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Featured Application: This paper provides the measurement methods and corresponding
calculating formulas for piezoelectric material constants. The completely orthotropic material
property, i.e., dielectric, piezoelectric, and elastic constants, is obtained and verified by
piezoelectric dynamic characteristics. By means of use in anisotropic material property, the
mode shape and corresponding natural frequency were determined by finite element numerical
calculation. The difference is rare in comparison with the results obtained by optically dynamic
vibration measurement. The influence on self-heating phenomenon of soft and hard piezoelectric
ceramics is also discussed in the study.

Abstract: In many engineering applications of piezoelectric materials, the design and prediction of
the dynamic characteristics depends on the anisotropic electromechanical material property. Through
collecting the complete formula in literature and listing all the prepared specimens, transversely
isotropic material constants were obtained and verified by dynamic non-destructive evaluation in the
paper. The IEEE (Institute of Electrical and Electronics Engineers) resonance method was applied to
measure and calculate the orthotropic material constants for piezoelectric ceramics. Five specimens
need to be prepared for the measurements using an impedance analyzer, in order to obtain the
resonant and anti-resonant frequencies from the modes of thickness extension, length-extension,
thickness-shear extension, length-thickness extension, and radial extension. The frequencies were
substituted into the formulas guided on the IEEE standard to determine the elastic, dielectric, and
piezoelectric constants. The dynamic characteristics of soft and hard piezoelectric ceramics in the
results from the finite element method (FEM), which is analyzed from the anisotropic material
constants of the resonance method, were verified with the mode shapes and natural frequencies found
by experimental measurements. In self-heating, considered as operating on resonant frequencies
of piezoelectric material, the resonant frequency and corresponding mode shape calculated by the
material constants from resonance method in FEM are more accurate than the material property
provided by the manufacturer and literature. When the wide-bandwidth frequency is needed to
design the application of piezoelectric ceramics, this study completely provided the measurement
method and dynamic verification for the anisotropic electromechanically material property.

Keywords: piezoelectric materials; transversely isotropic material; IEEE resonance method; resonant
and anti-resonant frequencies; dynamic non-destructive evaluation
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1. Introduction

Piezoelectric materials are smart materials which serve as crucial components in sensors or
actuators. When the need arises for vibration control in lightweight flexible structures with complex
shapes, piezoelectric sensors and actuators can be used to prevent adding to the overall mass of the
structure and to achieve precision control. Piezoelectric materials have superior electromechanical
properties, are lightweight and easy and inexpensive to produce, and have low power consumption [1–4].
For instance, the puncture systems used in cellular biology research have precise and fine vibration
control [5]. In addition to applying the vibration characteristics of inverse piezoelectricity, the puncture
systems also apply energy extraction systems with direct piezoelectric effects. Recently, vibration
energy harvesting devices using piezoelectric materials have garnered the attention of researchers.
These devices convert the vibration energy of mechanical structures into usable electrical energy,
which can detect the inhibiting effects of vibration signals [6]. Energy harvesting systems based on
lead zirconate titanate (PZT) can be embedded into vibrating objects to generate tens to hundreds of
microwatts of energy for low-power integrated circuits (ICs). Thus, piezoelectric materials can be
combined with low-power ICs to create continuously-working miniature wireless sensors, such as
implantable biomedical sensors and wearable devices [7], wireless sensor networks [8], and smart
buildings and special structures [9–11]. The vibration characteristics of piezoelectric materials can
be analyzed in advance using finite element software for greater convenience in the optimization of
piezoelectric effects. To obtain accurate analysis results, the boundary conditions of the model must be
clearly defined, and the right piezoelectric material parameters must be used. The parameters provided
with commercially-available piezoelectric materials are often inadequate for numerical calculations.
Complete dynamic characteristics cannot be derived from the mechanical parameters of anisotropic
materials, and thus, measuring effective and complete material parameters is key to analysis accuracy.

In this study, the material constants of the piezoelectric specimens were measured using the
resonance method (RM). This method has been widely applied. In 1954, Mason et al. [12] used the
resonance characteristics of an equivalent circuit simulating a piezoelectric crystal and employed
static methods, quasi-static methods, dynamic methods, and hydrostatic methods to measure the
elastic, piezoelectric, and dielectric constants of 45◦ Rochelle salt. Based on these measurement
methods, they then developed RM to measure the material properties of piezoelectric crystals. In this
method, the elastic and piezoelectric constants of the piezoelectric crystal are measured and the
dielectric constants are inversely calculated from measured capacitance. Although the compliance
SE

11 and SD
11, electromechanical coupling coefficients k33 and k, and permittivity εT

33 were obtained, the
measurement was lack of guideline for prepared the standard specimens. In 1961, the IRE Standards
on Piezoelectric Crystals [13] presented five specimens with different geometric shapes, aspect ratios,
polarization orientations, and electrode surface orientations. The mode shapes corresponding to
these five specimens were the thickness extension (TE) mode, length extension (LE) mode, thickness
shear extension (TS) mode, length thickness extension (LTE) mode, and radial extension (RAD) mode.
As polarized PZT has a hexagonal lattice (6 mm), it has 10 material constants, including five elastic
constants, three piezoelectric constants, and two dielectric constants. With the TE, LE, TS, LTE, and
RAD modes, the resonant and anti-resonant frequencies can be measured, and then the material
constants of its various forms can be inversely calculated.

In 1987, the IEEE (Institute of Electrical and Electronics Engineers) Standards [14] referred to the
RM in the IRE Standards and established a complete resonance measurement method with complete
assumptions regarding constitutive equations (d-form, e-form, g-form, and h-form) and simplified
specimen dimensions for piezoelectric materials and five specimens with different geometric shapes,
aspect ratios, polarization orientations, and electrode surface orientations. Some formula listed in
Refs [13,14] are more complicated, therefore the simplified form was proposed by subsequent researcher.
In 1989, Wang et al. [15] applied the thickness vibration theory in RM to the vibrations in a piezoelectric
plate in which the length and width are assumed to be much greater than the thickness that they
approach infinity. They used α-quartz with two different cuts to measure the elastic, piezoelectric, and
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dielectric constants of α-quartz. The material constants of Y-cut quartz were studied in the paper; hence,
the method is not provided for obtained the complete transversely piezoelectric isotropic material
constants. In 1998, Cao et al. [16] conducted a detailed study on specimens with two types of shear
mode shapes: thickness shear and length shear. They examined specimens with different aspect ratios
and compared their measurements. The experiment results revealed that only the length-to-thickness
ratio has a direct relationship and influences the values of the resonant and anti-resonant frequencies.
A pure shear mode shape can be generated at l/20t, thereby reducing the errors in the resonant and
anti-resonant frequency measurements.

