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Abstract: Optimizing in vitro shoot regeneration conditions in wheat is one of the important
steps in successful micropropagation and gene transformation. Various factors such as genotypes,
explants, and phytohormones affect in vitro regeneration of wheat, hindering the ability to tailor
genotype-independent protocols. Novel computational approaches such as artificial neural networks
(ANNs) can facilitate modeling and predicting outcomes of tissue culture experiments and thereby
reduce large experimental treatments and combinations. In this study, generalized regression
neural network (GRNN) were used to model and forecast in vitro shoot regeneration outcomes
of wheat on the basis of 10 factors including genotypes, explants, and different concentrations of
6-benzylaminopurine (BAP), kinetin (Kin), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid
(IAA), indole-3-butyric acid (IBA), 1-naphthaleneacetic acid (NAA), zeatin, and CuSO4. In addition,
GRNN was linked to a genetic algorithm (GA) to identify an optimized solution for maximum shoot
regeneration. Results indicated that GRNN could accurately predict the shoot regeneration frequency
in the validation set with a coefficient determination of 0.78. Sensitivity analysis demonstrated
that shoot regeneration frequency was more sensitive to variables in the order of 2,4-D > explant
> genotype < zeatin < NAA. Results of this study suggest that GRNN-GA can be used as a
tool, besides experimental approaches, to develop and optimize in vitro genotype-independent
regeneration protocols.

Keywords: plant tissue culture; in vitro regeneration; artificial intelligence model; optimization
algorithm; genotype-independent

1. Introduction

Hexaploid (or common) wheat (Triticum aestivum L.) is the third largest important cereal after
rice and maize and occupies almost one-fifth of the world’s cultivated land. The nearly 1% annual
genetic gains in five major food crops including wheat has been the result of conventional breeding
methodologies [1], which exploited the existing genetic variation. Tester and Langridge [2] indicated
that the current genetic gains are insufficient to increase crop production by 70% by 2050 that is
needed to feed the increasingly growing demand. To address challenges such as the increasing global
population, and global climate change with changes in the intensity and patterns of abiotic and biotic
stresses, plant breeders must leverage information from recent advancement in rapid and precise
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plant breeding, facilitated by genome-editing. Biotechnological tools such as in vitro culture can be
considered as a solution for this aim. Therefore, there is a need to adjust in vitro genotype-independent
shoot regeneration in wheat [3].

In vitro plant regeneration is mainly dependent on exogenous and endogenous phytohormones [4].
Genotypes and the type of explant are different in their levels of endogenous phytohormones [4,5].
Indeed, in vitro shoot regeneration is controlled by the exogenous cytokinin and auxin balances, and also
by concentrations of endogenous phytohormones [4,5]. The levels of endogenous phytohormones
regulate the in vitro explant differentiation and are assumed to be the major variation between various
genotypes and explants with different degrees of competence [4]. The interactions among the exogenous
and endogenous phytohormones and their effects on in vitro organogenesis need to be extensively
studied [6,7], with the goal of understanding phytohormone metabolism signaling and their roles in
in vitro organogenesis.

In the context of multiple endogenous and exogenous phytohormones, in vitro organogenesis
can be viewed as a multi-variable procedure impacted by different phytohormones such as
auxins, cytokinin, and their interaction [8]. Also, in vitro organogenesis consists of non-linear
and non-deterministic developmental processes [9]. Conventional computational techniques are
inefficient to model non-linearity in complex systems that exist in plant tissue culture [10–12].
Artificial intelligence (AI) models such as artificial neural networks (ANNs) and fuzzy logic have
proven to be appropriate approaches for modeling the non-linearity and ill-defined systems in in vitro
culture [12]. Examples include the use of the adaptive neuro-fuzzy inference system (ANFIS) in
modeling somatic embryogenesis of chrysanthemum [12] and the use of radial basis function (RBF) for
modeling of in vitro shoot proliferation in pear rootstock [13].

Among ANN models, the generalized regression neural network (GRNN), proposed by Specht [13],
can efficiently solve the non-linear problems due to the simplicity of network structure, the strong
non-linear mapping capability, and high fault tolerance and robustness [14]. While the GRNN model has
been frequently used in several fields to solve short-term load forecasting [15], pattern recognition [16],
the modeling and monitoring of batch processes [17], medicinal chemistry [18], exchange rates
forecasting [19], and wind speed forecasting [20], it has been used in plant tissue culture modeling
very rarely.

