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Abstract: Transportation systems play a major role in modern urban contexts, where citizens are
expected to travel in order to engage in social and economic activities. Modern transportation
systems incorporate technologies that generate huge volumes of data, which can be processed
to extract valuable mobility information. This article describes a proposal for studying public
transportation systems following an urban data analysis approach. A thorough analysis of the
transportation system in Montevideo, Uruguay, and its usage is outlined, combining several sources
of urban data. Furthermore, origin-destination matrices, which describe mobility patterns in the city,
are generated using ticket sales data. The computed results are validated with a recent mobility survey.
Finally, a visualization web application is presented, which allows conveying mobility information in
an intuitive way.
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1. Introduction

Mobility of citizens is a critical issue emerging from the urbanization process. The geographical
organization of urban scenarios demands citizens to travel for engaging in social and economic
activities. Public transportation systems are the cornerstone of urban mobility, as they represent the
most efficient, sustainable, and socially fair mode of transportation [1]. Understanding the synergy
between citizens and public transportation is a key factor to improve mobility in a city.

Modern smart cities use technology in order to improve urban services [2]. Related to smart
cities are Intelligent Transportation Systems (ITS), using technology to improve mobility. ITS collect
large volumes of urban data [3] that allow understanding the mobility of citizens. For this purpose,
urban data analysis arises as a valuable tool to derive information from raw urban data sources.

Understanding the dynamics of mobility is crucial to improve transportation systems. Mobility is
described through origin-destination (OD) matrices that indicate the number of passengers traveling
between relevant locations. Traditionally, OD matrices are generated based on surveys or manual
passenger counts. However, these methods are very expensive to be carried out regularly, so they offer
a partial and outdated view of mobility patterns in a city [4]. ITS incorporate technology to locate
vehicles and pay for tickets in public transportation. As a by-product these technologies generate
valuable data that can be processed to estimate OD matrices.

This manuscript extends our previous conference article “Urban data analysis for the public
transportation system of Montevideo, Uruguay” [5], presented at the II Ibero-American Congress on
Smart Cities. The new scientific contributions in this article include a characterization of the public
transportation system in Montevideo and its users derived from ITS data, extending the previous work
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by focusing on characterizing the mobility patterns of citizens. In addition, a destination estimation
algorithm is proposed and applied to ticket sales data to generate OD matrices that describe mobility in
the city. The computed results are compared against the findings of a recent mobility household survey.
Finally, a visualization tool is also presented which allows presenting the computed OD matrices to
stakeholders in an intuitive fashion.

The article is structured as follows. Section 2 presents the methodology for urban data analysis
and reviews related works. Section 3 describes the studied scenario and results from the data analysis
to describe the use of the system. The estimation of OD matrices is presented in Section 4, along with
a comparison against the mobility survey and a description of the visualization tool. Finally, Section 5
presents the conclusions and the main lines of future work.

2. Methodology and Related Works

This section outlines the urban data analysis methodology applied to characterize mobility using
ITS data as well as the main related works on the topic. The methodology used to analyze ITS data is
presented in Section 2.1 and a review of related works is outlined in Section 2.2.

2.1. Methodology

This subsection presents the methodology applied for the analysis of ITS data.

2.1.1. Urban Data Analysis

Data analysis is the process of collecting and processing raw data to extract meaningful
information to provide supporting evidence to help decision-making. Alternative workflow proposals
exist to describe the data analysis process. This work applies a workflow proposed by Schutt and
O’Neil [6] (Figure 1).

Figure 1. Data analysis workflow applied in this work.

The data analysis process starts and ends in the current reality. In urban contexts, this implies
collecting raw data from a given city and, in the end, communicating findings to authorities and
citizens. To this end, the data analysis process is comprised of several phases. Initially, raw data
must be processed, including placing data into tables, inspecting datasets, and cleansing data to
detect corrupt or inaccurate records. After that, Exploratory Data Analysis (EDA) [7] is performed.
EDA aims at describing what data can tell, beyond a formal modeling and hypothesis testing
phase. Urban data tends to come from a variety of diverse and dynamic sources (e.g., sensors,
mobile phones, social media), thus EDA becomes mandatory for urban data analysis to detect
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inaccuracies. After EDA, statistical models and algorithms (e.g., inferential statistics, machine learning)
are applied to identify relationships among the data. Finally, results are communicated, usually through
visualization techniques.

EDA makes an intensive use of data visualization with the goal of efficiently displaying
measured quantities through graphics. Traditionally, data visualization techniques were mainly
dominated by charts and diagrams comprised of numerical data. However, areas such as urban
data analysis, which demand combining quantitative and qualitative data, require more advanced
means of visualizing results for effective communication. Since urban data usually has a prevalence of
geographic components, urban data visualization combines classic statistical graphics with Geographic
Information Systems (GIS).

