 245.45 F/g 236.36 F/g 215.34 F/g 162.73 F/g

PANI @ FMWCNTs 293.98 F/g 296.30 F/g 251.16 F/g 169.44 F/g

FMWCNTs @ CQDs @ PANI 507.81 F/g 441.41 F/g 355.47 F/g 224.22 F/g

4. Conclusions

In this experiment, FTIR, electron microscopy and electrochemical studies have shown that the
preparation of ternary composite electrode materials has been successful. After the polymerization
of carbon nanomaterials and conductive polymer PANI, its electrochemical performance was greatly
improved, especially in the constant current cycle charge and discharge curve. Its specific capacitance
is much higher than pure PANI and composite electrode materials, and the cycle stability is also greatly
improved. On the other hand, the doped composite material effectively improves the performance
degradation caused by agglomeration, slows down the energy decay, enhances its dispersibility in
solution, increases the specific surface area, improves its stability, and further enhances its electrical
activity and reversibility. In addition, a composite material composed of an electroactive material with
a high specific surface area and a carbon material significantly increases the energy density of the
electrode material and is also a major cause of an increase in specific capacitance. Finally, during the
electrolysis process, the problem of the collapse of the electrode sample after PANI composite requires
further study.
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