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Abstract: Thermal modification is an environmentally friendly method to improve dimensional
stability, durability, and aesthetic properties of wood. Changes in lignin as one of the main wood
components markedly influence wood product properties and recycling possibilities of thermowood
at the end of its life cycle. Teak and iroko wood samples were thermally treated at the temperatures
of 160 ◦C, 180 ◦C and 210 ◦C following the Thermowood process. Dioxane lignin was isolated
from treated and untreated wood and analysed by nitrobenzene oxidation (NBO), size exclusion
chromatography (SEC) and Fourier transform infrared spectroscopy (FTIR). The yields of both
acid-insoluble and dioxane lignins increased with an increasing treatment temperature. Dioxane
lignins are GS-types containing more guaiacyl units compared to syringyl ones with S/G ratios of 0.91
and 0.84, respectively. In the process of thermal modification, several degradation and condensation
reactions were observed. The cleavage of methoxyl groups and side chains, oxidation reactions,
cleavage of the β-O-4 ether linkage and cross-linking radicals arising at higher temperatures were
all confirmed. However, during the thermal treatment, teak lignin changed in a different way than
iroko lignin, e.g., the molecular weight of iroko lignin decreased at all applied temperatures while
it increased at 180 ◦C and 210 ◦C in teak lignin, and the change in S/G ratio and the cleavage of
alkyl-aryl bonds are different in both wood species.
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1. Introduction

Wood is a natural, renewable, mostly inexpensive and easily accessible material. Modification is
applied to overcome weak points of the wood material that are mainly related to moisture sensitiveness,
hardness, low dimensional stability, low resistance to wear, UV irradiation, to bio-deterioration against
fungi, termites, and marine borers [1]. Wood thermal treatment is an economical and environment
friendly pretreatment. It can be performed in range of 160 to 260 ◦C in different environments, e.g.,
air, vacuum, nitrogen and oil. Its main objective is to improve dimensional stability and durability,
but sometimes thermal treatment is used to change the aesthetic properties of wood. The wood colour
becomes darker depending on the treatment temperature, time, and environment [2–4].

Tropical woods generally have a great resistance to biological agents and mechanical wear, and a
good dimensional stability and interesting wood figure. Many species of exotic wood are used for
exterior constructions, decking, claddings, garden furniture or special plywood [5,6]. Teak is one of
the most valuable woods, but its use is limited by scarcity and high cost. It is currently used in the
construction of boats, flooring, decorative objects and veneer. Because of its colour and durability,
iroko is suggested as a substitute for teak. Its durability makes it suitable for boat building, piles, other
marine work, and railroad crossties. Other uses include joinery, furniture, and cabinetwork [7–9].
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Extractives in tropical wood allow for exceptional resistance against damage caused by insects and
fungi. However, their impact on the weathering process retardation is lower. This process begins with
the photodegradation of lignin by adsorption of photons from sunlight with chromophores of lignin
macromolecules-conjugated carbonyls, etc. [10]. The authors of the reference paper investigated colour
and chemical changes during the natural and artificial weathering of seven tropical wood samples
and found a particularly significant decrease of lignin, a decrease of conjugated and unconjugated
carbonyl groups, and a decrease of cellulose crystallinity [10]. High-value wood surfaces for exclusive
wood-based floorings, furniture and interior outfitting of residences, luxury yachts, aircrafts, and
railway vehicles are preferentially made of dark coloured tropical wood species [11]. The thermal
modification of tropical wood species can be used to colour homogenization for decorative purposes.
Despite the good physical and mechanical properties of the teak wood, it presents important colour
changes when exposed to UV radiation. In the case of teak wood, thermal treatment can be an
alternative to improve the durability of sapwood, modify the colour of sapwood to match with that of
heartwood, providing a more stable wood colour when exposed to UV radiation, thus adding more
value to the final product and increasing its competitiveness on the market [12].

Heat modification is expected to improve the physical properties of young (15-years old) teak wood.
The results showed that the density of the teak wood slightly decreased after heat treatment. However,
its dimensional stability improved substantially, under its reduced water absorption. Furthermore,
the surface of the young teak became darker, with a more even brown colour [13]. The lightness of
teak wood was the most affected colour attribute during the thermal treatment [14]. The thermowood
process of iroko wood caused its density decrease, colour darkening, and a considerable improvement
of dimensional stability [15]. Similar changes were observed during thermal treatment of iroko and
padauk wood [16].

