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Abstract: Currently there is no publicly available adequate dataset that could be used for training
Generative Adversarial Networks (GANs) on car images. All available car datasets differ in noise,
pose, and zoom levels. Thus, the objective of this work was to create an improved car image dataset
that would be better suited for GAN training. To improve the performance of the GAN, we coupled
the LSUN and Stanford car datasets. A new merged dataset was then pruned in order to adjust
zoom levels and reduce the noise of images. This process resulted in fewer images that could be
used for training, with increased quality though. This pruned dataset was evaluated by training the
StyleGAN with original settings. Pruning the combined LSUN and Stanford datasets resulted in
2,067,710 images of cars with less noise and more adjusted zoom levels. The training of the StyleGAN
on the LSUN-Stanford car dataset proved to be superior to the training with just the LSUN dataset by
3.7% using the Fréchet Inception Distance (FID) as a metric. Results pointed out that the proposed
LSUN-Stanford car dataset is more consistent and better suited for training GAN neural networks
than other currently available large car datasets.

Keywords: GAN dataset; car image dataset; Generative Adversarial Network; automotive image
dataset; GAN neural network

1. Introduction

In recent years, the need for quality and large datasets has increased dramatically in the area
of deep learning. Large high-quality datasets are of great importance to today’s neural network
training, because the data they contain reflect on the precision and accuracy of the output of the neural
network. Training unsupervised neural networks such as Generative Adversarial Networks (GANs)
has increased this requirement even further. Training GANs requires a specific dataset in terms of low
intrinsic variation in poses, zoom levels, and backgrounds [1]. At this point, many datasets do not meet
the training needs of GANs, given the amount and accuracy of data needed for successful training,
and as such, produce low qualitative quality results on trained GANs, which can be seen in Section 6.
Training GANs is an extremely dynamic process that requires diverse images and is very sensitive to
every aspect of its training settings and training data. Current neural network models such as [1–3]
need a large amount of data to avoid overfitting and train the GAN network properly. The GAN learns
to distribute data from the dataset in such a way that the discriminator is trained to distinguish a
sample from a model distribution. For example, the StyleGAN created by Karras et al. [1] has been
trained on several different datasets: LSUN car, bedroom, and FFHQ datasets [1,4]. The automotive
industry, with all the accompanying services, is one of the very broad application areas with a great
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market share. A large and high-quality car dataset is, therefore, essential in this area. Observing the
existing LSUN car dataset, one can see immediately that the data are not completely pruned, and that
there is room for improvement as it contains various types of noise. An example is shown in Figure 1.
This is simply a consequence of using Amazon’s Mechanical Turk service [5] for data annotation.
Amazon Mechanical Turk is a crowdfunding marketplace that outsources the process and jobs to a
distributed workforce that performs these tasks virtually. As stated in [6], it has been observed that
Mechanical Turks can be extremely imprecise when working with data, and that humans are not a
good choice for classifying and annotating images.

Figure 1. LSUN car dataset image noise examples [4].

This paper proposes a new LSUN-Stanford car dataset which is a union of the pruned and
improved LSUN and Stanford car datasets. This new car dataset is aimed primarily for unsupervised
neural network training, such as GAN training. Namely, our proposed dataset does not prescribe a
division into training, validation, and testing sets, so in its original form and without modifications,
it is not suitable for supervised training. It consists of an annotated and pruned LSUN car dataset [4]
coupled with the annotated and pruned Stanford car dataset [7]. Our proposed dataset was constructed
by filtering out the images where the car was the most salient object in the image. We achieved this by
using Convolutional Neural Networks (CNNs) for object detection and cropping out the noisy parts
of images, or discarding the image entirely if it was deemed unusable. Using that method, we have
created a more refined car dataset intended for training GANs. The newly created dataset was then
used to retrain the StyleGAN neural network with the same parameters as [1], and achieved superior
Fréchet Inception Distance (FID) [8] compared to the original LSUN car dataset. The main motivation
for this work was to create a better and more suitable large car dataset for training GAN neural
networks. This dataset is publicly available, and is accompanied with all the required programming
routines for its manipulation. A scientific contribution of this research is also the demonstration that the
training of GAN networks is improved significantly by using our refined LSUN-Stanford car dataset.