We used an impedance analyzer to measure the resonant and anti-resonant frequencies of
piezoelectric materials and substituted them into the equations listed in RM to obtain 10 independent
material constants. Although the material parameters of piezoceramics are practically independent from
frequency in the order of several MegaHertz [17–19], in the frequencies of the order of kilohertz—several
tens of kilohertz—the dependence on frequency is very strong. It performs on the main resonances
in longitudinal, transverse, shear, or radial modes. We then substituted the measured material
constants into finite element numerical calculations to verify the in-plane and out-of-plane resonant
frequencies and mode shapes of the piezoelectric materials. The experimental measurements of the
out-of-plane resonant frequencies and mode shapes were obtained using electronic speckle pattern
interferometry (ESPI), whereas the in-plane vibrations were measured using ESPI and an impedance
analyzer. A comparison of the experiment results and the numerical calculations revealed fairly good
accuracy in the material constants obtained using RM.

2. Theory Based on Resonance Method

From the linearly electro-thermo-elastic model [20], the constitutive equations are represented as

Ti j = ci jklSkl − ei jkEk − αi jθ (1)

Di = ei jkSkl + εS
ijE j − λiθ (2)

η = αklSkl + λkEk + Cθθ (3)

qi = −Ki jθ, j (4)

In these equations, Ti j, Skl, Ek, Di, qi and θ are the components of stress, strain, electric
field, electric displacement, heat flux and temperature difference with initial condition, respectively.
The ci jkl, ei jk, αi j, εS

ij, λi, Cθ and Ki j are the components of elastic, piezoelectric, thermal expansion,
permittivity, pyroelectric coefficients, and the thermal conductivity tensor, respectively. If neglecting
the thermo-elastic and thermo-electrical effects, the piezoelectric e-form is Ti j = ci jklSkl − ei jkEk

Di = ei jkSkl + εS
ijE j

(5)

and the d-form constitutive equations are, respectively,{
Si j = si jklTkl + dki jEk
Di = diklTkl + εT

ikEk
(6)

The linear piezoelectric constitutive equations for a piezoceramic material with crystal symmetry
class C6mm are presented in the components of elastic (cE

pq), piezoelectric (epq), and dielectric coefficients
(εS

pq) respectively.
The IEEE Standards [14] indicate that measuring the complete material constants of piezoelectric

ceramic material requires piezoelectric specimens with five different mode shape characteristics (TE,
LE, TS, LTE, and RAD), each with its own geometric shape, aspect ratio, polarization orientation,



Appl. Sci. 2020, 10, 5072 4 of 24

and electrode surface orientation. We used an impedance analyzer (model: HP-4194A) to measure
their resonant and anti-resonant frequencies and inversely calculate the material constants of the
piezoelectric materials. Based on Equations (7), (8), (12), (13), (19), (20), (22), and (23), the characteristics
of the impedance measurements for TE, LE, TS, and LTE are as shown in Figure 1. Only one set of
resonant and anti-resonant frequency values ( fr, fa) needs to be substituted into Equations (25) and (26).
In Equations (25) and (26) for RAD, the impedance measurement characteristics, as shown in Figure 1,
have two sets of resonant and anti-resonant frequency values ( f r

1 , f a
1 , f r

2 , f a
2 ). Below, we obtain the

material constants from the specimens of the five vibration modes according to the explanations in
Ref [14].
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2.1. Thickness Extension (TE)

Table 1 presents the geometric shape and material constants of a thin square plate in which
the directions of polarization and vibration are oriented along the depth (thickness). When the
aspect ratios of the component satisfy l > 10t and w > 10t, we use five specimens with dimensions
l = 46 ± 0.1 mm, w = 46 ± 0.1 mm, and t = 1.2 mm, and the following equations can be used to
calculate their material constants:

k2
t =

π
2

fr
fa

cot
(
π
2

fr
fa

)
(7)

cD
33 = 4ρ(t fa)

2 (8)

cE
33 = cD

33

(
1− k2

t

)
(9)

where kt is the electromechanical coupling coefficient by thickness extension mode, fris resonant
frequency, fa is anti-resonant frequency, t is the thickness of specimen, and ρ is the density of specimen.

For the dielectric constant, the capacitance measured using an impedance analyzer at a specific
frequency (1 kHz) can be substituted into the following equations, which will produce εT

33, the dielectric
constant in constant stress, and εS

33, the dielectric constant in constant strain:

εT
33 =

Cl·t
A

(10)

εS
33 =

Ch·t
A

(11)
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where A is the area of the electrode, Cl is the capacitance under 1kHz, and Ch is the capacitance at twice
the anti-resonant frequency (2 fa).

Table 1. Specification on vibration modes of standard piezoelectric elements and their correspondent
measured material constants [14].