Lignin is one of the most abundant organic materials. Its environmentally friendly characteristics
and physical and chemical properties enable valuable utilisation [17]. Its changes during thermal
treatment influence several wood properties, mainly colour, however, exposure to daylight often
causes brightening or greying. It was found that the discoloration of dark wood is not only caused
by UV-induced bond cleavage and oxidation of the lignin macromolecule causing the formation of
coloured low-molecular fragments, but also by changes in extractives. During thermal treatment,
some α-O-4 and β-O-4 linkages may be cleaved with the formation of free phenolic units that could be
involved in condensation reactions. Simultaneous degradation and condensation reactions lead to the
less decrease of molecular weight than expected from the extent of cleaved ether structures [11,18–20].

Available information on the thermal treatment of exotic wood species includes mainly changes
in extractives, mechanical properties, colour and wood dimensional stability. However, data on their
lignin changes are rare, although they are important to improve protection against weathering and
wider recycling of thermowood at the end of its life cycle. The aim of this work was therefore to
investigate structural changes of lignins of selected tropical wood species during the treatment by the
Thermowood process.

2. Materials and Methods

2.1. Wood Thermal Modification

Teak (Tectona grandis L.f) (density—711 kg·m−3) and iroko (Milicia excelsa (Welw.) C.C. Berg)
(density—615 kg·m−3) were harvested in Myanmar and Gabon, respectively [14,16]. Wood samples
with the dimensions 20 × 20 × 300 mm (T × R × L) were modified at the temperatures of 160 ◦C,
180 ◦C and 210 ◦C in an open system thermal modification chamber (Type S400/03, LAC Ltd., Rajhrad,
Czech Republic) following the ThermoWood process [21]. Untreated (reference, denoted as 20 ◦C) and
thermally modified samples were ground to sawdust and extracted in the Soxhlet apparatus with a
mixture of ethanol and toluene according to the ASTM D1107-96 standard [22]. Acid-insoluble lignin
(Klason lignin) was determined according to Sluiter et al. [23].
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2.2. Lignin Isolation

The lignin isolation from the wood samples was performed using mild acidolysis and dioxane as
a solvent by modified method [24]. Extracted wood flour with size ≤ 0.355 mm (10 g) was placed in a
500 mL three-necked flask fitted with a dropping funnel, a nitrogen bubbler and a reflux condenser.
An amoj tof 100 mL of dioxane/water (9:1, v/v) with 1.82 g HCl (equivalent to 0.2 M) was slowly added.
The mixture under nitrogen atmosphere was refluxed at 80 ◦C for 5 h. Then, the mixture was cooled
to room temperature, filtered, neutralized by addition of ammonium acetate, and concentrated in
vacuum at the temperature of 40 ◦C. Lignin was precipitated by slowly dropping of dioxane solution
into the cold water.

2.3. Nitrobenzene Oxidation

Alkaline nitrobenzene oxidation (NBO) was carried out in a stainless-steel bomb by modified
method of Ďurkovič et al. [25]. An amount of 50 mg of dioxane lignin was reacted with 5 mL of 2 M
NaOH and 0.4 mL of nitrobenzene at the temperature of 180 ◦C for 2 h. The stainless-steel bomb was
then cooled down immediately with cold water. The excess of nitrobenzene was extracted with CH2Cl2
two times, and the organic phase was removed. The aqueous phase acidified by 2 M HCl to pH around
2.5 was extracted with CH2Cl2 thrice. Then the organic phase was collected and dried with anhydrous
Na2SO4, gently evaporated in nitrogen stream, and dissolved in methanol/water (1/1). NBO products
were analysed by high performance liquid chromatography (HPLC) in an Agilent 1200 apparatus
equipped with diode array detector at 240 nm, Kinetex column 2.6 µm C18 (100× 4.6 mm), mobile phase
water/methanol/propionic acid (88/4/8/0.1), flow rate 1 mL·min−1, temperature 35 ◦C. The quantification
was performed with the external calibration using standards obtained from Sigma-Aldrich (St. Louis,
MO, USA).