Establishment of working concentrations of tissue culture medium ingredients is a tedious task and
requires execution of complex experimental designs with numerous independent factors. This research
investigated whether AI can predict the outcomes of shoot regeneration based on influencing factors
stably and accurately. We further elucidated whether a genetic algorithm (GA) can optimize a solution
for wheat shoot regeneration. This study shows high stability and accuracy of using the GRNN
in modeling in vitro shoot regeneration of wheat. However, the weakness of using ANNs such as
GRNN is that it is hard to obtain an optimized solution. Jamshidi, et al. [21] used GA to optimize
nutrition for pear rootstocks tissue culture media formulation. Also, Hesami, et al. [22] applied the
non-dominated sorting genetic algorithm-II (NSGA-II) to optimize medium composition for shoot
proliferation of chrysanthemum. However, most studies selected the optimized solution only by
performing considerable bench work experiments [23–27].

In this study, data mining by using the GRNN model was implemented to determine the effect
and importance of different phytohormones, genotypes, and explants in wheat shoot regeneration.
We assembled data from multiple wheat in vitro shoot regeneration studies which considered the use
of phytohormones, genotypes, and explants. To the best of our knowledge, this study is the first report
of the application of AI and GRNN-GA modelling in the field of wheat in vitro culture.
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2. Material and Methods

2.1. Data and Model Development

Data for this study was collected from previous in vitro shoot regeneration studies [3,28–34].
Different types and concentrations of phytohormones, explant types, and genotypes on percent
shoot regeneration frequency are summarized in Table S1. To construct the GRNN model (Figure 1),
different genotypes, various explants, and different concentrations of 6-benzylaminopurine (BAP),
kinetin (Kin), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid (IAA), indole-3-butyric acid
(IBA), 1-naphthaleneacetic acid (NAA), Zeatin, and CuSO4 were considered as inputs, and shoot
regeneration frequency was considered as output for modeling wheat in vitro shoot regeneration.
For model development and validation, the dataset was randomly divided into two subsets of 70% for
training and 30% for validation.
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Figure 1. Schematic diagram of the proposed generalized regression neural network (GRNN) model.

GRNN with a very fast training process was established by Specht [13]. The input layer,
pattern layer, summation layer, and output layer are four layers of GRNN. The input layer is completely
joined to the pattern layer. Each neuron of the pattern layer is linked to S-summation and D-summation
neurons from the summation layer. S-summation and D-summation neurons, respectively, measure the
sum of the weighted and unweighted outputs of the pattern neurons. The connection weight between
S-summation neuron and a neuron of the pattern layer is equal to the target output, while the connection
weight for D-summation is unity. The output layer obtains the unknown output value corresponding
to the input vector, only via dividing the output of each S-summation neuron through the output of
each D-summation neuron. GRNN uses the following equations to calculate an output:
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where n, ŷ, yi, σ, and Di
2, and T are the number of input-output datasets, the output data (average of all

the observed values), ith output data (connecting weight), width parameter, a scalar function, and the
target related to the ith observation, respectively. In each iteration, a model was developed by using the
training data and used to predict the outcome of the validation set. To assess the predictive ability of
the GRNN model, three performance measures including R2 (coefficient of determination), root mean
square error (RMSE), and mean bias error (MBE) were used. Greater values of R2 and smaller values of
RMSE and MBE indicate the higher predictive ability and performance of the constructed model.
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2.2. Process Optimization via Genetic Algorithm (GA)

The relationship of in vitro shoot regeneration of wheat with genotypes, explants, BAP, Kin, 2,4-D,
IAA, IBA, NAA, Zeatin, and CuSO4 was established according to the GRNN. The relationship between
GRNN and GA was shown in Figure 2. The roulette wheel was implemented as the selection method to
obtain the suitable fitness. The GA was run by setting the initial population size at 200, generation size
at 1000, crossover probability (Pc) at 0.7, and mutation rate (Pm) at 0.04.
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Figure 2. Schematic relationship of artificial neural network (ANN) model (GRNN) and optimization
genetic algorithm (GA).
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2.3. Sensitivity Analysis of Shoot Regeneration to Variations in the Input Variables

Sensitivity analysis was conducted to characterize the sensitivity of in vitro shoot regeneration
to changes in genotypes, explants, and concentrations of BAP, Kin, 2,4-D, IAA, IBA, NAA, Zeatin,
and CuSO4. This sensitivity was measured by variable sensitivity error (VSE) value displaying the
performance (RMSE) of GRNN-GA model when that input variable is removed from the model.
Variable sensitivity ratio (VSR) value was determined as ratio of VSE and GRNN-NSGA-II model error
(RMSE value) when all input variables are available. A higher important variable in the model was
detected by higher VSR. MATLAB (Matlab, 2010) software was employed to run the model.