Mode Specification
Obtained Material Constant

k d SE εT

Thickness Extension
(TE)
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t
l

w

P E

t

l

w

P

E

1w 2w

l

P E

l
w t

P E

φ

t

P E

l > 10t , w > 10t

kt d33 sE
33 εT

33

Thickness Shear Extension
(TS)
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2.2. Thickness Shear Extension (TS)

In this mode, we have a thin square plate in which the polarization is oriented along the length, and
shear vibrations occur along the depth. In other words, the orientation of polarization is perpendicular
to the direction of the electric field, causing the piezoelectric component to display shear vibrations.
Table 1 presents the geometric shape and material constants. When the aspect ratios of the component
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satisfy l > 20t and w > 10t, we use five specimens with dimensions l = 9± 0.05 mm, w = 8± 0.05 mm,
and t = 0.52 mm, and the following equations can be used to calculate their material constants:

k2
15 =

π
2

fr
fa

cot
(
π
2

fr
fa

)
(12)

cD
44 = 4ρ(t fa)

2 (13)

cE
44 = cD

44

(
1− k2

15

)
(14)

For PZT material, the following relations can be used to derive SD
44, the elastic compliance constant

with constant electric displacement, and SE
44, the elastic compliance constant in a constant electric field:

SD
44 = 1/cD

44 (15)

SE
44 = 1/cE

44 (16)

where k15 is the electromechanical coupling coefficient of the thickness shear mode shape.
For the dielectric constant, the capacitance measured using an impedance analyzer at a specific

frequency (1 kHz) can be substituted into the following equations, which will produce εT
11, the dielectric

constant in constant stress, and εS
11, the dielectric constant in constant strain:

εT
11 =

CL·t
A

(17)

εS
11 =

CH·t
A

(18)

CL is the capacitance measured at 1 kHz, and CH is the capacitance measured at twice the anti-resonant
frequency (2 fa).

2.3. Length Extension (LE)

In this mode, we have a thin square column in which the polarization and vibrations are oriented
along the direction of the length. Table 1 presents the geometric shape and material constants. When
the aspect ratios of the component satisfy l > 5w1 and w > 5w2, we use five specimens with dimensions
l = 10± 0.1 mm, w1 = 1.4± 0.1 mm, and w2 = 0.51 mm, and the following equations can be used to
calculate their material constants, where k33 denotes the electromechanical coupling coefficient of the
longitudinal length mode shape, and l is the length of specimen.

k2
33 =

π
2

fr
fa

cot
(
π
2

fr
fa

)
(19)

SD
33 =

1

4ρ(l fa)
2 (20)

SE
33 =

SD
33

1− k2
33

(21)

2.4. Length Thickness Extension (LTE)

In this mode, we have a thin square plate in which the polarization is oriented along the depth
and lateral vibrations occur along the length. In other words, the vibrations occur along the length
and perpendicular to the polarization orientation. Table 1 presents the geometric shape and material
constants. When the aspect ratios of the component satisfy l > 10t, l > 3w, and 3t > w, we use five
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specimens with dimensions l = 31.8± 0.1 mm, w = 3± 0.1 mm, and t = 1.21 mm, and the following
equations can be used to calculate their material constants:

k2
31

k2
31 − 1

=
π
2

fa
fr

cot
(
π
2

fa
fr

)
. (22)

SE
11 =

1

4ρ(l fr)
2 (23)

SD
11 = SE

11

(
1− k2

31

)
(24)

where k31 denotes the electromechanical coupling coefficient of the thickness shear mode shape.

2.5. Radial Extension (RAD)

In this mode, we have a thin round plate in which the polarization and vibrations are both oriented
along the depth. Table 1 presents the geometric shape and material constants. The aspect ratios of the
component must satisfy ∅ > 20t, and we use five specimens with dimensions ∅ = 19.9± 0.05 mm and
t = 0.81 mm. In 1973, Meitzler, O’Bryan, and Tiersten [21] derived the constants of radial vibrations in
round plates. The formula for kp, the electromechanical coupling coefficient of the radial vibrations in
a piezoelectric round plate is

k2
P

1− k2
P

=

(
1− σE

)
J1[η1(1 + H f / fr)] − η1(1 + ∆ f / fr)J0[η1(1 + ∆ f / fr)]

(1− σE)J1[η1(1 + ∆ f / fr)]
(25)

where kp denotes the electromechanical coupling coefficient of the radial mode shape; ∆ f = fa − fr is
the difference between the anti-resonant frequency and the resonant frequency; J0 is Bessel Function of
First Kind and Zero Order; J1 is Bessel Function of First Kind and First Order; σE is Poisson’s Ratio; and
η1 is the first positive root from the function

(
1− σE

)
J1(η) = ηJ0(η). However, in 2005, Zhang, Alberta,

and Eitel [22] modified the electromechanical coupling relation above using approximation into

k2
P =

1
P
·

f 2
a − f 2

r

f 2
a

(26)

where

P =
2
(
1 + σE

){
η2

1 −
[
1− (σE)2]} (27)

Based on RM by IEEE standard [14,15], several formula were simplified also by Zhang et al. [22]
and we used them to calculate some parameters, i.e., εT

33 ε
S
33, εT

11.
RM uses the vibration characteristics corresponding to the five types of piezoelectric components

above to derive the elastic, piezoelectric, and dielectric constants. Furthermore, Poisson’s ratio is
defined as the ratio of lateral strain to longitudinal strain:

σE = −
SE

12

SE
11

(28)

where the superscript E indicates values measured in a fixed electric field. The negative indicates
that the two vibrations are opposite in direction, which means that when the longitudinal vibration
is extending, the lateral vibration is contracting, and when longitudinal vibration is contracting, the
lateral vibration is extending. Obtaining the Poisson’s ratio generally requires the measurement of the
fundamental frequency and one overtone frequency of the piezoelectric round plate. The formula used
is

(
1− σE

)
J1(η) = ηJ0(η), the source and usage of which are explained in Ref [23,24]. Then, η1 and η2
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are calculated, and we can look up the fundamental frequency fr = f r
1 and the overtone frequency f r

2
in the table provided in the Appendix to determine the Poisson’s ratio σE, which is substituted into
Equation (25) to derive kp, the electromechanical coupling coefficient of the radial mode shape.

