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Abstract: The feasibility of employing a birefringent fiber loop to enhance the performance of a
directly modulated reflective semiconductor optical amplifier is experimentally demonstrated for
the first time. The birefringent fiber loop acts as an optical filter of opposite slope than that of
the reflective semiconductor optical amplifier electro-optical response and counteracts the finite
reflective semiconductor optical amplifier modulation bandwidth of only 0.89 GHz. By proper
adjustment of its detuning, the birefringent fiber loop tailors the spectral components that physically
manifest due to the reflective semiconductor optical amplifier dynamic perturbation subject to direct
modulation in the saturated gain regime, and suppresses the pattern-dependent distortions in the
time domain. In this manner, the birefringent fiber loop manages to significantly improve the
quality characteristics of the encoded signal at higher data rates than those enabled by the reflective
semiconductor optical amplifier limited modulation capability. Owing to the birefringent fiber
loop, the reflective semiconductor optical amplifier modulation range is extended to 4 Gb/s at the
raw bit error rate of 1.0× 10−9, and to 11 Gb/s at the forward error correction limit of 3.8× 10−3.
These results, which are unique against the evaluation criterion adopted in the first case, and the
modulation speed achieved with post-filtering schemes in the second, highlight the beneficial role
that the birefringent fiber loop can play in supporting reflective semiconductor optical amplifier
operation for intensity amplification and modulation purposes.

Keywords: birefringent fiber loop; electrical modulation; offset filtering; pattern effect; reflective
semiconductor optical amplifier

1. Introduction

Reflective semiconductor amplifiers (RSOAs) are special version of semiconductor optical
amplifiers (SOAs) constructed with an anti-reflective coating on the front facet and a high reflectivity
coating on the rear end [1]. This design modification in the active medium cavity conveniently allows
an optical signal coming from one (forward) direction to have its intensity increased and at the same
time its information content altered as it exits from the other (backward) direction without using
additional fiber hardware and fiber connections. The RSOAs downstream amplification and upstream
modulation dual functionality together with their capability of providing higher gain with lower
injection currents, less polarization dependency, higher modulation linearity, lower noise figure and
less temperature sensitivity than their conventional counterparts [2,3] has rendered these elements
indispensable for the realization of modern access applications which critically rely on the manipulation
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of bidirectionally flowing data [4–12] and where wavelength-independent, i.e., color-less, operation is
highly desired [13]. Still, the data rates that RSOAs can support in these applications are limited by
the RSOAs slow direct (electrical) modulation speed, which in turn is constrained by RSOAs finite
modulation bandwidth being as low as very few GHz according to evidence based on experimental
measurements [14] and numerical simulations [15]. A promising solution, which owing to its clear
concept, feasible implementation and passive nature has gained wide popularity across the research
community, is to resort to frequency discrimination and equalization [16]. The idea is to properly
tailor the spectrally broadened components of the data encoded signal at the RSOA output, which
occur due to the dynamic modulation of the RSOA bias current and the subsequent perturbation
of the RSOA gain. For this purpose, different optical notch filtering technologies, including a delay
interferometer (DI) [17,18], a fiber Bragg grating (FBG) [19], an array waveguide grating (AWG) [20]
and a microring resonator [21], have been proposed. Recently, we employed a birefringent fiber loop
(BFL), either alone [22], in cascade with another BFL [23] or assisted by an optical bandpass filter
(OBPF) [24], to a standard SOA configured as intensity modulator. However, applying this scheme
to an RSOA is not a trivial task due to the RSOA double-pass structure, which inherently imposes
a greater strain on its dynamic behavior [12,25], especially subject to a fast electrical excitation [26].
Thus in this paper, we experimentally demonstrate that using a BFL can significantly boost the direct
modulation capability of an RSOA. Specifically, we verify that this enhancement can be achieved
well over the RSOA nominal modulation bandwidth and up to a point which can satisfy at least the
mid-term needs of the target applications RSOAs are destined to serve. To this end, the BFL proven
potential to improve the RSOA direct modulation performance in combination with the BFL attractive
features can favor the adoption of this passive module as an efficient and affordable alternative for
enabling the unobstructed exploitation of RSOAs for intensity amplification and modulation purposes.