2.1.2. Origin-Destination (OD) Matrices

Mobility is usually described using OD matrices, which indicate the number of trips between
relevant locations in a city [8]. Each trip can have multiple legs, if a passenger makes intermediate
stops and transfers between vehicles to get to their final destination. Thus, when building OD matrices,
the destination of a trip is considered as the final destination of the sequence of legs, where a passenger
is assumed to go to perform an activity. Different divisions can be used to analyze mobility at a finer
(e.g., specific locations, bus stops) or coarser grain (e.g., municipalities, neighborhoods). OD matrices
can be built for specific periods of time to characterize mobility in different days (e.g., working days vs.
weekends) or times of the day (e.g., peak vs. non-peak hours).

Traditionally, OD matrices are generated using information from mobility surveys. Unless
performed regularly, surveys offer a partial and outdated view of mobility patterns. Additionally,
in large cities, where mobility analysis requires detailed zonification and time disaggregation, surveys
demand very large sample sizes to compute results with statistical significance. As a consequence,
surveys are usually a very expensive mean to characterize urban mobility. Thus, there is a growing
interest in using data analysis to estimate OD matrices from available sources of urban data.

Automatic Fare Collection (AFC) systems automate ticketing of a public transportation network.
Most AFC systems are comprised of fare media, read/write devices for these media, networks for
communication, and back-office systems. Contactless smart cards are the de facto fare media in
AFC systems. Pelletier et al. [9] provided a thorough review on the use of smart cards in public
transportation systems. Different alternatives to estimate OD matrices using AFC data are reviewed
next. The trip-chaining method used in this work is described in Section 4.

2.2. Related Works

A variety of sources have been used to estimate OD matrices in transportation systems.
Li et al. [10] identified three models for destination estimation: (i) the probability model, which
computes the alighting probability based on the traveled distance and the number of passengers
on board, but without identifying pairs (board–alight) corresponding to the same passenger; (ii) the
deep learning model, which requires boarding and alighting data for training, being more suitable to
railway/subway systems where passengers are required to validate their cards both to enter and exit
stations; and (iii) the trip chaining model. The most relevant works based on the trip chaining method,
i.e., the one applied in this article, are reviewed next.

The trip chaining model [11] infers destinations by looking at the history of trips of each cardholder.
Two hypotheses are considered: the origin of a new trip is the destination of the previous one, and at
the end of the day, users return to the origin of their first trip of the day. The proposed model was
applied to the subway system of New York, where nearly 80% of riders use smart cards. The computed
OD matrix was validated using station exit counts at different times of the day and using peak load
passenger volume data and a trip assignment model. The authors estimated that 90% of destinations
can be accurately inferred for a 78% share of the total number of subway users.
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Trépanier et al. [12] proposed using the trip chaining model for estimating the destination of
passengers boarding buses with smart cards, following a database programming approach. Trips for
which chaining is not possible were compared with all other trips of the month for the same user
to find similar trips with known destination. The experimental evaluation used real datasets from
Gatineau, Quebec. The proposed approach allowed estimating the destination of 66% of the trips.
However, the real estimation accuracy could not be assessed due to the lack of a second source of data
(e.g., surveys) for comparison.

Wang et al. [13] applied the trip chaining method to infer bus passenger origin-destination from
smart card transactions from London, UK. Results were compared against the passenger intercept
survey performed every five to seven years for each bus route and includes the number of people
boarding and alighting at each bus stop. The analysis showed that destinations could be estimated for
nearly 57% of all trips. When compared to the survey, the difference on the estimated destinations
were below 4% on the worst case.

Munizaga and Palma [14] estimated OD matrices in the multimodal transportation system of
Santiago, Chile, where passengers can use their smart cards to pay for tickets at metros, buses, and bus
stations. The proposed approach was evaluated using smart card datasets corresponding to two
different weeks, with over 35 million transactions each. The destination and time of alighting was
estimated for over 80% of the transactions. Later [15], the authors validated the main assumptions of
the model by comparing the estimated OD matrices with data from surveys and personal interviews to
passengers. The authors concluded that the proposed model was highly reliable, accurately estimating
84.2% of the inferred destinations.

Alsger et al. [16] analyzed one week of smart card data (628,479 transactions) from bus, train,
and ferry networks of South East Queensland, Australia. The dataset contained both origin and
destination records, since passengers are required to validate their smart cards when boarding and
alighting. Therefore, the authors were able to study different variants of the trip chaining method and
compare the resulting OD matrices against the real data from AFC records. Results showed that for
nearly 88% of the passengers the last destination of the day was within a walkable distance of their
first origin, thus validating one of the key assumptions of the trip chaining model.

The analysis of related works allows identifying several proposals for using ITS data analysis to
understand and improve urban mobility. This article expands the original trip chaining method by
also considering transfers between bus lines. Thus, the OD matrix estimation considers trips that may
include several bus trips involving transfers as well as walks between bus stops to do those transfers.

This article proposes applying existing knowledge about urban data analysis and OD matrix
generation to understand mobility using ITS data. As a case study, data from the ITS in Montevideo,
Uruguay, is analyzed in Section 3 and an OD matrix estimation procedure is outlined in Section 4.
There are no previous works using ITS data to understand and improve urban mobility in Montevideo.
Therefore, the research contributes with a novel proposal to assess transportation systems and
understand mobility patterns, and applies it to real data from the ITS in Montevideo, Uruguay.