Although RM can be used to obtain the material constants of piezoelectric materials, there
are still some constants that cannot be measured via experiment, and some conversions between
constants are required to derive the constants that cannot be directly measured before all of the
elastic, piezoelectric, and dielectric constants are obtained. Below is the solved equation including the
piezoelectric strain constant:

d2
i j = k2

i jε
T
ii s

E
jj (29)

where i j = 31, 33, 15. Based on the equation above, if ki j, εT
ij, and sE

ij (i.e., the electromechanical coupling
coefficient, the dielectric constant in constant stress, and the elastic compliance constant in a constant
electric field) are known, then d31, d33, and d15, (i.e., the piezoelectric strain constants) can be obtained.
Next, we can use the following equations to obtain the other elastic and compliance constants:

sE
12 = −σE

·sE
11 (30)

sD
12 = sE

12 − k2
31·s

E
11 (31)

sE
66 = sD

66 =
1

cE
66

=
1

cD
66

= 2
(
sE

11 − sE
12

)
(32)

sD
13 = −

 sD
11 + sD

12

2
·

sD
33 −

1
cD

33




0.5

(33)

sE
13 = sD

13 + k31·k33
(
sE

33·s
E
11

)0.5
(34)

cE
11 =

sE
11sE

33 −
(
sE

13

)2

(
sE

11 − sE
12

)[
sE

33

(
sE

11 + sE
12

)
− 2

(
sE

13

)2
] (35)

cE
12 =

−sE
12sE

33 +
(
sE

13

)2

(
sE

11 − sE
12

)[
sE

33

(
sE

11 + sE
12

)
− 2

(
sE

13

)2
] (36)

cE
13 =

−sE
13

sE
33

(
sE

11 + sE
12

)
− 2

(
sE

13

)2 (37)

Using Equations (30) through (37), we can obtain all of the elastic and compliance constants. We
can then use εT

ik = εS
ik + dipekp to obtain the piezoelectric stress constant ei j. The primary calculation

formulas are as follows:
e31 = d31

(
cE

11 + cE
12

)
+ d33cE

13 (38)

e33 = 2d31cE
12 + d33cE

33 (39)

e15 = d15cE
44 (40)

3. Specimens and Experimental Techniques

This study performed the experimental measurements and material constant calculations of two
piezoelectric ceramic materials using RM. The in-plane and out-of-plane vibration characteristics were
measured using instruments to verify the accuracy of the material constants obtained using finite
element analysis. Below, we introduce the piezoelectric materials and instruments used in this study.
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3.1. Prepation on Piezoelectric Ceramics

To establish complete piezoelectric ceramic material constants, we used RM to perform
measurements of five specimens with specific geometric shapes, aspect ratios, polarization orientations,
and electrode surface orientations. As shown in Table 1, the specific mode shapes include the TE, LE,
TS, LTE, and RAD modes.

We procured piezoelectric ceramic specimens that fit the specifications of the TE and RAD modes
in RM from American Piezo Ceramics (APC) International, Ltd. and the Fuji Ceramics Corporation.
The piezoelectric specimens for the LE and LTE modes were cut to the required aspect ratios using
ultrasonic cutting. Finally, for the TS mode, we ground our own specimen, removed the electrodes,
and redistributed the electrodes in the direction normal to that of polarization so that the aspect ratio,
polarization orientation, and the direction of the electric field created by the electrodes would meet
specifications for TS mode testing.

3.2. Impedance Analysis

We derived material constants using the theoretical equations in RM. The resonant and
anti-resonant frequencies substituted into the equations were obtained by measuring the mode shapes
with specific structures, namely the TE, LE, TS, LTE, and RAD modes, using an impedance analyzer.

An impedance analyzer uses fixed voltages to excite vibrations in the target object and then
measures the continuous changes in electrical impedance at various frequencies, as shown in Figure 1.
The electrical impedance can be regarded as the total impedance applied by the resistors, inductors,
and capacitors in the target object on the alternating current. Coupling characteristics are evident in
the conversion between electrical and mechanical energy in piezoelectric materials. Thus, the electrical
impedance of piezoelectric materials differs from that of components without piezoelectric properties.
Generally, the results will display a resonant frequency ( fresonance, fr) or anti-resonant frequency
( fanti−resonance, fa) at certain resonant frequencies in frequency-impedance characteristic diagrams.

3.3. Electronic Speckle Pattern Interferometry (ESPI)

We input the material constants derived from measurements and calculations using RM and the
material parameters provided by manufacturers or literature into finite element software to analyze
vibration characteristics and obtain resonant frequency values and mode shapes. Next, we used the
vibration characteristics obtained using optical non-destructive testing to verify the accuracy of RM.

Derived from holography, ESPI involves the casting of two coherent light beams on the target object
and then the differences and changes in the optical path lengths are used to obtain the deformation
data of the target object. The measurement method commonly used when ESPI is applied to vibrations
is the time-averaging method. Within the exposure time of the CCD (charge-coupled device), images of
the vibrating object are captured at different times, and a zero-order Bessel function is used to modulate
the interference fringes. The brightest region in the interference images is the nodal line, where the
displacement is zero, and the light and dark fringes show the contours of displacement. The resolution
of the measurement system depends on the light source wavelength. We set up a sub-micron level ESPI
system so as to obtain the full-field distributions of micro-vibration displacements in the interference
patterns [25,26]. We then compared the ESPI measurement results of the low-frequency out-of-plane
vibrations and the high-frequency in-plane vibrations in the piezoelectric specimens with the FEM
analysis results derived from the piezoelectric material constant inputs.

3.3.1. Out-Of-Plane Vibration

As shown in Figure 2, a beam splitter is used to create two coherent laser beams. The one applied
to the object surface is the object beam, whereas the other, known as the reference beam, is projected
on a reference plate so that it scatters to create a speckled image. The two coaxial beams reflect and
focus on the photosensitive plane of a CCD camera and create interference images. Using differencing
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calculations to process the images then swiftly produces interference fringe patterns on the computer
screen, thereby providing real-time measurements during experiments.
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3.3.2. In-Plane Vibration

As shown in Figure 3, a beam splitter creates two laser beams which reach the target object from
different sides but at identical angles of incidence with equal optical path lengths. Spatial filters then
scatter the laser beams, and a CCD camera records the optimal interference images which undergo
computer processing and produce vibration interference data.

Appl. Sci. 2020, 10, 5072 10 of 24 

 
Figure 2. Out-of-plane setup in ESPI. 

 
Figure 3. In-plane setup in electronic speckle pattern interferometry (ESPI). 