2. Working Principle Qualitative Explanation

Figure 1a depicts the block diagram of the directly modulated RSOA followed by a serially
connected BFL. The purpose of directly modulating the RSOA is to imprint the digital information
contained in an RF signal applied to the RSOA electrical interface on an optical signal that constantly
drives the RSOA. However, the faster the digital content of the RF excitation modifies the RSOA
bias current, the more the data equivalent bandwidth exceeds the RSOA nominal modulation
bandwidth, Bmod, which is finite [27], and hence the more is the process far from being ideal. As a
consequence, the performance of the directly modulated RSOA becomes pattern-dependent and
eventually unacceptable. Nevertheless, this performance limitation can be overcome and the RSOA be
directly modulated at an extended data rate than that allowed by its limited modulation bandwidth
by means of optical notch filtering. The goal pursued through the exploitation of this technique is to
produce a filter characteristic which is the opposite to that of the RSOA, as shown in Figure 1b [28].
This equalizes the total frequency response and makes it independent of the electrical modulation
frequency for a wider range than for the RSOA only. Moreover, by properly tailoring the frequency of
occurrence of the repetitive lobes and the points of their extinction with respect to the spectral position
of the encoded pulses, the spectral content of the latter can be acted upon by the filter’s transmission
according to their exact binary content [21,27]. In this manner, the impairments associated with
these components due to the irregular RSOA gain variation by the electrical excitation are converted
by the filter’s slope into amplitude changes which cancel those after the RSOA [29]. Consequently,
the uniformity between output pulses of same binary content and the distinction between output
pulses of different binary content can be significantly enhanced. Thus the performance degradation
of the encoded optical signal at the RSOA output can be sufficiently suppressed so that RSOAs can
efficiently support the target applications both as external modulators and amplification elements.
The desired spectral response of the compensating frequency discriminator can be technologically
implemented in the polarization-based domain using a BFL, as described in the following.
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Figure 1. (a) Block diagram of directly modulated RSOA followed by a serially connected BFL and (b)
schematic illustration of RSOA response, |HRSOA|, (black line), transfer function of equalizing filter,
|H f ilter|, (green line), and combined magnitude response (red line).

3. Experiment

In order to run the experiments in a rational and self-consistent manner, we specified first the
RSOA (CIP, model SOA-RL-OEC-1550, cf. photo in Figure 2a) driving conditions defined by the amount
of the optical power and DC current, which is launched into, and biases, respectively, the RSOA.

(a)
(b)

Figure 2. Photograph of (a) RSOA and (b) BFL modules used in the experiments.

For this purpose, we utilized as decision criterion the RSOA electrical modulation bandwidth
on which we investigated the impact of these two parameters. The setup that we built to conduct the
relevant measurement is depicted in Figure 3.
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Figure 3. Experimental setup for measuring RSOA E/O response. RSOA: reflective semiconductor
optical amplifier, VNA: vector network analyzer, OC: optical circulator, OBPF: optical bandpass filter,
VOA: variable optical attenuator, PC: polarization controller, PD: photodiode. Solid and dashed lines
show optical and electrical paths, respectively.

The core module was an auto-calibrated vector network analyzer (VNA). The VNA provided an
RF signal that was superimposed, via a bias-tee, on the RSOA DC bias, which was thus modulated
within a frequency range of 10 MHz–12 GHz for fully capturing the RSOA electro-optical (E/O)
response. The variations of the RSOA gain induced due to the modulation of the injection current were
mapped on a continuous wave (CW) optical signal, which was emitted from a software-controlled
laser source tuned around λ = 1560 nm and entered the RSOA through an optical circulator (OC).
The RSOA encoded output was coupled back into the OC and passed through an optical bandpass
filter (OBPF) to eliminate unwanted RSOA noise components. It was subsequently detected by a
photodiode embedded inside the VNA and was converted again into electrical form, hence closing the
circuit path established between the VNA electrical output and the VNA optical input port. In this
manner, the VNA calculated the complex scattering parameter, S21, and produced from its squared
modulus the RSOA E/O transfer function which, as shown in Figure 4a, had a low-pass characteristic.