3. Characterizing Public Transportation System

This section presents the urban data analysis process aimed at characterizing public transportation
systems using ITS data. An overview of the case study is presented in Section 3.1. Then, Section 3.2
presents the urban data analysis process and its results are discussed in Section 3.3. Finally, Section 3.4
presents two practical use cases to show the advantages of using data analysis for authorities and
transport planners.

3.1. Overview of the Case Study

This section presents an overview of the case study: the public transportation system of
Montevideo, Uruguay.
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3.1.1. Montevideo, Uruguay

Montevideo extends to an area of only 530 km2 and is comprised of eight municipalities and
1063 census tracts, which are defined by the National Institute of Statistics [17]. Census tracts are
the administrative division used in census and surveys performed by the state and, consequently,
most socioeconomic indicators available are aggregated using this zonification.

Montevideo has an estimated population of 1,319,108 unevenly distributed, with high population
densities near the coastline bordering the Río de la Plata estuary. A socioeconomic description of
the population can be obtained by studying Unsatisfied Basic Needs (UBNs), which identify the lack
of goods or services that prevent citizens from exercising their social rights. The choropleth map in
Figure 2 indicates the percentage of households with one or more UBNs. The most vulnerable citizens
are located farther away from the coast and the city center, in sparsely populated areas.

Figure 2. Percentage of households with one or more UBNs in Montevideo, Uruguay.

3.1.2. The Public Transportation System In Montevideo, Uruguay

The public transportation system in Montevideo is comprised of 1528 buses operating in 145 main
bus lines with different variants, accounting for outward and return trips, as well as shorter versions
of the main line. The total number of different bus lines is 1383 (Figure 3). The average bus line length
is 16.7 km (median: 16.4 km, longest line: 39.6 km). Intuitively, these figures strike as remarkably large.
The bus network is comprised of 4718 bus stops, most of them located in the city center. This fact
remarks the important role of this area within the bus network.

Contact-less top-up smart cards are used to allow passengers to pay for tickets without using
physical money. Smart cards are are linked to the identity of the owner (a valid ID is required to
get one). Two different types of bus tickets exist: one-hour tickets allow boarding up to two buses
within an hour, while two-hours tickets grant unlimited bus transfers within a period of two hours.
Passengers may transfer between any bus line at any bus stop. In practice, this means that a passenger
can even make an outward and return trip in the same line, as long as the boarding time of the second
bus is within the validity period of the ticket. Passengers do not validate their smart cards when
alighting a bus. This constitutes one of the main challenges for building OD matrices.
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Figure 3. Bus lines of the public transportation system of Montevideo, Uruguay.

3.2. Urban Data Analysis Process

This section describes the urban data analysis process performed with the goal of characterizing
how citizens of Montevideo use the public transportation system.

3.2.1. Data Collection and Processing

The data analysis process used national [18] and city [19] open data, and public transportation
system data (GPS bus location and bus ticket sales payed with smart cards during 2015, over 150 GB of
raw data).

The bus location dataset holds the position of each bus sampled every 10–30 s, including the
following information: bus line identifier, trip identifier to set appart different trips of the same bus
line, GPS coordinates, instant speed, and time stamp corresponding to the GPS measure. Ticket sales
data contain smart card transaction records, including: trip identifier (which allows linking to the
bus location dataset), GPS coordinates of the smart card validation, bus stop identifier, time stamp
of the smart card validation, unique smart card identifier (hashed for privacy purposes), number of
passengers traveling with the same smart card, and leg number (for trips involving transfers).

The data collection process was straightforward in the case of open datasets. The main efforts
on this phase were related to data provided by Intendencia de Montevideo. Several meetings with
authorities were celebrated, until an agreement was signed granting access and use to the data for
research purposes.

Regarding the processing phase, the studied data was structured in Python pandas dataframes.
Among the many transformations performed to the datasets, the most significant one was related to
the Coordinate Reference System (CRS). In order to be able to combine different datasets, all geospatial
data was transformed to WGS 84 (EPSG:4326), which is the standard CRS used by GPS.

To present clear visualizations, the reported results are from tickets sold during May 2015. Pre-hoc
analysis of the full dataset suggest that this month is representative of the trends in the complete
dataset. The source code for the analysis is configurable to process any subset of the full dataset.

3.2.2. Exploratory Data Analysis

An initial EDA was performed to characterize the dataset of sales with smart cards. Figure 4
shows an aggregated visualization of the geolocation of 20.4 million sales (interactive version available
at www.fing.edu.uy/~renzom/msc). Considering the active population in Montevideo (between

www.fing.edu.uy/~renzom/msc
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15 and 64 years old, ∼830 K people), this corresponds to 25 transactions per inhabitant per month.
Dividing the total number of transactions by the total number of unique smartcards used at least
once during May (∼654 K), we get a ratio of nearly 30. In Figure 4, the location of each smart card
transaction was projected on to a grid of bins of size equal to one pixel of the 900 × 750 image. Then,
transactions on the same bin were aggregated and a color mapping was applied to generate the final
image, where brighter areas indicate high concentration of ticket sales.