3. Results

3.1. Artificial Intelligence Accurately Predicted In Vitro Shoot Regeneration

In this study, GRNN was implemented for modeling in vitro shoot regeneration of wheat as an
output based on ten input variables (genotypes, explants, BAP, Kin, 2,4-D, IAA, IBA, NAA, Zeatin,
and CuSO4).

The assessment of predicted and observed data on training and validation sets was used for
describing the efficiency of the GRNN model. As can be seen in Table 1, the GRNN model was successful
in predicting in vitro shoot regeneration outcomes of wheat in training (R2 > 0.88, RMSE = 14.12,
and MBE = −0.33) and validation (R2 > 0.78, RMSE = 14.76, and MBE = −0.89) processes with
correlations between observed and predicted data demonstrating a good fit (Figure 3).

Table 1. Performance criteria of the generalized regression neural network (GRNN) model for in vitro
shoot regeneration of wheat in training and validation processes.

Performance Measure Training Validation

R2 0.88 0.78
RMSE 14.12 14.76
MBE −0.33 −0.89

R2: coefficient of determination; RMSE: root mean square error; MBE: mean bias error.
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3.2. Determining an Optimized Solution for Regeneration by Using Generalized Regression Neural
Network (GRNN)-GA

We further the investigation and optimized the GRNN by using GA in order to present and avail a
precise condition for wheat in vitro shoot regeneration based on the concentrations of phytohormones,
types of explants, and genotypes. We would caution that the GRNN gives appropriate accuracy for
interpolation but not for extrapolation. Thus, the upper and lower bounds of input data (Table S1)
were set as constraints. According to GRNN-GA (Table 2), our model predicted that the highest shoot
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regeneration frequency (97.63%) can be obtained from immature embryo explant on medium containing
0.15 mg/L BAP, 0.73 mg/L Kin, 0.17 mg/L 2,4-D, 0.37 mg/L IAA, 0.04 mg/L IBA, 0.01 mg/L NAA,
4.51 mg/L Zeatin, and 13.08 mg/L CuSO4. It is worth to say that shoot regeneration frequencies > 90%
were obtained when we replaced the best genotype with any other genotype in the model (Table S2).

Table 2. The optimized solution for shoot regeneration achieved by using GRNN-GA in wheat.

Type of
Explant

BAP
(mg/L)

Kin
(mg/L)

2,4-D
(mg/L)

IAA
(mg/L)

IBA
(mg/L)

NAA
(mg/L)

Zeatin
(mg/L)

CuSO4
(mg/L)

Shoot Regeneration
Frequency (%)

Immature
embryo 0.15 0.73 0.17 0.37 0.04 0.01 4.51 13.08 97.63

BAP: 6-benzylaminopurine; Kin: kinetin; 2,4-D: 2,4-dichlorophenoxyacetic acid; IAA: indole-3-acetic acid;
IBA: indole-3-butyric acid; NAA: 1-naphthaleneacetic acid.

3.3. The Importance of Input Variables in Shoot Regeneration

The importance of each input in the developed model was assessed via the whole database to
evaluate the general VSR. The VSR was obtained for the shoot regeneration frequency with respect to
genotypes, explants, BAP, Kin, 2,4-D, IAA, IBA, NAA, Zeatin, and CuSO4 (Table 3). Sensitivity analysis
demonstrated that shoot regeneration frequency was more sensitive to 2,4-D, followed by explant,
genotype, zeatin, BAP, IAA, Kin, CuSO4, IBA and NAA (Table 3).

Table 3. The results of sensitivity analysis on the developed GRNN model to rank the importance of
factors involved in in vitro shoot regeneration of wheat.