4. Finite Element Method 

We used the commercial software ABAQUS to perform finite element method (FEM) analysis 
calculations. For the material constants, we used the calculation results obtained using RM and the 
parameters provided by manufacturers and literature. It is noted that errors of about 6%-30% are 
produced on the natural frequencies of the first three modes, when the element used only one-layer 
thickness or the linear element is applied on the perturbation. To enhance the accuracy of the 
numerical calculation results and to confirm the convergence in calculation, we used high-order 
three-dimensional 20-node piezoelectric coupling elements with reduced integration (C3D20RE). The 
grid size was 1 mm in the length and width directions and was divided into five equal parts along 
the depth, resulting in 10,580 hexahedral elements comprising 50,243 nodes. We then compared the 
out-of-plane and in-plane mode shapes of the piezoelectric materials using FEM with experiment 
measurements to verify the accuracy of the material constants. 
  

Figure 3. In-plane setup in electronic speckle pattern interferometry (ESPI).

4. Finite Element Method

We used the commercial software ABAQUS to perform finite element method (FEM) analysis
calculations. For the material constants, we used the calculation results obtained using RM and the
parameters provided by manufacturers and literature. It is noted that errors of about 6%-30% are
produced on the natural frequencies of the first three modes, when the element used only one-layer
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thickness or the linear element is applied on the perturbation. To enhance the accuracy of the numerical
calculation results and to confirm the convergence in calculation, we used high-order three-dimensional
20-node piezoelectric coupling elements with reduced integration (C3D20RE). The grid size was 1 mm
in the length and width directions and was divided into five equal parts along the depth, resulting in
10,580 hexahedral elements comprising 50,243 nodes. We then compared the out-of-plane and in-plane
mode shapes of the piezoelectric materials using FEM with experiment measurements to verify the
accuracy of the material constants.

5. Results in Material Constants

The values required for RM were measured using an impedance analyzer and then converted.
With the APC-855 material as an example, we took the average of the results from the five specimens.
Table 2 presents the resonant and anti-resonant frequencies measured by the impedance analyzer in
the TE mode, which were substituted into Equations (7) through (10) to derive Kt, CE

33, and CD
33. Table 3

presents the resonant and anti-resonant frequencies measured by the impedance analyzer in the TS
mode, which were substituted into Equations (12) through (16) to derive K15, CE

44, and CD
44. Table 4

shows the capacitance values measured at 1 kHz in the TE and TS modes, which were substituted into
Equations (10), (11), (17), and (18) to derive εT

33 and εT
11. Table 5 displays the resonant and anti-resonant

frequencies measured by the impedance analyzer in the LE mode, which were substituted into
Equations (19) through (21) to derive K33, SE

33, and SD
33. Table 6 contains the resonant and anti-resonant

frequencies measured by the impedance analyzer in the LTE mode, which were substituted into
Equations (22) through (24) to derive K31, SE

11, and SD
11. Table 7 shows the resonant and anti-resonant

frequencies measured by the impedance analyzer in the RAD mode, which were substituted into
Equations (25) through (27) to derive KP and σE.

Table 2. Resonant and anti-resonant frequencies and the converted material constants in thickness
extension (TE) mode.

TE Mode fr (kHz) fa (kHz) kt cE
33(×1010N/m2) cD

33(×1010N/m2)

Sample 1 1205 1875 0.7967 5.7156 15.6476
Sample 2 1162.5 1857.5 0.8093 5.2983 15.3568
Sample 3 1170 1875 0.8107 5.2763 15.3900
Sample 4 1190 1855 0.7976 5.5726 15.3155
Sample 5 1182.5 1850 0.8007 5.4972 15.2331

Avg. Value – – 0.8030 5.4720 15.3886

Table 3. Resonant and anti-resonant frequencies and the converted material constants in thickness
shear extension (TS) mode.

TS Mode fr (kHz) fa (kHz) k15 cE
44(×1010N/m2) cD

44(×1010N/m2)

Sample 1 1735 2100 0.6028 2.3078 3.6251
Sample 2 1720 2045 0.5804 2.2797 3.4377
Sample 3 1720 2055 0.5867 2.2765 3.4714
Sample 4 1760 2062.5 0.5607 2.3974 3.4968
Sample 5 1745 2092.5 0.5913 2.3407 3.5992

Avg. Value – – 0.5844 2.3204 3.5260
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Table 4. Capacitance and dielectric constant measured at 1 kHz in TE and TS mode.

TE Mode Cl(nF) εT
33(×10−9F/m) TS Mode CL (nF) εT

11(×10−9F/m)

Sample 1 49.0810 28.1089 Sample 1 4.7493 30.9323
Sample 2 52.4846 29.9669 Sample 2 4.7647 31.0326
Sample 3 52.7355 29.9197 Sample 3 4.8435 31.4987
Sample 4 52.3802 29.8813 Sample 4 4.2233 27.5341
Sample 5 50.9098 29.1944 Sample 5 4.2036 27.3714

Avg. Value – 29.4142 Avg. Value – 29.6738

Table 5. Resonant and anti-resonant frequencies and the converted material constants in length
extension (LE) mode.

LE Mode fr (kHz) fa (kHz) k33 SE
33(×10−12m2/N) SD

33(×10−12m2/N)

Sample 1 132.75 170 0.6631 20.1927 11.3143
Sample 2 130 163.5 0.6453 20.9192 12.2074
Sample 3 134.5 169.25 0.6459 19.4678 11.3468
Sample 4 128.5 170.5 0.6946 21.7746 11.2705
Sample 5 133 172.5 0.6749 20.0189 10.9016

Avg. Value – – 0.6648 20.4746 11.4081

Table 6. Resonant and anti-resonant frequencies and the converted material constants in length
thickness extension (LTE) mode.

LTE Mode fr (kHz) fa (kHz) k31 SE
11(×10−12m2/N) SD

11(×10−12m2/N)

Sample 1 47.6 51.05 0.4019 14.2670 11.9626
Sample 2 47.75 50.9 0.3851 14.0978 12.0070
Sample 3 48.05 51.05 0.3756 14.1336 12.1402
Sample 4 47.6 50.6 0.3772 14.3118 12.2758
Sample 5 47.15 50.75 0.4114 14.4951 12.0416

Avg. Value – – 0.3902 14.2611 12.0854

Table 7. Resonant and anti-resonant frequencies and the converted material constants in radial extension
(RAD) mode.