Figure 4. Aggregated sales with smart cards. Whiter pixels indicate more ticket sales, redder fewer
ticket sales. Black pixels indicate no tickets were sold at that location.

The initial visualization of aggregated sales location data uncovers several interesting facts of
the underlying dataset. Firstly, the city center is clearly different from other zones, with a significant
higher number of smart card transactions. Additionally, the main avenues can be clearly identified
due to the higher number of ticket sales. Furthermore, some sales activity is registered outside of the
limits of Montevideo. This is an important insight that guided the data cleansing process described in
the following section.

3.2.3. Data Cleansing

Data cleansing is mandatory to detect and correct corrupt or inaccurate records [20]. Since no
backup source of information was available, the chosen strategy was to delete records that appeared to
be corrupted. Filtered data included: records with no corresponding bus line, consecutive tap-ins in
the same bus, transactions on May 1st (since they correspond to Labour Day, when the public transport
system is mostly inoperative), and transactions occuring in bus lines or bus stops that no longer exist
(since sales data correspond to 2015). During the complete data cleansing process 311,772 records were
filtered, accounting for 1.53% of a total of 20,359,835 records.

3.3. Results and Discussion

This section outlines the main results of the urban data analysis process to characterize the use of
the public transportation system in Montevideo, Uruguay. A description of the use patterns of smart
cards is presented, as well as a spatial and temporal analysis of the use of the transportation system.
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3.3.1. Cardholders

The sales dataset holds transactions made with 654,228 different smart cards. As explained in
Section 3.2.1, several passengers may travel together using a single smart card. However, the vast
majority of passengers use their own personal smart card: over 97% of transactions correspond to
individual tickets. Therefore, smart cards can be confidently assumed to represent a single passenger.
This is a key assumption used in the OD matrix estimation presented in Section 4, where all passengers
under the same smart card are assumed to travel from origin to destination together. Thus, the fact
that few group trips are performed using the same smart card provides a certain level of robustness to
the OD matrix estimation model.

Data analysis can also give insight into the frequency of use of the transportation system. Table 1
reports descriptive statistics of daily and monthly transactions per smart card, including the minimum
(min) and maximum (max) values, the 25th (Q1), 50th (Q2), and 75th (Q3) percentiles, and the Median
Absolute Deviation (MAD). The 50th percentile corresponds to the median of the distribution of
transactions per smart card. Monthly statistics consider all transactions done by each cardholder.
Daily statistics only consider days for which at least one transaction was made. Values corresponding
to the complete dataset are presented (all weekdays) and also considering only working days and only
weekends. Additionally, daily and monthly sales distributions considering all weekdays are displayed
in Figures 5 and 6, respectively. Plots are limited to the most occurring values for better visualization.

Table 1. Descriptive statistics of daily and monthly smart card transactions.

min Q1 (25%) Q2 (50%) Q3 (75%) max MAD

all weekdays daily 1 2 2 4 54 1.2
monthly 1 8 22 47 528 22.5

working days daily 1 2 2 4 54 1.2
monthly 1 7 19 40 492 19.0

weekends daily 1 2 2 3 32 1.1
monthly 1 3 5 11 151 5.3

Figure 5. Distribution of daily smartcard transactions.
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Figure 6. Distribution of monthly smartcard transactions.

Regarding monthly use, the median cardholder performs 22 transactions per month, nearly
one transaction per working day in the month. However, the MAD is 22.5, suggesting a significant
difference between regular and sporadic users of the public transportation system. Regarding daily
use, the median cardholder performs two smart card transactions each active day (i.e., each day with
at least one transaction). Additionally, more cardholders perform four rather than three transactions
(see Figure 5), which could be explained by passengers using trips involving a transfer. Thus,
two transactions correspond to the outward trip and the remaining two transactions to the return trip.
Daily usage is higher on working days than weekends when looking at the top quartiles. Additionally,
monthly usage is also sensibly higher on working days than on weekends. Taking into account that the
studied month had nine days in weekends, users perform (in median) roughly one transaction in the
whole weekend vs. one transaction per day on working days. This is consistent with the information
from the 2016 mobility survey, which states that commutes to work are the main purpose of traveling,
accounting for nearly 30.9% of all trips. An in-depth analysis of the effect of the public transportation
system in employment in Montevideo is studied in [21].

Identifying outliers within the smart card use statistics can be a useful tool for authorities of
the public transportation system. On the one hand, cardholders with very few monthly transactions
can be identified by their card ID. In the studied dataset, 15,440 cardholders performed a single trip
during the whole month of May 2015. Targeted marketing campaigns could be designed to encourage
disengaged citizens to use public transportation more frequently. On the other hand, cardholders with
a large number of transactions can also be identified. In the studied dataset a single card was found to
perform 54 transactions in a single day. This information can help authorities to further investigate
and identify possible abuses to the system.