Figure 4. RSOA E/O response measured for (a) constant and (b) varying CW input power and DC
bias. The dashed line indicates the 3-dB electrical modulation bandwidth.

By controlling the RSOA DC bias, Ibias, via a current source, and the CW optical power launched
into the RSOA, PCW , with a variable optical attenuator (VOA), we further obtained the normalized
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E/O response for different values of these parameters, as shown in Figure 4b. From these curves
we observed that increasing one parameter while keeping the other constant, and vice versa, was
beneficial for the 3-dB electrical modulation bandwidth, Bmod, which in either case was increased
because of the reduction of the RSOA effective carrier lifetime [30,31]. According to this evidence,
choosing PCW = −5 dBm and Ibias = 70 mA results in Bmod, RSOA = 0.89 GHz. The first choice caused
the RSOA gain to drop by 5.4 dB from its unsaturated value, as shown in Figure 5a.

Figure 5. RSOA gain vs. (a) CW input power and (b) DC bias for Ibias = 70 mA and PCW = −5 dBm,
respectively.

Thus the RSOA was directly modulated under dynamically stressful conditions [32]. With the
CW power going into the RSOA fixed to its set value, the second choice lied in the linear region of the
gain-current curve shown in Figure 5b and hence made the RSOA amenable to direct modulation [33].

Having defined the RSOA operating point, the setup of Figure 3 was modified by directly
modulating the RSOA with a 210 − 1 bit-long non return-to-zero (NRZ) data from the pulse pattern
generator (PPG) of a bit error rate tester (BERT) (Figure 6).

PPG

Figure 6. Experimental setup of RSOA electrical modulation. RSOA: reflective semiconductor optical
amplifier, BFL: birefringent fiber loop, PPG: pulse pattern generator, OC: optical circulator, OBPF:
optical bandpass filter, VOA: variable optical attenuator, PM 50:50: 3 dB polarization maintaining
coupler, PMF: polarization maintaining fiber, PC: polarization controller, EDFA: erbium doped fiber
amplifier, PD: photodiode, DCA: digital communications analyzer, OSA: optical spectrum analyzer.
Solid and dashed lines show optical and electrical paths, respectively.

When this signal was applied to the 50 Ω RSOA impedance, it offset the RSOA DC current by
±10 mA. The RSOA output was connected to a BFL (cf. photo in Figure 2b), which was implemented
using a 3 dB (50:50) polarization maintaining (PM) fused coupler, an intraloop polarization controller
(PC) and a segment of polarization maintaining fiber (PMF) with birefringence B ≈ 3.3× 10−4 in the
C-band. The total PMF length, L ≈ 8.5 m, resulted in the periodic comb-like transfer function shown
in Figure 7a, which comprised of maxima (peaks) and minima (notches) repeated every ≈0.87 nm
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(Figure 7b), equal to the BFL free spectral range (FSR = λ2/BL). Setting the PC to generate a rotation
of 90◦ to beams coming from both loop directions [34] optimized the amplitude difference between
peaks and notches, or the peak-to-notch contrast ratio (PNCR), to 22 dB (Figure 7c).

Figure 7. (a) BFL measured transmission response, with free spectral range (FSR) of 0.87 nm
(b) and peak-to-notch contrast ratio (PNCR) of 22 dB (c) indicated by vertical and horizontal cursors,
respectively.