RAD Mode fr
1 (kHz) fa

1 (kHz) fr
2 (kHz) fr

2/f
r
1 kp σE

Sample 1 100.35 121.8 269.2 2.6826 0.6365 0.2296
Sample 2 100.35 121.25 268.1 2.6716 0.6312 0.2439
Sample 3 100.35 121.8 269.2 2.6826 0.6365 0.2296
Sample 4 100.35 121.25 269.2 2.6826 0.6303 0.2296
Sample 5 100.9 119.6 266.45 2.6407 0.6100 0.2856

Avg. Value – – – – 0.6289 0.2437

Table 8 compares the material constants obtained using RM and those provided by the manufacturer
for piezoelectric material APC-855 from APC International, Ltd., and Table 9 compares the material
constants for piezoelectric material C-2 from the Fuji Ceramics Corporation. Some differences exist
between the material constants obtained using RM in this study and those provided by the manufacturer
or in literature for the two piezoelectric ceramic materials. Although the difference is not very large
in piezoelectric d-form parameters, the finite element analysis produces calculating inaccuracy or it
cannot obtain the results because of the missing terms in the manufacturer provided one. Due to
transformation in calculation, the e-form parameters in the manufacturer provided one have a larger
difference with those obtained by the resonance method in this study. We therefore also substituted
these material constants into FEM to calculate the high-frequency in-plane low-frequency out-of-plane
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vibration characteristics and performed experimental measurements to determine the accuracy of
applying these material constants to dynamic analysis.

Table 8. Material constant of APC-855 by resonance method, manufacturer, and Ref [27].

d Form RM Manufacturer Provided e Form RM Ref [27]

Elastic compliance in constant electric field (×10−12 m2/N)
Elastic stiffness in constant electric field

(×1010 N/m2)
sE

11 14.261 16.295 CE
11 8.089 12.18

sE
12 −3.475 – CE

12. 2.451 8.021
sE

13 −3.645 CE
13 1.876 8.527

sE
33 20.475 23.518 CE

33 5.552 11.644
sE

44 43.096 – CE
44 2.320 2.299

sE
66 35.473 – CE

66 2.819 2.080
Piezoelectric strain constant (×10−12 C/N) Piezoelectric stress constant (C/m2)

d15 661 720 e15 15.338 14.26
d31 −253 −276 e31 −16.984 −10.48
d33 516 630 e33 19.156 16.60

Dielectric constant in constant stress
(×10−9 F/m)

Dielectric constant in constant strain
(×10−9 F/m)

εT
11 29.674 – εS

11 19.536 24.082
εT

33 29.414 29.218 εS
33 10.936 23.020

Table 9. Material constant of FUJI C-2 by resonance method and manufacturer.

d Form RM Manufacturer Provided e Form RM Manufacturer Provided

Elastic compliance in constant electric field
(×10−12 m2/N)

Elastic stiffness in constant electric field
(×1010 N/m2)

sE
11 12.881 14.106 CE

11 12.085 7.3
sE

12 −3.834 −4.232 CE
12 6.102 1.848

sE
13 −5.355 −5.355 * CE

13 5.638 5.638 *
sE

33 18.467 18.039 CE
33 8.911 5.3

sE
44 43.465 45.455 CE

44 2.301 2.2
sE

66 33.430 36.690 CE
66 2.991 2.726

Piezoelectric strain constant (×10−12 C/N) Piezoelectric stress constant (C/m2)
d15 573 692 e15 13.183 15.224
d31 −150 −158 e31 −9.126 −9.126 *
d33 322 367 e33 11.779 11.779 *

Dielectric constant in constant stress (×10−9 F/m) Dielectric constant in constant strain (×10−9 F/m)
εT

11 14.832 17.442 εS
11 7.278 6.907

εT
33 12.641 12.927 εS

33 6.112 6.112 *

* Combined calculation results from RM experimental measurements and material parameters provided
by manufacturer.

6. Discussion and Verification

We used ESPI to measure the out-of-plane and in-plane vibration characteristics of piezoelectric
materials. The white regions in the images were the nodal lines, and the first lines next to them show
the sub-micron vibration displacements [25,26]. The resonant frequencies measured by the impedance
analyzer were also listed. Next, we applied the material constants obtained using the mathematical
calculations in RM to finite element analysis software (ABAQUS) to derive the out-of-plane and
in-plane resonant frequencies and mode shapes. The bold black lines in the mode shape results were
the nodal lines, and we compared these numerical calculation results with experimental measurements
to verify the reliability of the material constants.
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6.1. APC-855

The vibration verification specimen used in this study was the thin square plate in the TE
mode, in which the polarization and the vibrations are oriented along the depth. For the geometric
dimensions, we used l = 46 mm, w = 46 mm, and t = 1.2 mm in the FEM calculations and conducted
experimental verification.

6.1.1. Out-Of-Plane Vibration

As shown in Figure 4, nine mode shapes were measured in the out-of-plane vibrations, reaching
around 10 kHz. “RM” indicates the results of inputting the parameters derived using RM into
FEM calculations, and “Ref [27]” indicates the analysis results obtained in literature for APC-855.
The simulation results of these two sets of material constants were both consistent with the mode
shapes measured in the piezoelectric specimen experiments. However, the RM calculation results for
the resonant frequencies were precise, the errors remaining within 6.472%. The errors in Ref [27], on
the other hand, were all greater than 10% and increased as the frequency increased. This demonstrates
that the material constants obtained using RM in this study have a certain degree of reliability.
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6.1.2. In-Plane Vibration

As shown in Figure 5, five mode shapes could be obtained and the in-plane resonant frequency
was in the high-frequency range from 20 kHz to 100 kHz. Mode shapes could be obtained via mode
shape analysis of the material parameters derived in RM and Ref [27]. A comparison of the resonant
frequency measurement results of impedance analysis and the ESPI frequency measurements revealed
that they were almost identical. However, we found that the error between the RM analysis results and
ESPI measurements increased as the frequency increased and exceeded 10%. In contrast, the analysis
results in Ref [27] were relatively accurate. We speculate that this is because the impedance is smallest
at resonant frequency vibrations; however, ESPI measurement of in-plane vibrations requires high
voltages for excitation, which generates a self-heating effect and material property changes during
resonance. We therefore speculate that the material constants derived in Ref [27] are better suited to
the prediction of the in-plane vibrations in APC-855 following the self-heating effect. We explain this
phenomenon in further detail in the following section.
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6.1.3. Influence on Self-Heating in Resonance

