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Featured Application: Metabolomics can be a useful tool to support the diagnosis and the
monitoring of colon cancer.

Abstract: Metabolomics represents a promising non-invasive approach that can be applied to identify
biochemical changes in colorectal cancer patients (CRC) and is potentially useful for diagnosis
and follow-up. Despite the literature regarding metabolomics CRC-specific profiles, discrimination
between metabolic changes specifically related to CRC and intra-individual variability is still a
problem to be solved. This was a preliminary case-control study, in which 'H-NMR spectroscopy
combined with multivariate statistical analysis was used to profile urine metabolites in subjects
undergoing colonoscopy for colon cancer diagnosis. To reduce intra-individual variability, metabolic
profiles were evaluated in participants’ urine samples, collected just before the colonoscopy and
after a short-term dietary regimen required for the endoscopy procedure. Data obtained highlighted
different urinary metabolic profiles between CRC and unaffected subjects (C). The metabolites altered
in the CRC urine (acetoacetate, creatine, creatinine, histamine, phenylacetylglycine, and tryptophan)
significantly correlated with colon cancer and discriminated with accuracy CRC patients from C
patients (receiver operator characteristic (ROC) curve with an area under the curve (AUC) of 0.875;
95% CI: 0.667-1). These results confirm that urinary metabolomic analysis can be a valid tool to
improve CRC diagnosis, prognosis, and response to therapy, representing a noninvasive approach
that could precede more invasive tests.
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1. Introduction

Colorectal cancer (CRC) diagnosis is mainly based on invasive, costly, and time-consuming
methods (e.g., endoscopic, histological, and radiographic techniques), as noninvasive methods, such
as stool-based tests (e.g., fecal occult blood test, FOBT) or the carcinoembryonic antigen (CEA) test,
lack sensitivity and specificity [1-3]. Indeed, the diagnostic power of the noninvasive techniques
mentioned above, such as FOBT, is higher in the presence of advanced tumors, while survival and
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prognosis for CRC are positively correlated with an early stage of neoplasia at the time of diagnosis [4].
Thus, new CRC diagnostic tools and a better understanding of the molecular events implicated in CRC
onset and progression are needed for successful treatment [5]. Every cell function is based on metabolic
pathways, and their alterations are reflected by changes in related metabolites. Systematic analysis
of the full set of metabolites in a biological sample is the focus of metabolomics, a major constituent
of a new type of integrated approach called “systems biology”, which might represent a promising
noninvasive tool for the identification of potential markers involved in human tumorigenesis [6,7].
In the last decade, metabolomics analysis of samples from CRC patients has led to the identification
of several molecules specifically expressed, and the monitoring of their fluctuations is emerging as
an important way to detect the early stages of CRC [6,8-12]. On this basis, the present study aimed
to analyze by 'H-NMR spectroscopy the urine metabolomics profile of CRC patients and cancer-free
controls, to identify a possible specific set of metabolic biomarkers that could be proposed as a
noninvasive diagnostic tool to identify CRC patients.

2. Materials and Methods

2.1. Patients and Sample Collection

The study was conducted on patients admitted to the Colorectal Surgical Unit, University Hospital
of Cagliari, with a suspected diagnosis of CRC from fecal occult blood presence or for familiarity
risk. Patients were subjected to colonoscopy. A few days before the colonoscopy procedure they
started a low-fiber diet. The day before the colonoscopy they did not eat solid food, but only liquids.
The night before the colonoscopy, patients took strong laxatives to clear the digestive tract. On the
day of the colonoscopy, they could drink water up to 2 h before the procedure. Based on the outcome
of this examination, the population was divided into two groups: CRC group, comprising 6 cases of
rectal, 7 of colon, and 1 of caecum adenocarcinomas, and unaffected subjects (C) group, including
10 individuals without colon pathologies. Participant characteristics are indicated in Table 1. Patient
status was confirmed by subsequent histological analysis. This study was approved by the Ethical
Committee of the University Hospital of Cagliari, and all participants gave informed consent.

Table 1. Characteristics of the study population.

CRC Patients Controls

Number 14 10
Age (median, range) 67.4,40-88 56.3, 47-67
Male/female ratio 11/3 7/3
CEA (>2.5 ng/mL) 5 0
Cancer site
Colon 6 -
Rectum 7 -
Caecum 1 -
FOBT
Positive 9 N/A
Negative 5 N/A
Dukes’ Stage
A 3 -
B 7 -
C 3 -
D 1 -

FOBT: Fecal Occult Blood Test; N/A: Not available.