To enhance stability against environmental perturbations by affordable means, the whole
construction was enclosed inside a box, which was placed on a marbled base. In this manner, the peaks
and notches could retain their spectral position without drifting for a duration that conveniently
allowed taking the target measurements. In order to quantitatively assess this possibility, we observed
with the help of the OSA the change in the BFL response notches’ position with time. This change
can be incurred due to random environmental perturbations, such as daily temperature variations
or air currents from laboratory staff movements. In fact, according to a calculation conducted for the
BFL and input signal parameters values in our experiment and for a typical temperature-dependent
birefringence coefficient of −7× 10−8 /K, a drift in temperature of more than ∼1.3 ◦C only can cause a
notch shift beyond half the BFL FSR [35], which is the range within a notch is allowed to lie to mitigate
the pattern effects induced in the RSOA [27]. Thus we found that the notches’ displacement due to
reasons like the aforementioned ones was of the order of +0.1 nm for ∼12 min, as it can be observed in
Figure 8a. This is better perceived using the experimental data derived for the notch shift in time and
displaying with simulation assistance the BFL transfer function at different time instants (Figure 8b).
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Figure 8. (a) BFL notch displacement vs. time, (b) BFL transfer function at different time instants.
The red arrow shows the notch displacement in time.

Consequently, this interval provided enough margin to perform the experiment and obtain valid
and repeatable results while scanning the relative spectral offset between carrier and notches with
sufficient degree of resolution. After the permissible window closed, it was necessary to compensate
for the inevitable notches’ shift, and the more practical way of doing this was by fine adjusting the
carrier position against the notch being closer to its longer sideband. As in our case a notch shifts
with temperature at a rate of ∼0.33 nm/◦C, confining this shift to the bounds specified above would
require to keep the temperature deviations within ±0.3 ◦C, which in turn could be achieved with
a thermoelectric cooler (TEC) [36]. The corresponding slot for measurements can be significantly
extended in a more compact and flexible manner by constructing the BFL using a PM photonic crystal
fiber (PCF) [35], which exhibits a notable temperature-insensitivity, in place of the conventional PMF,
and an electrically, instead of manually, actuated PC with endless control of polarization [36]. Finally,
the BFL was followed by a booster erbium doped fiber amplified (EDFA) to compensate for insertion
losses of ≈10 dB and guarantee the same level of received power at the diagnostic equipments so as to
ensure a fair comparison between measurements with and without the BFL.

4. Results

Since the BFL filtering efficiency is critically determined by the detuning [23], ∆λ, which is
defined as the difference between the CW seeding wavelength and the wavelength of the nearest notch
in the BFL response, we investigated the impact of this parameter on the operation of the scheme
by assessing first the performance against the error probability (EP). This metric was calculated
through [37] EP = 1

2 erfc(Q/
√

2), where erfc(x) is the error function and Q = |µ1−µ0|
σ1+σ0

is the Q-factor,
where µ1, 0 and σ1, 0 are the mean and standard deviation of the peak power of the encoded marks (‘1’)
and spaces (‘0’) whose values are extracted from the levels of the corresponding histograms. These in
turn are obtained from the photodetected voltage samples that are recorded and stored by a digital
communications analyzer (DCA).

The BFL detuning was practically achieved by fine tuning the CW laser wavelength relative to
the adjacent notch’s fixed position so that the former was spectrally located on the left-hand side of
the latter. This resulted in negative detuning values and made the BFL filter transmission decrease
as the wavelength increased, which is necessary [32] in order to suppress the longer-wavelength,
i.e., red-shifted, spectral components induced on the encoded signal due to the self-phase modulation
(SPM) effect that physically accompanies the RSOA direct modulation [38]. Equivalently, the BFL
exhibited in the frequency domain a high-pass filter characteristic which counteracted that of the RSOA
so that the combined response could become independent of the electrical modulation frequency for a
wider range than for the RSOA only [28]. Figure 9 shows that the EP could be kept below 10−9 for a
RSOA direct modulation speed extended up to 4 Gb/s for ∆λ = −0.05 nm.
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Figure 9. Error probability vs. BFL detuning (∆λ) for different data rates. The dashed line indicates the
limit for acceptable EP at 1× 10−9.