2.4. Size Exclusion Chromatography (SEC)

The molecular weight distribution (MWD) of lignin was evaluated by a modified method [25].
The lignin samples were dissolved in N,N-dimethylformamide (DMF, 2 mg·mL−1), filtered through
a 0.45 µm filter and placed in a 2 mL autosampler vial prior to SEC analysis. The separation was
performed on an Agilent 1200 HPLC system equipped two PolarGel-M columns (7.5 mm × 300 mm)
and a diode array detector, using dimethylformamide + 2% trifluoroacetic acid + 0.1% LiBr as the
mobile phase (1.0 mL·min−1) at 35 ◦C. A calibration curve was constructed with polystyrene standards
from 500 to 98,900 g·mol−1. The data were collected using ChemStation for LC 3D systems (version
Rev. B.04.03 [21]) software and calculated with the Clarity GPC module (version 7.4.01.088).

2.5. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra were recorded on a Nicolet iS10 spectrometer equipped with Smart iTR ATR accessory
using diamond crystal. Four measurements for each sample were performed. Each spectrum was
obtained by 32 scans in the range from 4000 cm−1 to 800 cm−1 with a resolution of 4 cm−1. Measured
spectra were baseline corrected and analysed in absorbance mode by OMNIC 8.0 software.

2.6. Statistical Analysis

The data were subjected to an analysis of variance (ANOVA), and the significant differences
between the means were determined using Duncan’s multiple range test with a p-value of 0.05.

3. Results and Discussion

The advantage of using dioxane lignin for structural studies are minimal structural changes of
lignin during its preparation and good extraction yields [26,27].
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3.1. Klason and Dioxane Lignin Yields

Lignin content in teak wood ranges from 30 to 43% [28–31]. Unmodified (reference) wood in this
work has lignin content within this range (35.42%), as reported previously [32]. The apparent insoluble
lignin content increased during thermal modification, when compared to the reference sample and the
sample treated at the temperature of 210 ◦C by 14% and 27% for teak and iroko, respectively. Duncan’s
multiple range test shows that Klason lignin yields change significantly for both wood species (for iroko
KL from the temperature of 180 ◦C). This is mainly due to hemicellulose degradation, which leads to
condensation products as acid-insoluble residues [33]. The amount of lignin that can be extracted with
dioxane depends to a large extent on the degree of its condensation [34]. The results of dioxane lignin
yields (Table 1) show that the yield of lignin from wood increased 2.1-fold and 1.7-fold for teak and
iroko, respectively, and these changes are significant. Similarly, the slight increase of dioxane lignin
yields was observed at heat sterilization of pine wood in the temperatures up to 120 ◦C [25]. On the
other hand, yields of dioxane lignin in spruce heated wood increased up to temperatures of approx.
210 ◦C, and with an increased temperature (up to 270 ◦C), it rapidly decreased [34].

Table 1. Klason and dioxane lignin yields from untreated and thermally treated tropical wood species
(mean ± SD, % odw).

Wood 20 ◦C 160 ◦C 180 ◦C 210 ◦C

Teak—KL 35.42 ± 0.04 39.30 ± 0.15 39.52 ± 0.04 40.52 ± 0.06
Iroko—KL 29.03 ± 0.25 29.00 ± 0.11 29.90 ± 0.18 36.92 ± 0.19
Teak—DL 8.64 ± 0.11 11.38 ± 0.14 15.32 ± 0.23 18.32 ± 0.25
Iroko—DL 4.13 ± 0.05 4.52 ± 0.06 4.72 ± 0.11 7.20 ± 0.10

3.2. Nitrobenzene Oxidation Products Analysis

Teak has a GS-lignin, with a monomeric composition determined by Py-GC/MS(FID) of H:G:S
1:34:24 (sapwood) and 1:29:23 (heartwood) and S/G ratios of 0.71 and 0.81, respectively [28,35]. Similar
values—50.6% guaiacyl units, 46.0% syringyl units, 3.4% p-hydroxyphenyl units, with S/G ratio
0.91—were found by nitrobenzene oxidation (Table 2). On the other hand, Faix et al. (1987) [36] found
up to 70% of guaiacyl structural units in teak lignin. The ratio of syringyl units to guaiacyl (S/G)
decreases with an increasing temperature, the yield of NBO products significantly increases except
at the highest temperature. The results indicate the predominance of degradation reactions at lower
temperatures and condensation reactions at the temperature of 210 ◦C.

Table 2. Nitrobenzene oxidation products of teak dioxane lignins (mean ± SD, %).