3.3.2. Transfers

As introduced in Section 3.1.2, the fare scheme allows transfers between any bus line at any bus
stop. Thus, a trip can be comprised of several legs, with bus transfers between each leg. Results show
that 55.99% of all transactions involve a single direct trip. Similarly, 40.26% of smart card transactions
correspond to a trip comprised of two legs and involving one transfer. The number of transactions
involving more than two bus transfers are less than 4% of the total dataset. The average number of
legs for the studied dataset is 1.37. According to the household mobility survey, the average number of
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legs when travelling by bus is 1.5. The slight difference between both estimations might be explained
due to the fact that the mobility survey considers the walks to/from the bus stop as separate legs (if
they are longer than 500 m). Since the cardholders identity is not included in the study dataset for
privacy issues, personal information (e.g., home address) cannot be used to infer the walked distance
to/from the bus stop. Thus, direct trips requiring the passenger to walk more than 500 m to reach the
bus stop are counted as two-legged trips in the mobility survey and as one-legged trips in the urban
data analysis approach.

3.3.3. Temporal Analysis of Transactions

The AFC in the public transportation system records the date and time of each transaction, which
allow analyzing the distribution of transactions across time.

Firstly, the number of transactions occurring each day of the week was analyzed. As expected,
working days show the largest concentration of transactions with an average of ∼3.31 M of transactions
and a median of ∼3.44 M. In contrast, transactions during weekends drop significantly, with a clear
difference between Saturdays (∼2.19 M transactions) and Sundays (∼1.28 M transactions).

Then, a finer-grain analysis was performed to study the distribution of transactions across time.
Figure 7 shows an histogram with the number of smart card transactions at each hour of the day
during May 2015. Two clear peaks of smart card transaction activity were detected during the morning
(7:00–8:00) and the afternoon (16:00–18:00), probably due to commuting. The morning peak is preceded
by an increasing trend of sales starting at 3:00 while the afternoon peak gradually decays as the night
approaches. However, an interesting observation is that another peak occurs at midday (12:00–13:00)
which might not be foreseen prior to the analysis. In fact, the overall largest amount of transactions
occur at 13:00. Finally, it is worth noting that the lowest number of ticket sales happen at 3:00.
This finding is used for the OD matrix estimation algorithm presented in Section 4, which considers
each new day as starting at 3:00, when fewer sales are made. Results are in line with the 2016 household
mobility survey.

Figure 7. Histogram of sales with smart cards at different times of the day.

3.3.4. Spatiotemporal Analysis of Transactions

Spatial and temporal dimensions of smartcard transactions can be combined to gain insights
that might not arise when studying each dimension independently. Figure 8 shows an aggregated
visualization of the spatiotemporal distribution of sales in Montevideo. Each transaction occurring
at a given pixel in the image is categorized according to its time stamp. Then, the color of
the pixel is set considering the amount of transactions on each category. The color mapping,
which is detailed in the visualization, corresponds to: red (0:00), yellow (4:00), green (8:00), cyan
(12:00), blue (16:00), and purple (20:00). An interactive version of the visualization is available at
www.fing.edu.uy/~renzom/msc.

www.fing.edu.uy/~renzom/msc
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Figure 8. Spatiotemporal distribution of trips in Montevideo.

The city center has most transactions taking place between noon and the afternoon, which might
be explained by the fact that many offices and public entities are located in this area. Consequently,
most transactions correspond to people commuting back to their homes by the end of the office-hours.
A clear difference can also be noticed between areas near the coast and areas farther away. The majority
of transactions in areas farther away from the coast occur earlier in the day than those near the coast.
This might be explained by people commuting early in the day from these areas to workplaces located
closer to the city center. It is worth noting that, as outlined in Section 3.1, areas farther away from the
coast are usually more vulnerable from a socioeconomic point of view.

Figures 9 and 10 show choropleth maps of the number of transactions occurring in each census
tract in the morning and evening, respectively.

(a) 6:00–7:00 (b) 7:00–8:00

Figure 9. Choropleth map of smart card transactions in the morning.

In the morning, those areas farther away from the city center and the coastline have higher
smart card transaction activity early (6:00–7:00) than those near the coast. Transaction activity in the
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city center and near the coastline intensifies an hour later. Between 7:00 and 8:00 large amounts of
transactions occur in most areas of Montevideo. A few census tracts show a specially large number of
transactions. These areas correspond to the location of bus terminals, where several bus lines converge
and many transfers between bus lines occur.

(a) 18:00–19:00 (b) 21:00–22:00

Figure 10. Choropleth map of smart card transactions in the evening.

In the evening, a large number of transactions occur in the city center. This is explained by people
returning to their homes from workplaces in the city center at the end of office hours (18:00–19:00).
Between 21:00 and 22:00 the amount of sales in the whole territory significantly drops. The areas with
some remaining transaction activity are, once again, those located farther away from the city center
and the coastline. This might be explained by people living in poorly connected areas taking longer to
commute back to their homes by the end of the working day or also due to citizens working during
night shifts and commuting to their workplace.

Spatiotemporal analysis can be combined with the population and socioeconomic description.
Areas with transactions occurring early in the morning/late at night are also more vulnerable from
a socioeconomic point of view, as outlined in Section 3.1. This study helps understanding the variation
of mobility patterns for citizens with different socioeconomic levels [22].