The feasibility of this extension was supported by Figure 10, which depicts the measured E/O
response of the RSOA-BFL combination.

Figure 10. E/O response of RSOA-BFL combination. The dashed line indicates the 3-dB electrical
modulation bandwidth.

It can be seen that compared to Figure 4a, the connection of the BFL after the RSOA shifted
the electrical modulation bandwidth of the latter to ∼3 GHz. This value exceeded the NRZ coding
pulses bandwidth, which by definition equals half the repetition data rate [39], as well as the minimum
bandwidth required for optimized signal reception, which equals 2/3 times the data repetition rate [40].
The specified detuning value implies that the CW optical signal and BFL notch should be very closely
spaced apart at the expense of very delicate experimental handling. In contrast, without the BFL,
i.e., for ∆λ = −0.45 nm ∼ FSR/2, it was not possible to directly modulate the RSOA at any of the
checked data rates shown in Figure 9. These results were further supported by raw BER measurements
obtained from the BERT error analyzer and depicted in Figure 11 for data rates between 3 Gb/s and
4 Gb/s.
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RSOA+BFL

Figure 11. Raw BER measurements versus data rate for BFL detuning ∆λ = −0.05 nm. The dashed
line indicates the limit for acceptable EP at 1× 10−9.

The lower bound of the displayed data rates was dictated by the fact that below 3 Gb/s,
the analyzer did not find any mistakes so the measured BER was zero. In other words, the BER
was so low that the analyzer needed very long time to count mistakes. Similarly, for data rates over
4 Gb/s, the analyzer had a synchronization loss since the received data could not be synchronized with
the clock of the PPG. It is noteworthy that although the limit for acceptable EP, EP = 1× 10−9, which is
the standard requirement in digital communication systems [39], is several orders of magnitude tighter
than that employed in other filtering schemes proposed to enable faster RSOA direct modulation by
NRZ data [17–19], still the BFL managed to successfully confront this ultimate challenge. Since the
RSOA nominal modulation bandwidth can be broadened by taking into account, and intervening on,
factors such as the dimension [41], optical confinement [42], packaging [43], impedance matching [44]
and transport effects [45] of the active device, it can be realized that there is further margin for
increasing the RSOA direct modulation speed by means of the BFL. In this direction, the BFL potential
was also verified in the time domain and the results are compiled and presented in Figure 12.

Figure 12. Top: Encoded pulse waveforms of (a) RSOA output at 1 Gb/s, (b) RSOA output at 4 Gb/s,
(c) BFL output at 4 Gb/s for BFL detuning ∆λ = −0.05 nm. Bottom: Corresponding eye diagrams
(d–f). Vertical scale: 15 mV/div.

These include encoded pulse waveforms for a representative 25 bit-long segment of
1100111101010010100011100 and eye diagrams for 210 − 1 PRBS. As it can be seen, the uniformity of
pulses at the RSOA output at 1 Gb/s (Figure 12a) was not preserved at 4 Gb/s (Figure 12b), since pulses
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suffered from pattern-dependent peak-to-peak amplitude fluctuations. This distortion was translated
into a poor quality of the eye diagram at 4 Gb/s (Figure 12e) versus 1 Gb/s (Figure 12d), as indicated
by the narrow opening at the center and the dispersed histograms’ content. The deteriorated outcome
of the single directly modulated RSOA could be considerably improved by the properly detuned BFL,
which compensated for the pulse amplitude wandering (Figure 12c) and restored the eye’s opening
and histograms’ form (Figure 12f). These improvements were quantified by the significant reduction
of the amplitude difference (AD) of the marks [46], from the inadmissible AD ≈ 1.55 dB for the RSOA
only, down to the more than acceptable [47] AD ≈ 0.34 dB thanks to the BFL, as well as by the increase
of the eye opening (EO) [39], from EORSOA ≈ 46.68% to EOBFL ≈ 70.02%. Moreover, in Figure 13a it
is observed that the RSOA spectrum is broadened towards the longer sideband, i.e., it is red-shifted.
The spectrum retains its form at the output of the BFL at transparency, i.e., for ∆λ = 0 nm, since then
the BFL does not act as notch filter on the red-shifted RSOA spectral components (Figure 13b). In this
case, the spectrum is identical to that at the BFL input, or equivalently at the output of the OBPF right
after the RSOA. In Figure 13c it can be observed instead that the corresponding spectrum becomes
more symmetric at the output of the BFL, which has been detuned by ∆λ = −0.05 nm to suitably tailor
the red-shifted spectral components.