This paper is organized as follows. Related work on existing car datasets is reviewed briefly
in Section 2. Afterwards, the main highlights of the Generative Adversarial Network StyleGAN
that is used in our experiments are presented in Section 3. There follows a detailed description of
the creation and structure of the proposed LSUN-Stanford car dataset in Section 4. The experiments
conducted using this new dataset are set out in Section 5. Section 6 reports the obtained qualitative and
quantitative results. This paper is concluded in Section 7, where first, the benefits of the LSUN-Stanford
car dataset are discussed and demonstrated, and finally, some future research directions are specified.

2. Similar Work and Existing Car Datasets

At this moment there are only a few specific datasets that exceed one million images, such as
LSUN, Google Open Images, Tencent ML-Images, and ImageNet [7,9–11]. The majority of them are
created for image classification and segmentation tasks. There are only a few datasets that meet the
specific requirements for successful GAN training. Let us list the three main requirements, namely,
low intrinsic variation in (I) poses, (II) zoom levels, and (III) backgrounds [1]. Karras et al. [1] have
created the Flickr-Faces-HQ (FFHQ) dataset that contains 70,000 images of human faces, with a larger
variation than the CelebA-HQ dataset [2] in terms of age, ethnicity, and background; and with better
coverage of accessories, such as glasses, sunglasses, hats, and similar objects. All this was intended
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specifically for the StyleGAN training, due to the possibility to add some specific style or feature
(e.g., glasses) to the network. However, using the CelebA-HQ dataset for training pointed out that
the preparation of a specific dataset in terms of low intrinsic variation in poses, zoom levels, and
background yields better results in GAN training. CelebA-HQ offers much higher quality and covers a
considerably wider variation than the existing high-resolution datasets [1].

The most popular datasets that include vehicles are KITTI [12], Stanford car dataset [7],
Vehicle-1M [13], and the LSUN car dataset [4]. The KITTI object detection dataset contains 12,000 images
of scenes with around 80,000 objects in total. The dataset was intended primarily for developing
autonomous driving algorithms. Due to the high occlusion rate, it is not well suited for GAN training [12].
The Vehicle-1M dataset was created primarily for vehicle identification. It consists of 936,051 images
taken from different traffic cameras in China, yet only 55,527 different vehicles are present, rendering
it unsuitable for GAN training. Except for lack of vehicle diversity, the image quality is poor and of
low resolution [13], and therefore inadequate for GAN training. Due to a large number of images, the
LSUN car is one of the most popular datasets for GAN training. It suffers from high intrinsic variations
in zoom levels, poses, and backgrounds of images. Additionally, the images can contain multiple cars;
cars can also be occluded. Sample images from this dataset are depicted in Figure 1. The Stanford car
dataset contains 16,185 images of 196 classes of cars. Each car class typically contains information about
the make, model, and year [7]. It is much more pruned than the LSUN car dataset, but it is still affected
by multiple car instances and noise in terms of watermarks on images, which can be seen in Figure 2.

Figure 2. Stanford car dataset image noise examples [7].

Karras et al. [1] have managed to generate images with better precision and quality using
the original StyleGAN architecture and FFHQ dataset. However, the generated results were not
representative when the original StyleGAN was trained with the LSUN car dataset [1]. This observation
suggests that the pruned LSUN car dataset, coupled with pruned Stanford car dataset, could improve
GAN neural network training.

3. Generative Adversarial Network StyleGAN

Generative Adversarial Networks were created in 2014 by Goodfellow et al. [3]. The GANs
consist of two networks named Generator (G) and Discriminator (D). Both mentioned networks
make GANs extremely complex and sensitive with respect to the (hyper)parameters. The reason is
that G and D networks are based on a game theory and must be aligned perfectly [3,6]. The goal
of GANs is to train a generator network G(z; θ(G)) that creates instances (in this case images) from
data distribution, pdata(x), transforming the noise vectors z into samples x = G(z; θ(G)). The letter z
denotes the latent features of the images being generated, G is the generator, and θ(G) is the neural
network model. The training signal for G is provided by the Discriminator network D(x). This
network is trained to distinguish samples (images) from the distribution of the Generator pdata(x) from
the actual data. State-of-the-art GANs generate artificial or fake images of extremely high quality. It is
practically impossible to distinguish such fake images from real images by observing just the visual
image characteristics [1,2,6,14–17]. There are many variations of GANs that seek to improve training
and model convergence on test data [6].