3.4. Practical Use Cases

This subsection presents two relevant case studies to illustrate different ways in which the
proposed methodology applying data analysis can contribute to help authorities with the task of
operating public transportation service and improving the quality of service.

3.4.1. Event Detection

The analysis of anomalous registers in either time and/or location data of ticket sales can help
authorities to identify special events taking place in the city. The image in Figure 11 presents
an aggregated visualization combining spatial and temporal data of smart card transactions for
a neighborhood of Montevideo. A small cluster of red pixels (highlighted with a white circle in the
figure) is detected on the map. This cluster corresponds to bus ticket sales occurring at midnight,
representing a clear outlier from the rest of ticket sales in the dataset. Taking in consideration the
location of those ticket sale records (near an outdoor venue), it is reasonable to assume that the
transactions correspond to a special social event (e.g., a concert) held at night in that venue. In case the
situation repeats periodically, specific action can be taken to satisfy that mobility demand. This relevant
case exemplifies how city authorities can take advantage of a methodology using urban data analysis
to detect periodical special events in the city and plan the transportation services in response to
those events.
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Figure 11. Event detection: smartcard transactions at midnight near an outdoor venue.

3.4.2. Driving Behavior and Safety

Another relevant application of urban data analysis is related to safety in the public transportation
service. The heatmap on Figure 12 reports the location of smartcard transactions near a roundabout.
The bus stops nearby are marked in blue. The figure shows that a large number of transactions are
recorded when the bus is within the roundabout. This action might be related to a relevant safety
issue, since passengers validate their cards standing in front of the ticket machine. Furthermore,
this driving pattern is related to a more serious safety issue in those buses where drivers are also in
charge of operating the smart card terminal and selling tickets, as in more than 60% of the bus fleet in
Montevideo. Data analysis can be applied to analyze and audit driving behavior, to detect anomalous
situations that can impact on safety. This way, the proposed methodology helps improving the safety
of passengers, bus drivers, pedestrians, and drivers of other vehicles.

Figure 12. Driving behavior and safety: spatial distribution of smartcard transactions in a roundabout.
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4. Origin-Destination Matrices Estimation

This section outlines the details of the generation of OD matrices using data from the ITS in
Montevideo, Uruguay. Section 4.1 describes the destination estimation algorithm used to build OD
matrices. Then, Section 4.2 presents the computed OD matrix and its validation against a mobility
survey is presented in Section 4.3. Finally, an online visualization tool for the computed OD matrix is
outlined in Section 4.4.

4.1. Implemented Solution

This subsection presents the destination estimation algorithm using trip chaining and its
adaptation to the case study of the ITS in Montevideo.

4.1.1. Destination Estimation Algorithm

The origin of trips is identified by combining smart card and GPS location data, since the location
of the bus is recorded whenever a passenger pays for a ticket using a smart card. However, since
passengers are only required to validate their smart cards when boarding and not when alighting the
bus, the destination of each trip is unknown and must be estimated in order to generate OD matrices.

A destination estimation algorithm was developed based on the assumptions of the trip chaining
method: (i) the origin of a new trip is near the destination of the previous one; and (ii) at the end of the
day, users return to the origin of their first trip of the day. Figure 13 shows an example of the proposed
method: the passenger performs three smart card transactions throughout the day. The boarding bus
stops associated to each transaction are marked in green, and the estimated destinations of trips and
trip legs are marked in orange.

Figure 13. Example of the trip chaining algorithm to estimate destinations.

In the example, the first transaction of the day occurs at 07:30, when the passenger boards bus line
A at bus stop A19. Later, at 08:15, the passenger boards bus line B at bus stop B9 without paying for
a new ticket. Since the boarding occurred within the validity of the previous ticket, the trip is assumed
to be a transfer between buses. The closest stop from line A to bus stop B9 is A23, which is assumed
to be the destination of the leg trip starting at 07:30. The last transaction of the day occurs at 17:20,
when the passenger boards line C at bus stop C4 and pays for a new ticket. Bus stop B12 is identified as
the destination of the leg trip starting at 08:15, since it is the closest stop from line B to bus stop C4.
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Since a new ticket was payed for, no further transfers are considered. Thus, an OD pair is identified
between bus stops A19 and B12. Finally, the destination of the last trip of the day is assumed to be bus
stop C8, since it is the closest bus stop of line C to the origin of the first transaction of the day (A19).
As a result, two OD pairs are identified, one consisting of two leg trips with a bus transfer and the
other being a direct trip.

4.1.2. Configuration for the ITS in Montevideo

The destination estimation algorithm processes sales data grouped in chunks corresponding
to 24 h periods. Records are split at the time of the day when the lowest sales activity is observed,
as recommended by Munizaga et al. [15]. In the studied scenario, the lowest amount of sales occurs
at 3:00.