Wood 20 ◦C 160 ◦C 180 ◦C 210 ◦C

p-Hydroxybenzoic acid 0.09 ± 0.03 0.12 ± 0.00 0.11 ± 0.01 0.11 ± 0.00
p-Hydroxybenzaldehyde 0.81 ± 0.22 1.10 ± 0.02 1.24 ± 0.03 0.98 ± 0.02

Vanillic acid 0.21 ± 0.03 0.27 ± 0.04 0.51 ± 0.16 0.20 ± 0.01
Vanilline 13.13 ± 1.20 18.30 ± 0.72 22.66 ± 0.54 23.93 ± 0.30

Syringic acid 3.10 ± 0.45 2.45 ± 0.16 3.74 ± 0.15 3.20 ± 0.04
Syringaldehyde 9.02 ± 0.61 13.31 ± 0.30 15.14 ± 0.15 11.92 ± 0.15

Total yield on DL 26.36 ± 2.46 35.55 ± 1.41 43.40 ± 0.41 40.34 ± 0.22
S/G ratio 0.91 ± 0.00 0.85 ± 0.01 0.81 ± 0.01 0.63 ± 0.01

Like teak lignin, iroko has a GS-lignin, containing more guaiacyl units compared to syringyl
ones with an S/G ratio of 0.84 (Table 3). Some authors reported higher values of the S/G ratio for
iroko lignin, 0.92 (by Py-GC-MS) and 1.005 (by FTIR) respectively [37,38]. Differences may be caused
by other methods of the isolation of lignin as well as different methods of analysis. The yield of
NBO products gradually increased up to 180 ◦C, then decreased, however, the changes are mostly
insignificant. The increase in NBO products may suggest that iroko lignin treated at lower temperatures
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may be structurally modified to an easily degradable form. A similar trend was observed in the S/G
ratio, indicating preferential contribution of G-type lignin to the condensation reaction as reported by
Kim et al. (2014) [39].

Table 3. Nitrobenzene oxidation products of iroko dioxane lignins (mean ± SD, %).

Wood 20 ◦C 160 ◦C 180 ◦C 210 ◦C

p-Hydroxybenzoic acid 0.16 ± 0.00 0.19 ± 0.01 0.19 ± 0.02 0.16 ± 0.00
p-Hydroxybenzaldehyde 1.42 ± 0.03 1.60 ± 0.03 1.74 ± 0.06 1.46 ± 0.03

Vanillic acid 0.23 ± 0.02 0.35 ± 0.04 0.52 ± 0.08 0.30 ± 0.04
Vanilline 20.69 ± 0.68 20.55 ± 0.37 20.77 ± 0.68 19.03 ± 0.95

Syringic acid 1.56 ± 0.06 2.45 ± 0.11 2.89 ± 0.11 1.22 ± 0.06
Syringaldehyde 15.95 ± 0.16 18.04 ± 0.31 19.14 ± 0.93 16.50 ± 0.53

Total yield on DL 40.01 ± 0.78 43.18 ± 0.44 45.25 ± 1.74 38.67 ± 1.81
S/G ratio 0.84 ± 0.02 0.98 ± 0.04 1.03 ± 0.04 0.92 ± 0.01

3.3. Molecular Weight Determination

Lignin isolated from the untreated teak wood has a molecular weight of about 7100 g·mol−1;
in the available literature, no adequate data were found for comparison. In the thermal treatment
of teak wood, its molecular weight (MW) and polydispersity (PD) decreased at a temperature of
160 ◦C (Table 4). Elution profiles confirmed a cleavage of the intermediate molecular portions of the
lignin macromolecule (Figure 1). At higher temperatures (180 ◦C and 210 ◦C), both degradation and
condensation reactions occur simultaneously, resulting in increased polydispersity and expanded peaks
in the chromatogram (Figure 1). Changes in MW and PD are significant, except the difference in PD
between temperatures 180 ◦C and 210 ◦C. Condensation reactions are predominant at 210 ◦C, leading
to a lignin molecular weight increase and to a decrease in the yield of NBO products. The reduction in
Mn and Mw indicates that the lignin molecules were fragmented into smaller units. Oxidized lignin can
undergo re-polymerization as can be observed in our GPC data and as reported by other authors [40,41].
Simultaneous degradation and condensation reactions were also confirmed by the heating of MWL
lignin isolated from poplar wood [39]. The lignin thermal degradation leads to the arising of phenoxy
radicals through a hydrogen atom abstraction process. They could undergo coupling reactions with
the corresponding C5-centered mesomeric radical derivatives to generate new 4-O-5 and 5-5’ linkages,
respectively [42,43].
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Table 4. Results of macromolecular characteristics of lignins from teak wood. Data represent mean± SD.