Figure 13. Optical spectrum at 4 Gb/s of (a) RSOA output, (b) BFL output at transparency, ∆λ = 0 nm,
(c) BFL output for detuning ∆λ = −0.05 nm.

Unlike previous works, showing encoded pattern profiles and introducing appropriate indices,
such as the AD, is indispensable in order to fully demonstrate and characterize the extent of distortion
and amelioration undergone by the encoded signal after the stand-alone RSOA and applied notch filter
(BFL in our case), respectively. To this aim, we also tested the BFL capability to allow transmission of
the encoded signal over fiber. This required to specify the net gain of the RSOA and BFL combination,
Gnet, which is an important metric of the performance of post-filtering (R)SOA pattern-dependence
combating [32]. This quantity is defined as Gnet (dB) = Gavg, RSOA (dB) −Gar (dB), where Gavg, RSOA
is the average gain provided by the directly modulated RSOA and Gar is the amplification reduction
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suffered by the encoded signal due to the BFL filtering action. Therefore, the calculation of Gnet

required the knowledge of Gavg, RSOA and Gar, which were found as follows. First, for NRZ encoding,
Gavg, RSOA = GCW , where GCW = 8.99 dB is the RSOA CW gain derived from Figure 5. Second, Gar

was extracted by measuring the mean value of the high level, Vmean, 1, and of the low level Vmean, 0,
voltages, which were photodetected by the PD and recorded by the DCA, and taking their median,
Vmed = (Vmean, 1 + Vmean, 0)/2. This value was then compared between the BFL outputs for the case
that the BFL was detuned by ∆λ = −0.05 nm and for the case that the BFL was detuned at transparency,
∆λ = 0 nm, which was equivalent to the RSOA output with BFL insertion losses compensated [32].
In this manner, we obtained Gar (dB) = 20 log |Vmed, BFL (∆λ=−0.05 nm)/Vmed, BFL (∆λ=0 nm)| = 4.13 dB.
Therefore, Gnet (dB) = 8.99− 4.13 = 4.86 dB, which would permit propagation of the RSOA directly
modulated 4 Gb/s data over approximately 20 Km of standard single-mode fiber (SSMF) without
dispersion compensation. Based on this evidence, we placed an available spool of 21.35 Km SSMF
after the booster EDFA, whose output power accounted for the fiber’s losses. The results taken from
the transmission experiment conducted under these settings showed that the form of the eye diagram
was close to that when the BFL was not followed by the specific fiber spool. This is indeed verified by
comparing Figure 14 to Figure 12f. Therefore the BFL could be employed in real fiber optic distribution
and access fiber networks which exploit RSOAs as external modulators [1].

Figure 14. Eye diagram for 4 Gb/s encoded signal transmission over 21.35 km standard single-mode
fiber after the RSOA-BFL. Vertical scale: 20 mV/div.