2.2. Urine Samples Preparation

Urine samples were collected just before colonoscopies from participants in the study. An aliquot
of 800 puL of urine was transferred into a tube with 8 pL of a 1% aqueous solution of NaN3, to inhibit
bacteria growth, and was stored at —80 °C. Afterwards, to remove solid particles, the sample was
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centrifuged at 12,000x g for 10 min at 4 °C. The supernatant (630 pL) was mixed with 70 pL of potassium
phosphate buffer in D,O (1.5 M, pH 7.4) containing sodium 3-trimethylsilyl-propionate-2,2,3,3,-d4
(TSP) as an internal standard (98 atom% D, Sigma-Aldrich, Milan, Italy). An aliquot of 650 uL was
transferred to NMR glass tubes for 'H-NMR analysis [13].

2.3. TH-NMR Spectroscopic Analysis

'H-NMR measurements of urine samples were carried out at 298 K using a Bruker DRX 500
spectrometer operating at 500 MHz (Bruker Biospin, Rheinstetten, Germany). 'H-NMR spectra were
obtained using a 1D Nuclear Overhauser Enhancement Spectroscopy (NOESY) pulse sequence to
suppress water signals (relaxation delay of 3 s). For each sample, 128 free induction decays (FIDs) were
collected into 64 K data points with a spectral width of 6000 Hz with a 90° pulse, an acquisition time of
25, and a mixing time of 150 ms. The FIDs were weighted by an exponential function with a 0.5 Hz
line-broadening factor before Fourier transformation.

2.4. NMR Data Preprocessing and Multivariate Statistical Analysis

The phase and baseline of NMR spectra were corrected using ACDlab Processor Academic
Edition (Advanced Chemistry Development, 12.01, 2010, Toronto, ON, Canada). The spectral region
comprising the signal of residual water and urea (4.5-6.0 ppm) was removed. The final spectral regions
considered were between 0.5 and 4.5 ppm as well as 6.0 and 9.5 ppm. The ACD Labs intelligent
bucketing method was used for spectral integration [14]. A 0.01 ppm bucket width was defined with
an allowed 50% looseness. The intelligent bucket method finds local minima in spectra and adjusts the
buckets accordingly. In this way, a peak is integrated into one bucket. The area of bucketed regions was
normalized using Median Fold Change Normalization [15], largely preferred to total sum normalization
when studying urine samples, and a matrix was generated. The resultant data sets were then imported
into SIMCA software (Version 15.0, Sartorius Stedim Biotech, Umea, Sweden) for multivariate statistical
analysis. The data sets were then Pareto scaled. Pareto scaling, where each variable is divided by the
square root of the standard deviation, gives greater weight to NMR variables with low intensity, but
it is not as extreme as the UV (Unit Variance) scaling method. Principal component analysis (PCA)
and Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-DA) were used for multivariate
statistical analyses of NMR data. PCA was performed to identify any possible relation (trends, outliers)
between the samples. As far as the outliers are concerned, Hotelling’s T2 and DModX tests were applied.
OPLS-DA analysis was used to reduce model complexity and to better highlight sample discrimination.
The goodness of the model was evaluated using a 7-fold cross-validation and a “permutation test
(400 permutations). The permutation test was calculated by randomizing the Y-matrix (classification
components) while the X-matrix (peak intensity in NMR spectra) was kept constant. The permutation
plot shows the correlation coefficient between the original and the permuted y-variables on the x-axis,
versus the cumulative R2 and Q2 on the y-axis, and draws the regression line. Q2Y intercept values
are a measure of the overfit, and values <0.05 are indicative of a valid model. To highlight potential
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metabolites that mainly contributed to group separation, an S-plot for the OPLS-DA model was
created. The S-plot reveals the contribution of each variable to the predictive component, matching the
covariance p and the correlation p(corr) obtained from the OPLS-DA model. The axes plotted in the
S-plot from the predictive component are p1 versus p(corr)1, representing the magnitude (modelled
covariance) and reliability (modelled correlation) respectively. The variables characterized by high
magnitude and reliability values have an important role in the separation of different groups of samples.
In the S-plot both magnitude (intensity) and reliability are plotted. The statistical significance of the
difference in metabolite concentrations, quantified using Chenomx NMR suite 7.1 (Chenomx Inc.,
Edmonton, AB, Canada), was calculated using an unpaired Welch t-test with a 95% confidence interval.
Chenomx NMR Suite software is useful for identifying and quantifying the metabolites in NMR
spectra [16]. It is equipped with reference libraries containing numerous compound models that are
identical to the spectra of pure compounds obtained under similar experimental conditions. Basically,
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a Lorentzian peak shape model of each reference compound is created from database information and
is overlapped with the actual spectrum. The linear combination of modeled metabolites gives rise to
the total spectral fit, which can be assessed with a summation line [16]. The metabolites with both
VIP > 1 (Variable Importance for the Projection) and a p-value < 0.05 were considered statistically
significant. The Metaboanalyst program (https://www.metaboanalyst.ca/) [17] was used to generate
receiver operator characteristic curves (ROC), calculate sensitivity, specificity, and the area under the
ROC curve (AUC), and Matlab (http://it. mathworks.com/) was used to generate the box-and-whisker
plots. The Random Forest algorithm was used to construct the ROC. It identifies important features
through repeated random sub-sampling cross-validation (CV). In each CV, two-thirds (2/3) of the
samples are used to evaluate the importance of each feature based on decreases in accuracy. The top
features are used to build classification/regression models that are validated on the one-third (1/3) of
samples that were left out of the original model.