T (◦C) Mw (g·mol−1) Mn (g·mol−1) Mz (g·mol−1) PD

20 7145 ± 76 1929 ± 24 44,401 ± 2435 3.70 ± 0.07
160 6076 ± 159 1740 ± 37 28,668 ± 2240 3.49 ± 0.15
180 6632 ± 259 1691 ± 23 34,131 ± 2232 3.92 ± 0.15
210 7531 ± 230 1874 ± 35 35,901 ± 1618 4.02 ± 0.14

Note: Mw = weight average molecular weight (MW), Mn = number average MW, Mz = z average MW, PD
(polydispersity) = Mw/Mn.

Lignin isolated from iroko wood has a different molecular weight (about 38% lower) and
polydispersity (about 44% lower) when compared to teak lignin. These values (Mw = 4500 g·mol−1,
Mn = 2100 g·mol−1, PD = 2.1) are lower than those published by Zikeli et al. (2019) [37]—
(Mw = 13,900 g·mol−1, Mn = 2300 g·mol−1, PD = 5.7). The differences may be due to different
growth locality, lignin isolation procedure, and the chromatographic method itself. During the thermal
treatment, iroko lignin changes in a different way than teak lignin. At 160 ◦C, low molecular weight
lignin fragments are degraded (Figure 2), resulting in a slight increase in molecular weight and
a negligible decrease in polydispersity. Degradation reactions are predominant at 180 ◦C and the
molecular weight decreases by almost 10% when compared to the original sample. Changes in MW are
significant, some changes in PD are significant, while others are not. The temperature of 210 ◦C causes
both condensation and degradation reactions (which prevail) and the molecular weight decreases
(Figure 2, Table 5). A similar trend was observed at the thermal modification of oak wood [44].
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Table 5. Results of macromolecular characteristics of lignins from iroko wood. Data represent
mean ± SD.

T (◦C) Mw (g·mol−1) Mn (g·mol−1) Mz (g·mol−1) PD

20 4463 ± 37 2136 ± 31 9994 ± 239 2.09 ± 0.02
160 4576 ± 38 2207 ± 37 11,029 ± 575 2.07 ± 0.04
180 4034 ± 49 1998 ± 31 9133 ± 456 2.02 ± 0.03
210 3359 ± 23 1835 ± 31 8320 ± 80 2.10 ± 0.03

Note: See Table 4 for symbols.

3.4. FTIR Spectra Analysis

The most frequent changes in lignin structure are determined in the FTIR spectra around the
bands: 1720, 1600, 1500, 1460, 1420, 1370, 1326, 1266, 1220 and 1120 cm−1 [45,46]. A wide band in
the range of 3300–3500 cm−1 and bands of about 2940 cm−1 and 2850 cm−1 can also be used to detect
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changes in lignin. The changes in both wood species, teak and iroko, are similar, thus their FTIR spectra
will be evaluated together.

Broad bandwidth low absorbance around 3400 cm−1 (OH stretching vibration in primary or
secondary alcohols, as well as in phenolic groups in lignin) [4,47] predominantly decreases with an
increasing temperature. The reduction of hydroxyl groups is accompanied by condensation of lignin
and oxidation to C=O groups [48,49] and was observed in thermally treated teak wood [50]. Bands near
of 2937 and 2840 cm−1 (arising from C−H stretching vibrations in methyl, methylene and methoxyl
groups and tertiary CH groups) [51–53] show only insignificant changes (especially in teak wood).
The band found in the carbonyl region between 1700–1730 cm−1 (C=O stretching in unconjugated
functional groups of aldehydes, ketones, esters and carboxylic acids) [51,52,54]. Our results showed an
increase in the absorbance at 1715 cm−1 (teak) and 1712 cm−1 (iroko) (Figures 3 and 4). The increase may
be confirmation of the more pronounced cleavage of the β-alkyl-aryl ether bonds and the subsequent
formation of new C=O groups in the lignin structure. This results in an increase in the amount of
acetyl and carboxyl groups from the lignin [52,55]. The mentioned changes are due to splitting of
aliphatic side chains in lignin accompanied by cleavage of β-O-4 bonds during its heat treatment [56,57].
Similarly, the cleavage of the β-O-4 linkages and the splitting of the aliphatic methoxyl chains from the
aromatic ring in lignin were observed at steam-heat treated teak wood [58].
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An increase in the band at 1665 cm−1 (C=O stretching in various conjugated groups in lignin) [59,60]
was observed at teak wood at 210 ◦C (this band did not appear at any temperature value for the iroko
wood). This trend may be an indicator of the cleavage of α-alkyl-aryl ether linkages [25]. The peaks
near 1600 cm−1 and 1500 cm−1 (C=C aromatic skeletal vibrations) [61,62] show only small changes
with increasing temperature (a more pronounced decline is noticeable in the iroko wood). This trend
suggests the relative thermal stability of the lignin aromatic structures [63].