The previous results clearly demonstrated and confirmed that owing to the BFL it is possible to
considerably increase the RSOA direct modulation speed. Given the analogous degree of extension
of the nominal RSOA modulation bandwidth by other optical filtering schemes [20], we proceeded
to investigate to what extent we could exploit this fact while ensuring an acceptable performance.
For this purpose, we employed as evaluation criterion the EP that can be tolerated when forward
error correction (FEC) is applied, EPFEC. This is the metric against which the performance of directly
modulated RSOAs assisted by photonic filtering schemes is commonly assessed [17–19]. Figure 15
shows that the BFL allowed EPFEC to be kept below the 3.8× 10−3 threshold [48] up to 11 Gb/s.
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Figure 15. Error probability vs. data rate for BFL detuning ∆λ = −0.05 nm. The dashed line indicates
the FEC limit at 3.8× 10−3.

This corresponds to a higher optical filter’s efficiency, which is defined as the ratio between
the RSOA extended modulation speed to the RSOA modulation bandwidth, than previously
reported [17–19]. Moreover, Figure 16 shows that the EPFEC was minimized for an optimum detuning
of ∆λ = −0.05 nm. This corroborates the observation and conclusion that in order to maximize
the RSOA E/O bandwidth enhancement the CW signal should lie in the vicinity, and in the shorter
wavelength side, of the BFL transfer function’s nearest notch. Physically this helped suppress more
efficiently (Figure 17c) the spectral components of the encoded signal, which were shifted to longer
wavelengths (appearing as ‘knee’ in Figure 17b) with respect to the original CW signal’s optical
spectrum (Figure 17a) due to SPM inside the RSOA. To this end, the temporal profile attributes of
the RSOA direct modulation outcome benefited from the properly detuned BFL, since the encoded
pulse pattern form, which right after the RSOA was severely impaired (Figure 18a), was significantly
improved (Figure 18b), while the corresponding eye diagram, which also suffered great distortion
(Figure 18c), became open and symmetric (Figure 18d).

Figure 16. Error probability vs. BFL detuning at 11 Gb/s. The dashed line indicates the FEC limit at
3.8× 10−3.
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Figure 17. Optical spectrum at 11 Gb/s of (a) RSOA input, (b) RSOA output and (c) BFL output for
detuning ∆λ = −0.05 nm.

Figure 18. Top: Encoded pulse waveforms of (a) RSOA output and (b) BFL output for detuning
∆λ = −0.05 nm at 11 Gb/s. Bottom: Corresponding eye diagrams (c,d). Vertical scale: (a) 5 mV/div,
(b) 15 mV/div, (c) 15 mV/div and (d) 13 mV/div.
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5. Conclusions

In conclusion, we demonstrated through experimental work and results that a BFL can enhance
the direct modulation capability of a RSOA whose modulation bandwidth is inherently limited. In this
context, we showed that a properly detuned BFL allows the RSOA to produce an encoded signal
of improved quality characteristics at an extended data range, which is of the order of 4 Gb/s and
11 Gb/s when the raw BER and the FEC-assisted BER is adopted as performance criterion, respectively.
This fact, together with the BFL distinctive features, suggests that the BFL can constitute a viable
post-filtering option for help employing RSOAs as intensity modulators in relevant applications.
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of the MQW-RSOA’s small-signal modulation bandwidth by inductive peaking. J. Light. Technol. 2019,
37, 1981–1989. [CrossRef]

46. Rizou, Z.; Zoiros, K.; Houbavlis, T. Operating speed extension of SOA external modulator using microring
resonator. In Proceedings of the Progress in Electromagnetics Research Symposium (PIERS), Prague,
Czech Republic, 6–9 July 2015; pp. 2399–2402.

47. Vardakas, J.; Zoiros, K.E. Performance investigation of all-optical clock recovery circuit based on Fabry-Pérot
filter and semiconductor optical amplifier assisted Sagnac switch. Opt. Eng. 2007, 46, 085005.

48. Hui, R.; O’Sullivan, M. Fiber Optic Measurement Techniques; Academic Press: Cambridge, MA, USA, 2009.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMTT.2010.2078910
http://dx.doi.org/10.1016/j.optcom.2013.09.024
http://dx.doi.org/10.1109/JLT.2019.2896914
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Working Principle Qualitative Explanation
	Experiment
	Results
	Conclusions
	References