For the out-of-plane modes, the piezoceramics was operated at lower frequencies and excited on
almost one-hundred voltages. The piezoelectric material remained at almost the same temperature,
which was measured by thermography at room temperature. However, we speculate that the in-plane
parameters in Ref [27] are more accurate than the material constants obtained using RM in this
study because APC-855 is a soft piezoelectric ceramic that is more prone to self-heating at high
in-plane resonant frequencies. Thus, we used new specimens to conduct the in-plane vibration
measurements. A comparison of Figures 5 and 6 show that the main difference lies in the duration
of excitation. In Figure 6, the in-plane vibrations in the experiment were controlled so as to prevent
self-heating caused by over-excitation [28,29]. The lower impedance occurs at the resonant frequency.
The experimental measurement of in-plane vibrations requires higher excitation voltage, since ESPI
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measurement is sub-micrometer resolution. Under high-voltage, high-frequency, and low-impedance
excitation conditions, high temperatures are often generated in piezoelectric components, and the
material properties of piezoelectric components change at high temperatures, which may alter the
capacitance and material rigidity of piezoelectric ceramic. The results in Tables 5 and 6 show that after
self-heating, the errors between the resonant frequency measurements of APC-855 and the results of
FEM calculations using the material constants obtained with RM become significant. When the voltage
and excitation time are controlled under only several seconds to confirm slight temperature rising, the
resonant frequencies from the experimental ESPI measurements and impedance analysis compared
to FEM are almost identical. The RM results also become accurate, with errors less than 5.314%.
This verifies that the parameters measured using RM can also be used to calculate in-plane vibration
values with accuracy. The errors of the Ref [27] parameters input into FEM instead become higher than
they were before the self-heating of the specimen, ranging from 7% to 11%. From Equations (1) through
(4), the electro-thermal-elastic model illustrated that the physical parameters and material constants
were influenced by a thermal effect. In the experimental results, it is concluded that material constants
and dynamic characteristics of the piezoelectric material depend on temperature. Zhang et al. [22] also
show the influence on dielectric loss, dielectric constant, shifting resonant frequency of piezoelectric
material through the thermal effect in their results. Hence, the RM used in the measurement of
piezoelectric material constants has to be considerate of the temperature dependency in the actual
application. This study therefore demonstrated that the material constants obtained using RM can
be used to accurately calculate the out-of-plane and in-plane vibration characteristics of piezoelectric
materials. However, the impact of self-heating must be taken into account.
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6.2. FUJI C-2

In this paper, we discuss the accuracy of using RM to measure material constants of piezoelectric
material APC-855, which is a soft ceramic in which self-heating is more severe during in-plane
vibrations. We also examined the accuracy of using RM to measure material constants of piezoelectric
material FUJI C-2, which is a hard ceramic. The dimensions of the test specimen were identical to those
of the APC-855 specimen.

6.2.1. Out-of-Plane Vibration

As shown in Figure 7, ten mode shapes were obtained in the out-of-plane vibrations up to 12 kHz.
We compared the experiment results and the FEM results. “Manufacturer provided” indicates the results
of FEM calculations using the material constants provided by the manufacturer. However, not all of the
parameters were available from the manufacturer, so we had to use parameters measured using RM
to make up for the missing CE

13, e31, e33, and εS
33 in the FEM calculations of the vibration characteristics.

Comparisons of the out-of-plane mode shape revealed high accuracy in all modes except Mode 5, which
could not be derived using the parameters provided by the manufacturer. The RM errors were all less
than 3.765%, thereby indicating that the RM results were all highly accurate. In contrast, only the errors
of the results from the parameters provided by the manufacturer in Modes 1, 2, 3 and 6 were less than
10%. The errors in the remaining modes were greater than 10%. The manufacturers provided their
piezoelectric material constants by measured in standard specimens; however, the quality control in turns
of mass production influenced the difference of material properties. We can thus confirm that this study
successfully used RM to obtain reliable material constants for piezoelectric ceramic materials.
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6.2.2. In-Plane Vibration

As shown in Figure 8, five mode shapes were obtained in the in-plane vibration experiments.
The FEM results from RM material constants were all relatively accurate, whereas the parameters
provided by the manufacturer could not produce any results at all. Because finite element analysis
inputs the e-form material constants to calculate the results, it causes the transferred e-form material
constants to have a larger difference with those that are manufacturer provided, as listed in Table 9.
The impedance analysis results were also relatively consistent with the ESPI measurements, with only
slight errors in Mode 5. The errors of the FEM calculations from the RM parameters were all within
4%, thereby indicating that the piezoelectric ceramic material constants obtained in this study were
relatively reliable.
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cannot be obtained using general material testing methods. Literature indicates that RM, an approach 
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6.3. Discussion on APC-855 and FUJI C-2

APC-855 and FUJI C-2 are soft and hard piezoelectric ceramics, respectively, and the applications of
the piezoelectric effects of soft and hard piezoelectric ceramics differ. Soft piezoelectric ceramics present
stronger direct piezoelectric effects and are thus more suitable for sensors, whereas hard piezoelectric
ceramics show more distinct inverse piezoelectric effects and are thus more suitable for actuators. We
examined the vibration measurements of these two materials via the drive voltage, and found that lower
voltages can be applied to FUJI C-2 than to APC-855 while still producing ESPI measurement results
at the sub-micro level. This verifies that actuators comprising hard ceramic piezoelectric materials
may have stronger inverse piezoelectric effects. In contrast, soft ceramic piezoelectric materials require
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greater drive voltages to make the vibration fringes clear enough to observe, but the self-heating issue
severely affects the resonant frequency measurement results. Once the temperature reaches half of
the Curie Temperature and remains there, thermal deterioration takes place in the material and is
accompanied by depolarization [30–33]. The vibration characteristics of the piezoelectric material are
also affected, thereby affecting the accuracy of material constants derived using RM. Thus, this study
successfully used dynamic characteristic measurement to verify the applicability of material constants
obtained using RM.