At bands of 1460 cm−1 and 1422 cm−1 (asymmetric C−H deformations in lignin and
carbohydrates) [51,64], a slight decrease with increase of used treatment temperature was noted.
Thus, the decrease of absorbance in iroko was more pronounced than in teak (this may be due to a
more notable cleavage of methoxyl groups in the iroko). According to Cheng et al. [65], the decrease
absorbance may be due to a decrease in the methoxyl groups in lignin. The peak absorbance around
1327 cm−1 (C−O vibration in syringyl derivatives-condensed structures in lignin) [38,62] increased
permanently, except for the iroko at the highest temperature, where a decreased absorbance was
observed. This suggests the condensation reactions in lignin structure (more pronounced in teak than
iroko wood) as observed by Li et al. (2015) [58] for teak wood. A similar trend was also found for
the band absorbances around 1265 cm−1 and 1220 cm−1 (C−O stretching of guaiacyl units) [63,66].
Considering the absorbance values at 1265–1267 cm−1, it can be assumed that the proportion of guaiacyl
units in the teak wood lignin is higher than in iroko. In contrast, the NBO results show a higher S/G
ratio in teak lignin compared to iroko lignin. This difference may be because NBO provides the results
only for non-condensed lignin substructure, while FTIR and SEC analyses show the properties of the
whole dioxane lignin. Larger amounts of guiacyl units in teak lignin according to the FTIR method
indicate their greater condensation, resulting in lower yields of NBO products and higher S/G ratio
relative to iroko lignin.

The band at 1120 cm−1 (C−H vibration in lignin) is typical of syringyl units [67,68]. This band
markedly decreased with an increasing temperature in both wood species. Compared to the band near
1220 cm−1, there is a notable decrease in absorbance, which may be due to higher thermal stability of
guaiacyl structures against syringyl ones, as reported by Ragauskas et al. [69].

4. Conclusions

During the thermal treatment of teak and iroko wood, the apparent insoluble lignin content
increased, when compared to the reference sample and the sample treated at the temperature of 210 ◦C
by 14% and 27%, respectively. The yields of dioxane lignin from wood increased 2.1-fold for teak and
1.7-fold for iroko. Both teak and iroko lignins are GS-types containing more guaiacyl units compared
to syringyl ones with S/G ratios of 0.91 and 0.84, respectively. In the process of thermal modification,
several degradation and condensation reactions were observed. The cleavage of methoxyl groups and
side chains, oxidation reactions, cleavage of the β-O-4 ether linkage and cross-linking radicals arising
at higher temperatures as reported by other authors at various conditions of lignin treatment were
all confirmed. However, during the thermal treatment, teak lignin changes in a different way than
iroko lignin, e.g., the molecular weight of iroko lignin decreased at all applied temperatures while it
increased at 180 ◦C and 210 ◦C in teak lignin, and the change in S/G ratio and the cleavage of alkyl-aryl
bonds are different in both wood species. This can lead to various alterations of the physical and
mechanical properties in the process of thermal modification and in the recycling of treated wood.

Author Contributions: Methodology, D.K., F.K.; Investigation, D.K., I.K., N.U., F.K.; Writing, preparing—original
draft, F.K., I.K.; Writing, reviewing, editing, D.K.; Funding acquisition, D.K., F.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the Slovak Research and Development Agency under the contracts No.
APVV-17-0005 (25%) and No. APVV-16-0326 (25%), and by the VEGA Agency of Ministry of Education, Science,
Research and Sport of the Slovak Republic No. 1/0493/18 (25%) and No. 1/0387/18 (25%).

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2020, 10, 5021 9 of 12

References

1. Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. iFor. Biogeosci. For. 2017,
10, 895–908. [CrossRef]

2. Papadopoulos, A.N. Advances in Wood Composites. Polymers 2020, 12, 48. [CrossRef]
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