2.5. Serum Carcinoembryonic Antigen Level Determination

Blood samples for CEA analysis were collected just before colonoscopy, centrifuged, and stored at
—80 °C before use. The cut-off for CEA 1 was >2.5 ng/mL [12].

3. Results

3.1. 'H-NMR Spectra of Urine Samples

NMR spectral analysis of urine samples revealed a distinct metabolic signature between C and
CRC subjects (Figure 1). The resonance of spectra was assigned to different metabolites based on data
published in the literature [18] and by using the library from the Chenomx NMR suite. Representative
spectra of C and CRC are shown in Figure 1A,B. Major peak assignments of urine samples are reported
in Figure 1, while the chemical shifts of metabolites are summarized in Table S1.
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Figure 1. Spectral area and major peak assignments of a representative 'H-NMR spectra of urine
obtained from unaffected subjects (C) (A) or colorectal cancer patients (CRC) (B).
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3.2. Multivariate Statistical Analysis of NMR Data

PCA was initially applied to the complete data set to highlight possible metabolic differences among
the urine samples of control and CRC subjects and to identify potential outliers (Figure S1 in Supporting
Information). Based on Hotelling’s T2 and DModX tests, two samples were considered outliers and
were removed from the analysis (Figure S2 in Supporting Information). To optimize the separation
between the CRC and C urine samples, the supervised OPLS-DA model was applied. As displayed in
Figure 2, the OPLS-DA scores plot showed clear separation between the two groups of samples. To test
the validity of the model, a permutation test on the PLS-DA model was performed. Results showed that
the model was statistically valid, with a Q2 intercept value of —0.192. To identify the metabolites that
mainly contributed to group separation, an S-plot was constructed (Figure 3). As shown in Figure 3,
the variables selected in the S-plot are indicated with a dotted rectangle and represent the metabolites
responsible for differentiation in the OPLS-DA scores plot. Cutoff values for the covariance of [p| > 0.1
and the correlation |p(corr)| > 0.2 were used. In the S-plot, the control samples were characterized, based
on the discriminant regions, by high creatine, sn-glycero-3-phosphocholine, phenylacetylglycine, and
proline (Figure 3 square A), whereas an increase in citrate, creatinine, acetoacetate, 3-hydroxybutyrate,
3-aminoisobutyrate, tyrosine, tryptophan, histamine, methylhistidine, and fucose characterized the
CRC samples (Figure 3, square B). The relative concentrations of metabolites highlighted in the
S-plot were verified with Chenomx NMR Suite 7.1 and were subjected to the Welch t-test to identify
significant variations in concentration in the two groups. Significantly discriminant metabolites were
characterized by VIP > 1 and p < 0.05. After this analysis, 14 metabolites exhibited VIP > 1, but only
acetoacetate, creatine, creatinine, histamine, phenylacetylglycine, and tryptophan showed significant
variation (with p < 0.05) (Table 2). The relative concentrations, calculated by normalization of the
molar concentration of each metabolite to the total molar concentration of all 14 metabolites for each
sample in the two groups, were compared using box-and-whisker plots. As shown in Figure 4, the data
obtained demonstrated that the CRC group showed increased relative levels of acetoacetate, creatinine,
and histamine, whereas creatine, phenylacetylglycine, and tryptophan levels were lower compared to
the C group. A ROC curve was constructed using only the metabolites with a significant statistical
variation, and the area under the curve of the ROC analysis was found to be 0.879 (95% CI: 0.667-1),
indicating high predictive accuracy of the model (Figure 5). Significantly, only 5/12 CRC patients had
increased CEA levels (CEA > 2.5 ng/mL), showing 42% sensitivity.