Item Genotype Explant BAP Kin 2,4-D IAA IBA NAA Zeatin CuSO4

Variable sensitivity ratio (VSR) 1.35 1.83 1.22 1.08 1.97 1.17 0.93 0.54 1.29 1.02
Rank 3 2 5 7 1 6 9 10 4 8

4. Discussion

The in vitro shoot regeneration in wheat has been widely studied. Establishing wheat
in vitro shoot regeneration systems were associated with obstacles such as chimeric callogenesis
consisting of both non-embryogenic and embryogenic calli, low efficiency of shoot regeneration,
and genotype-dependency [3,28–34]. Computational approaches may help in reducing trial and
errors in the process of optimizing regeneration systems. Artificial intelligence (AI) models can be
considered as one method to develop and optimize in vitro shoot regeneration protocols. Although
there are no reports to use AI models in in vitro culture of wheat, several studies have previously
proved the reliability and accuracy of AI methodology to predict and optimize different in vitro
culture processes such as in vitro sterilization [22,35], callogenesis [36–38], cell growth and protoplast
culture [39,40], somatic embryogenesis [37,41,42], shoot regeneration [43–46], androgenesis [9],
hairy root culture [47,48], and rhizogenesis [49] in other plants.

In the current study, GRNN was used, for the first time in wheat, to develop a suitable model
for in vitro shoot regeneration. According to our results, GRNN was a promising and powerful tool
for modeling and predicting the system. Although there is no report regarding the application of the
GRNN model in plant tissue culture studies, in line with our results, studies in other fields revealed the
good performance of the GRNN model [50,51]. One of the weaknesses of using AI models is that it is
hard to obtain an optimized solution [52–57]. To tackle this problem, several studies [21,22,44,52,57,58]
used GA and NSGA-II to optimize in vitro culture conditions. In the current study, GA was linked to
the GRNN model for the optimization process. Based on our results, a hybrid GRNN and GA can be
considered as an efficient computational methodology for predicting and optimizing in vitro shoot
regeneration of wheat.

Sensitivity analysis demonstrated that shoot regeneration frequency was more sensitive to 2,4-D,
explant, genotype, and zeatin, and less sensitive to NAA. Previous studies [3,28–34] have demonstrated
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that shoot regeneration of wheat is changed by the type and concentration of phytohormones and also
by the type of explants and genotype. Yadav, Malik, Kumar and Jaiwal [3] showed that 2,4-D was the
best auxin, among other auxins, for in vitro shoot regeneration of wheat. Also, Kumar, Mamrutha,
Kaur, Venkatesh, Grewal, Kumar and Tiwari [34] reported that better results were achieved by using
2,4-D rather than NAA or IBA. 2,4-D is one of the most powerful synthetic auxins which has a main
function in many in vitro processes such as callogenesis, embryogenesis, organogenesis and shoot
regeneration [5,59]. In addition, the positive impact of the appropriate concentration of 2,4-D has
been shown on the biological and molecular process of in vitro shoot regeneration by adjusting and
regulating the endogenous phytohormones metabolism of different explants and genotypes [59,60].
Also, our results showed that the highest shoot regeneration frequency can be achieved by immature
embryo as an explant. The potential of immature embryo has been previously confirmed by several
studies [3,32]. Indeed, each explant or genotype has different levels of endogenous phytohormones
that have resulted in different responses to exogenous phytohormones [4,59]. This leads us to consider
in vitro shoot regeneration as a genotype-dependent process. Therefore, it is necessary to adjust the
type and concentrations of exogenous phytohormones based on the levels of endogenous hormones to
achieve genotype-independent protocols. Our results showed that 2,4-D and zeatin can be considered
as the best auxin and cytokinin, respectively, for in vitro shoot regeneration in wheat. In line with our
results, Yadav, Malik, Kumar and Jaiwal [3] reported that the highest frequency of shoot regeneration
in wheat was achieved from the combination of 2,4-D and zeatin.

5. Conclusions

Various factors such as genotypes, explants, and phytohormones affect in vitro culture of wheat,
hindering the ability to tailor genotype-independent protocols. Optimizing regeneration conditions
such as genotype, type of explant, as well as type and concentration of phytohormones can be considered
as one of the critical steps to establish a genotype-independent and high-frequency regeneration
protocol. Recently, different artificial neural networks have been widely applied for modeling and
predicting the outcomes of in vitro culture systems. In this study, GRNN was implemented, for the
first time, to model and forecast in vitro shoot regeneration of wheat. Our results showed that the
GRNN model can accurately model and predict in vitro shoot regeneration of wheat for obtaining
in vitro genotype-independent protocol. In addition, we have shown than GA was able to accurately
optimize the system. The results of the current study demonstrate that the combination of GRNN and
GA can lead to modeling and understanding in vitro organogenesis and can pave the way for further
in vitro culture studies in wheat such as somatic embryogenesis. Further experimental work is needed
to validate the results of this computationally optimized culture media.
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0.04 mg/L IBA, 0.01 mg/L NAA, 4.51 mg/L Zeatin, and 13.08 mg/L CuSO4.
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