The destination estimation algorithm limits the search of a possible destination bus stop to
a configurable radius. The search is sensitive to this parameter: large values may incorrectly identify
destinations when other transport modes are used within the chain of bus trips, while a small radius
might miss to identify destinations for trips that involve large walks from the bus stop to the destination.
In the reviewed works of the related literature, several values were found for this parameter: 800 m [16],
1000 m [13,14], and 2000 m [12]. In this work the maximum distance to search for a destination bus
stop was set to 1000 m, which is the median of the values found in the related literature. Additionally,
1000 m is also the maximum distance used to classify a walk as “short” according to the urban mobility
survey [23].

4.2. Numerical Results

After the cleansing process, 311,772 records were discarded from the dataset corresponding to
May 2015, leading to a cleansed dataset comprised of 20,048,063 records. For the destination estimation
process, this dataset was split into chunks, where each chunk held the information for an entire day
starting and ending at 3:00. Additionally, since the destination estimation algorithm requires at least
two transactions to perform trip-chaining, the records associated to cardholders that only performed
one transaction within a given day were filtered from the dataset. As a result, the destination estimation
algorithm was applied to a set of 18,885,711 records. Out of these records, the implemented algorithm
was able to assign a destination to 15,414,230 trips, achieving a success rate of 81.62%. This is a highly
competitive result, considering the success rates achieved by other works in the related literature, e.g.,
57% [13], 66% [12], 80% [14]. Each identified trip holds the following information: boarding bus stop,
time stamp at boarding, bus line identifier, and alighting bus stop.

Computed results allowed identifying 9,485,904 OD pairs. At the finest grain, OD matrices
were generated considering each pair of bus stops (size 4718 × 4718). At a more coarse grain, OD
matrices were built at the census tract level (size 1063 × 1063). Both OD matrices are available at
www.fing.edu.uy/~renzom/msc in CSV files with their corresponding metadata. For the sake of
visualization, OD matrices in this article are aggregated by municipality (size 8 × 8). Table 2 outlines
the estimated OD matrix corresponding to the studied dataset (each municipality is represented by its
identifying code).

www.fing.edu.uy/~renzom/msc
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Table 2. Estimated OD matrix by municipalities.

Destination

A B C CH D E F G total

or
ig

in

A 626,388 199,196 184,905 98,087 30,108 40,370 21,875 73,390 1,274,319
B 154,358 662,993 224,578 366,865 108,640 173,898 119,306 108,469 1,919,107
C 174,040 260,526 320,368 111,113 102,244 64,691 62,188 101,337 1,196,507

CH 100,348 334,040 131,089 362,377 101,433 156,685 115,310 66,461 1,367,743
D 48,502 222,110 148,581 130,733 321,610 71,018 93,969 64,253 1,100,776
E 27,463 138,400 46,288 110,868 86,344 287,243 133,179 28,827 858,612
F 21,038 127,429 51,570 108,017 155,355 82,811 315,573 20,427 882,220
G 74,482 141,380 120,539 57,388 41,670 29,779 21,068 379,724 866,030

total 1,226,619 2,086,074 1,227,918 1,345,448 947,404 906,495 882,468 842,888

The largest values are located in the diagonal of the computed OD matrix, which represent trips
starting and ending within the same municipality. Municipality B stands out as both the largest
generator and attractor of trips when considering the total number of OD pairs. This is consistent with
the fact that the city center and other surrounding areas are within municipality B, where multiple
workplaces, public offices, and services are located. Considering that most trips correspond to people
commuting to their workplaces (30.9% according to the 2016 mobility survey), these observations
could suggest that the majority of citizens work either within their own municipalities or travel to
municipality B where most job opportunities are located. The lowest number of transactions occur in
municipalities F and G, which have large rural areas with lower population density.

4.3. Comparison to the 2016 Mobility Survey

According to the best practices reviewed in the related literature, results of the OD matrix
estimation must be compared with other sources of information. To this end, the results from the
household urban mobility survey carried out in 2016 [23] were used. The comparison is done at the
municipality level, since the survey data does not allow comparing at a finer-grain. The unavailability
of more disaggregated sources of OD data somewhat limits the comparison with our proposed
OD matrix.

The Spearman correlation coefficient was applied to quantify the similarities between the OD
matrix estimated from ITS data and the OD matrix from the mobility survey. To compute this coefficient,
matrices were vectorized in row-major order, without losing information since proximity in the matrix
does not imply geographical proximity between municipalities. Results show that the estimated OD
matrix and the mobility survey OD matrix have a Spearman correlation coefficient of 0.895 (p-value
2.026 × 10−23), indicating a strong correlation between them, thus validating the proposed approach
for OD matrix estimation based on ITS data.

Figure 14 presents a visual comparison between the OD matrices derived from ITS data and from
the mobility survey. Each OD matrix is represented as a two-dimensional grid with colors mapped
according to the number of transactions occurring in each OD pair.

The visual representation of OD matrices as heatmaps on two-dimensional grids in Figure 14
allows identifying similarities between the results computed with ITS data and those from the mobility
survey. Trips within municipalities A and B are the most dominant according to both estimations,
followed by trips within municipality G. Both figures show that trips from B to CH and vice versa
are also highly dominant. The diagonal of the grid is mapped to more intense colors in Figure 14a
than in Figure 14b. This might be a consequence of the larger number of trips considered in the OD
matrix generated from ITS data. Despite this observation, an outstanding number of similar patterns
are found when comparing the grids both row-wise and column-wise.
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(a) estimation using ITS data. (b) results from the 2016 mobility survey.