4
34
2 4 o (@)
1
7)) @ O
g O
o8
£
oy
4
3 2 1 0 1 2 3

OPLS][1]

Figure 2. OPLS-DA scores plot of 'H-NMR spectra of urine samples: C (full circle) and CRC (open circle)
subjects. The OPLS-DA model was performed using one predictive and one orthogonal component
and is described by R2X, R2Y, and Q2 values of 0.328, 0.957, and 0.539, respectively.
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Figure 3. S-Plot corresponding to the OPLS-DA model used to characterize the most significant

variables associated with group C (dotted rectangle A) and CRC (dotted rectangle B) subjects. Cutoff

values for the covariance of |[p| > 0.1 and for the correlation |p (corr)| > 0.2 were used. Values of

discriminant ppm regions are shown.
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Figure 4. Box-and-whisker plots showing an altered expression of metabolites including acetoacetate,
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presented in Table 2.
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Figure 5. Receiver Operating Characteristic (ROC) analysis. Area under the curve (AUC) was found to
be 0.879. CI: Confidence Interval.

Table 2. Statistical differences of metabolites characterized by Variable Importance for the Projection

(VIP) > 1.
Mean (SD) of Group (mM) 2
Metabolites p-Value?®  FC ¢ (log2 CRC/C)
C CRC

Phenylacetylglycine 2.07 + 0.65 1.34+0.72 0.01 —-0.623
Histamine 1.14 + 0.49 2.26 £0.85 0.02 0.988

Creatine 6.64 +3.34 1.49 +0.98 0.03 —2.150
Tryptophan 1.01 046 0.71 +0.27 0.03 -0.517
Acetoacetate 0.85+0.28 1.64 +1.37 0.05 0.970
Creatinine 26.12 +17.96 37.83 +14.59 0.05 0.535
3-hydroxybutyrate 1.00 + 0.54 1.64 +1.45 0.10 0.706
Tyrosine 0.82+£0.41 0.62 +0.37 0.12 -0.409

Proline 293 +1.12 3.38 £ 0.59 0.13 0.202
3-Aminoisobutyrate 1.09 £ 0.54 2.08 +2.87 0.15 0.933
Sn-glycero-3-phosphocholine 1.62 +0.67 1.88+0.71 0.19 -0.215
Fucose 1.28 + 0.54 1.16 £ 2.87 0.25 0.145
Methylhistidine 1.09 £+ 0.67 1.23 £ 0.37 0.26 -0.180
Citrate 8.57 +4.12 7.53 + 6.94 0.34 0.187

Metabolites were selected on VIP > 1 based on Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA).
2 Relative concentrations were calculated by normalization of the molar concentration of each metabolite to the
total molar concentration of all 14 metabolites for each sample. ® A Welch t-test was performed and the p-value
reported. ¢ FC indicates the fold change (FC) between CRC and C patients. FC with a positive value indicates a
relatively higher concentration present in CRC patients, and a negative value shows a relatively lower concentration
as compared to the C.
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4. Discussion

Previous studies [6,9-12,19] have suggested the use of a metabolomics approach to identify
tumor-associated biological alterations in CRC patients.

In the present study, 'H-NMR spectroscopy coupled with pattern recognition was used to profile
urine metabolites of subjects with (CRC) or without (C) CRC. Significantly, metabolic perturbations
were evaluated between the urine samples of CRC patients and individuals undergoing colonoscopy
for positive FOBT or familial risk of CRC, to whom a similar low-fiber, controlled diet had been
administered for few days before they were subjected to the examination. Urine samples were collected
just before the colonoscopy. Therefore, both CRC and C groups were evaluated in the same short-term
dietary conditions, consisting of a low-fiber diet for a few days. Since diet represents an important factor
that contributes to inter-individual variability, our sample collection approach reduced variability
related to a different nutritional status. To date, our study, despite the small number of subjects
analyzed, is the first to investigate the metabolomics profiles of potential CRC patients under a similarly
controlled short-term diet. Based on identification of metabolites with significant statistical variations
between CRC and C groups, a ROC curve was constructed to assess the sensitivity and specificity of the
biomarker candidates for early detection of CRC. The AUC of the ROC analysis denoted high predictive
accuracy of the model. Furthermore, CRC patients showed a urine metabolic profile characterized by a
higher sensitivity compared to CEA serum levels. The sensitivity of CEA is well known to be low, but it
is often used as a serum biomarker in CRC for integrating diagnosis and monitoring the follow up [20].
Our data confirmed CEA detection limitations, including its relatively low sensitivity and specificity [2],
and suggested the possibility of integrating these data with the metabolomics approach. Our study
indicates a better sensitivity and specificity of the urine profile test in CRC samples compared to those
analyzed with "H-NMR spectroscopy by Wang et al. [21] in adenomatous polyp samples. The improved
sensitivity and specificity of urine profile tests in CRC samples may be due to a more advanced stage
of colon disease in our samples in the CRC group. In our study, the metabolites identified were the
end products of several metabolic pathways relating to lipid and amino acid metabolism, which are
known to be perturbed during tumor cell proliferation [10]. We found that the levels of acetoacetate,
creatinine, and histamine were increased, while those of creatine, phenylacetylglycine, and tryptophan
decreased in the urine of the subjects affected by CRC. The increased concentrations of acetoacetate
observed in CRC urine may be related to lipid metabolic changes associated with tumor development.
The increased content of acetoacetate in our CRC samples could be related to increased (3-oxidation due
to the strong energy demands accompanying tumor growth. Indeed, in tumor cells, acetyl-CoA is not
converted into citrate by the tricarboxylic acid cycle but is processed through an alternative pathway
to form ketone bodies, which represent a very efficient fuel source, preferable even to glucose [11,22].