7. Conclusions

Due to the anisotropic mechanical properties of piezoelectric materials, their material constants
cannot be obtained using general material testing methods. Literature indicates that RM, an approach
developed over years of research using structural and polarization characteristics, can effectively
measure the anisotropic parameters of piezoelectric materials. This study contains complete details on
the specimens and all of the equations that should be prepared, and we used dynamic experiments to
verify the accuracy of the material constants that were obtained.

RM measurements require TE, LE, TS, LTE, and RAD mode specimens. Using impedance analysis,
their resonant and anti-resonant frequencies were obtained and then substituted into the RM equations.
We also used the conversional relationships in constitutive equations to obtain the complete elastic,
piezoelectric, and dielectric coefficients of piezoelectric ceramic materials.

We used a non-destructive testing method for dynamic characteristic measurement, verifying
FEM analysis results from anisotropic material constants obtained using RM from soft and hard
piezoelectric ceramic materials. The errors between the out-of-plane and in-plane mode shapes, which
is frequency-dependent on material constants, derived from the RM material constants and those
measured in experiments, were very small. We also discussed the impact of the temperature changes
caused by self-heating in soft and hard piezoelectric ceramics on the properties of the piezoelectric
materials. Whether the piezoelectric ceramic is prone to self-heating affects the accuracy of RM material
constants. The dynamic analysis of non-destructive testing revealed that soft ceramic is more prone to
self-heating, which shifts the original resonant frequency. This indicates that the question of whether
the properties of piezoelectric materials change due to self-heating must be noted, which will in turn
affect the original operating frequency and voltage designs used in transducers.
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Appendix A

Table A1 is listed in the material property provided by APC International, Ltd. Table A2 is listed
in the material property provided by Fuji Ceramics Corporation. Table A3 is listed in the Poisson’s
ratio, σE, correspondent to the ratio of the first two resonant frequencies.
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Table A1. Material constants of APC-855 piezoceramic provided from APC International, Ltd.

Item Unit Symbol APC-855

Electromechanical coupling coefficient –

kp 0.68
k33 0.76
k31 0.40
k15 0.66

Piezoelectric constant ×10−12m/v
d33 630
d31 −276
d15 720

Elastic constant ×1010N/m2 CE
33 5.1

CE
11 5.9

Dielectric constant @1 kHz εT
33/ε0 3300

Curie temperature ◦C Te 200
Density Kg/m3 ρ 7600

Table A2. Material constants of APC-855 piezoceramic provided from Fuji Ceramics Corporation.

Item Unit Symbol FUJI C-2

Electromechanical coupling coefficient –

kp 0.63
k33 0.76
k31 0.37
k15 0.77
kt 0.52

Piezoelectric constant ×10−12m/v
d33 367
d31 −158
d15 692

Elastic constant ×1010N/m2
CE

33 5.3
CE

11 7.3
CE

55 2.2

Dielectric constant @1 kHz
εT

33/ε0 1460
εT

11/ε0 1970
Curie temperature ◦C Tc 300

Density Kg/m3 ρ 7600
Poisson’s ratio – σ 0.3

Table A3. Poisson’s ratio corresponds to the ratio of the first two resonant frequencies.

σE η1 η2 fr
2/f

r
1 σE η1 η2 fr

2/f
r
1

0.00 1.8412 5.3314 2.8956 0.26 2.0236 5.3817 2.6595
0.01 1.8489 5.3334 2.8846 0.27 2.0300 5.3836 2.6520
0.02 1.8565 5.3353 2.8738 0.28 2.0363 5.3855 2.6447
0.03 1.8641 5.3372 2.8632 0.29 2.0426 5.3874 2.6375
0.04 1.8716 5.3392 2.8527 0.30 2.0489 5.3894 2.6304
0.05 1.8790 5.3411 2.8425 0.31 2.0551 5.3913 2.6234
0.06 1.8864 5.3431 2.8324 0.32 2.0612 5.3932 2.6165
0.07 1.8937 5.3450 2.8225 0.33 2.0674 5.3951 2.6096
0.08 1.9010 5.3469 2.8127 0.34 2.0735 5.3970 2.6028
0.09 1.9082 5.3489 2.8031 0.35 2.0795 5.3989 2.5962
0.10 1.9154 5.3508 2.7936 0.36 2.0855 5.4008 2.5897
0.11 1.9225 5.3528 2.7843 0.37 2.0915 5.4027 2.5832
0.12 1.9296 5.3547 2.7750 0.38 2.0974 5.4046 2.5768
0.13 1.9366 5.3566 2.7660 0.39 2.1033 5.4066 2.5705
0.14 1.9436 5.3586 2.7570 0.40 2.1092 5.4085 2.5642
0.15 1.9505 5.3605 2.7482 0.41 2.1150 5.4104 2.5581
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Table A3. Cont.

σE η1 η2 fr
2/f

r
1 σE η1 η2 fr

2/f
r
1

0.16 1.9574 5.3624 2.7396 0.42 2.1208 5.4123 2.5520
0.17 1.9642 5.3644 2.7311 0.43 2.1266 5.4142 2.5459
0.18 1.9710 5.3663 2.7226 0.44 2.1323 5.4161 2.5400
0.19 1.9777 5.3682 2.7144 0.45 2.1380 5.4180 2.5341
0.20 1.9844 5.3701 2.7062 0.46 2.1436 5.4199 2.5284
0.21 1.9911 5.3721 2.6981 0.47 2.1492 5.4218 2.5227
0.22 1.9977 5.3740 2.6901 0.48 2.1548 5.4237 2.5170
0.23 2.0042 5.3759 2.6823 0.49 2.1604 5.4255 2.5113
0.24 2.0107 5.3778 2.6746 0.50 2.1659 5.4274 2.5058
0.25 2.0172 5.3798 2.6670
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