Figure 14. Comparison of OD matrices (ITS data processing vs. mobility survey).

Results show that OD matrices generated from ITS data are a valid alternative to understand
mobility in a city. The proposed approach for building OD matrices has several advantages: (i) due
to the large volume of data generated by ITS compared to the number of individuals that participate
in a survey, a finer-grain OD matrix is obtained using data analysis (e.g., bus stop and census tract
levels), whereas the mobility survey results only apply to municipalities; and (ii) data analysis allows
computing different OD matrices applying different criteria (e.g., days of the week, hours of the day,
etc) and the mobility survey refers to working days only. Thus, in order to gain insight on the mobility
of citizens under different conditions (e.g., during weekends) a new survey ought to be carried out,
with the associated costs and delays.

Regarding costs, the proposed approach for OD matrix estimation provides an attractive
alternative for public administrations to characterize mobility in a city. This alternative takes advantage
of valuable data that arise from the infrastructure deployed in modern ITS. This is the case of
Montevideo, where the ITS infrastructure has been deployed in the last decade. It is worth noting that
the proposed approach can be easily applied whenever new data becomes available. This represents
a clear advantage in comparison to surveys, which demand a long time to plan, carry out the survey,
and process the results. As a consequence, the proposed approach allows easily obtaining an up-to-date
view on the mobility of a city while surveys offer a partial and mostly outdated picture.

4.4. OD Matrix Visualization Tool

The last step of every urban data analysis workflow involves presenting results visually to
communicate the main findings to help stakeholders make decisions that can shape the studied
reality [6]. For this purpose, an interactive web application was developed to show the computed OD
matrices in an intuitive and friendly manner.

The OD visualization tool allows selecting a geographical zone and creates a heatmap indicating
the number of passengers traveling from the selected area to all other areas in the map. The tool was
developed using open source software: Python, Pandas for data processing, Geopandas to display the
map of the city and the administrative divisions, and the Bokeh library to provide interactivity to the
visualization. The web application is freely available at www.fing.edu.uy/~renzom/msc. Figure 15
shows the user interface of the developed tool.

www.fing.edu.uy/~renzom/msc
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Figure 15. User interface of the OD matrix visualization tool.

5. Conclusions and Future Work

This article presented an urban data analysis approach to study mobility using ITS data. As a case
study, the ITS in Montevideo, Uruguay was analyzed by studying a dataset of GPS bus location and
smart card ticket sales. Several insights were obtained through data analysis, including: number of
passengers traveling with the same smart card, frequency of use of the smart cards, and number of
bus transfers. A temporal analysis of ticket sales was performed, identifying three peak hours during
working days. Then, a spatiotemporal analysis revealed that citizens from areas farther away from
the coastline start trips earlier than those near the coast. Additionally, two practical use cases were
presented: event detection in the city and reckless driving behavior identification.

Besides a purely descriptive utilization of ITS data to characterize a public transportation system,
a methodology for building OD matrices using trip chaining was applied to estimate destinations.
The implemented algorithm was able to estimate the destination for 81.62% of trips in the studied
dataset, a highly competitive result when compared to the ones reported in the related literature.

The OD matrix computed for Montevideo was compared against the one from the 2016 urban
mobility survey. Results showed a Spearman correlation coefficient of 0.895, suggesting that the
proposed approach is a valid alternative to understand mobility in the city. The proposed approach
allows studying mobility at a finer grain, obtaining OD matrices between pairs of bus stops and
census tracts, whereas the OD matrix from the mobility survey only applies to municipalities.
The implemented solution is inexpensive if the ITS infrastructure is already deployed and it allows
computing OD matrices considering different criteria and providing up-to-date mobility information.

An interactive web application was developed to visually display the computed OD matrices.
The visualization tool allows selecting a geographical area and displays a heatmap indicating the
number of passengers traveling from the selected area to all other in the city. The application supports
working at different aggregation levels for OD matrices and offers several tools to filter data.
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The main lines for future work include studying other interesting aspects of mobility in the city,
e.g., the quality of service offered by the transportation system in terms of punctuality, frequency
of lines, and load of passengers. Regarding OD matrices estimation, the proposed approach can be
extended to tickets sold without smart cards, to account for all passengers of the transportation system.
The destination estimation algorithm can be further refined by using historical passenger data and
machine learning techniques to infer frequent destinations when trip chaining fails. Furthermore,
activity detection could be used to discriminate between short individual trips using the same ticket
from multi-leg trips involving bus transfers [24]. Parameters tuning of the destination estimation
algorithm can be studied in case that fine-grain mobility data sources are available. Finally, the results of
the analysis can be applied to solve optimization problems, e.g., synchronization of bus schedules [25],
demand-based fleet size optimization, bus stops location, and bus line network redesign.
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