Cancer cells use some amino acids as an energy source [23]. In our study, we found that creatinine
levels increased while those of creatine and tryptophan decreased in the urine of CRC patients.
Urinary creatinine increase is normally connected to muscle catabolism, breakdown of proteins, or a
combination of the two processes [24]. The increased creatinine levels observed in our tumor samples
may be due to the non-enzymatic and irreversible conversion of creatine [25], resulting in significantly
decreased levels in CRC urine samples. On the other hand, we found decreased tryptophan levels
in CRC urine samples. Altered levels of tryptophan in urine have been observed in other types of
tumors, such as breast and bladder cancer [26]. Tryptophan is an essential amino acid metabolized in
tumor microenvironments, immune-privileged, or inflammation sites. Degradation of tryptophan by
the enzyme indoleamine-2,3-dioxygenase (IDO) is considered to be an immune defense mechanism,
which inhibits the growth of intracellular bacteria, viruses, parasites [27], and malignant tumor
cells [28]. Based on different pieces of evidence [29,30], the catabolic products of tryptophan in cancer
are considered important microenvironmental factors that suppress antitumor immune responses.
Another metabolite that was increased in our CRC urine samples was histamine. It has been reported
that histamine can regulate the proliferation and angiogenesis of cancer cells [31-33]. Finally, another
metabolite decreased in our CRC urine samples was phenylacetylglycine, which is considered a minor
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metabolite of fatty acids. Increased excretion of phenylacetylglycine has been observed in gastric cancer
patients, in which its levels correlated with the cancer T stage [6], and in rats treated with alkylating
agents that produced precancerous colorectal lesions possibly related to gut microflora metabolism
dysbiosis [34]. Significantly, even if the low number of subjects investigated does represent a limit of
the work, a recent study by Wang et al. [11] analyzing the metabolomics profiles of CRC versus healthy
patients reported similar results for acetacetate and phenylalanine, a precursor of phenylacetylglycine.
In addition, a recent study by Deng et al. [35] identified four metabolites as robust CRC urine biomarkers:
proline, diacetylspermine, kynurenine, and glucose. Because kynurenine is a tryptophan metabolite, its
increased levels correlate well with the decrease of tryptophan found in our CRC samples.

In conclusion, metabolomics analysis showed a different urinary metabolic profile between CRC
patients and healthy controls undergoing colonoscopy. Altered levels of some metabolites resulted in a
significant correlation with colon cancer and were able to distinguish with accuracy CRC patients from
C. Both our results and data from literature confirm that urinary metabolic profiling is an effective tool
for identifying CRC, and it may be useful in improving diagnosis, prognosis, and response to therapy,
representing a noninvasive diagnostic support to be used before other more invasive tests. Though a
limit of the study is the number of subjects investigated, a strength of the study is the similar nutritional
status of all the subjects undergoing colonoscopy. Our results suggest that for CRC identification,
the metabolomics analysis does not need to be associated with colonoscopy considering that similar
discriminant results can be observed without it. The next important step is the validation of these data
in an independent larger group of patients to transfer this information into the clinic.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/16/5401/s1,
Figure S1: Principal Component Analyses (PCA) scores plot of 1TH-NMR spectra of urine samples: C (full circle)
and CRC (open circle) subjects. Two outliers are indicated with arrows. Figure S2: Hotelling’s T2 versus DModX
plot: C (full circle) and CRC (open circle) subjects. Table S1: Proton chemical shifts of the metabolites identified in
the 500 MHz 1H-NMR spectra of urine samples.
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