The StyleGAN neural network was used in an experimental part of this research. This
state-of-the-art network is one of the latest GANs that achieves superior results with respect to the
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FID metric [1]. The StyleGAN is the evolution of the progressive GAN [2]. It was implemented using
the Tensorflow framework [18]. Similarly to the progressive GAN, the StyleGAN applies progression
of the image size (resolution to some extent) during training. This means that the training starts by
using smaller images, by which only layers in the generator that output this specific size of images are
trained. At the same time, only layers with this specific image input size are trained in the discriminator.
After 8.4 M images, the training continues by using the images of full 1024 × 1024 pixel (resolution)
size from the dataset. This technique improves the performance of the training in terms of speed and
stability of the GAN drastically [1,2]. The generator architecture of the StyleGAN is depicted in Figure 3.
The traditional generator feeds the latent code only through the input layer, while the style generator
maps the input to an intermediate latent space W, which controls the generator through adaptive
instance normalization at each convolutional layer. Gaussian noise is added after each convolution.
“A” stands for learned affine transform, and “B” applies learned per-channel scaling factors to the noise
input. Most GANs use latent code that is provided to the generator through the input layer. However,
the StyleGAN omits the input layer completely, and starts from a trained constant tensor instead
(i.e., Const 4 × 4 × 512 in Figure 3) [1]. This network starts training by using a sample of 4 × 4 pixels
and upsamples the image progressively to the maximum size of 1024 × 1024 pixels. The image sizes
(resolutions) are denoted in the bottom right corner of each layer of the synthesis network (see Figure 3).
The adaptive instance normalization (AdaIN) is used to apply the style transfer to the StyleGAN
if style is needed [19]. The AdaIN is defined in Equation (1). It can be observed that each feature
map xi is normalized separately. The normalized feature map is then scaled and biased by using the
appropriate style scalar components ys and yb. Denotation σ(x) stands for normalized content input,
while µ(x) denotes a shift. The AdaIN that receives the content x and a style y as inputs simply aligns
the channelwise mean and variance of x to match those of y.

AdaIN(xi, y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i (1)NormalizeFCFCFCFCFCFCFCFC Const 4 × 4 × 512+Conv 3 × 3+AdaINAdaINUpsampleConv 3 × 3+AdaINConv 3 × 3+AdaINAAAA 4×48×8 BBBB NoiseMapping network ƒ Latent � ∈ � Synthesis network g

� ∈ � ...
Figure 3. Generator architecture of the StyleGAN neural network [1].
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Mapping network f consists of eight layers, while the synthesis network g consists of 18 layers [1].
The network has a total of 26.2M trainable parameters. The Discriminator network is the same as
in [2], and consists mainly of replicated 3-layer blocks that are introduced one by one during the
training. The structure of the Discriminator network is gathered in Table 1. Each layer starts with the
convolution of a specific kernel size (denoted as Conv in Table 1), followed by the downsampling to the
image size that corresponds to the upsampling of the generator network. All layers have leaky rectified
linear unit activations (denoted as LReLU in Table 1) with α = 0.2. The last layer is a fully-connected
layer with the output size equal to 1. This layer returns a decision whether the image is real or fake.

Table 1. Discriminator architecture of the StyleGAN neural network [2].

Discriminator Activation Output Shape Params

Input image – 3 × 1024 × 1024 –
Conv 1 × 1 LReLU 16 × 1024 × 1024 64
Conv 3 × 3 LReLU 16 × 1024 × 1024 2.3k
Conv 3 × 3 LReLU 32 × 1024 × 1024 4.6k
Downsample – 32 × 512 × 512 –

Conv 3 × 3 LReLU 32 × 512 × 512 9.2k
Conv 3 × 3 LReLU 64 × 512 × 512 18k
Downsample – 64 × 256 × 256 –

Conv 3 × 3 LReLU 64 × 256 × 256 37k
Conv 3 × 3 LReLU 128 × 256 × 256 74k
Downsample – 128 × 128 × 128 –

Conv 3 × 3 LReLU 128 × 128 × 128 148k
Conv 3 × 3 LReLU 256 × 128 × 128 295k
Downsample – 256 × 64 × 64 –

Conv 3 × 3 LReLU 256 × 64 × 64 590k
Conv 3 × 3 LReLU 512 × 64 × 64 1.2M
Downsample – 512 × 32 × 32 –

Conv 3 × 3 LReLU 512 × 32 × 32 2.4M
Conv 3 × 3 LReLU 512 × 32 × 32 2.4M
Downsample – 512 × 16 × 16 –

Conv 3 × 3 LReLU 512 × 16 × 16 2.4M
Conv 3 × 3 LReLU 512 × 16 × 16 2.4M
Downsample – 512 × 8 × 8 –

Conv 3 × 3 LReLU 512 × 8 × 8 2.4M
Conv 3 × 3 LReLU 512 × 8 × 8 2.4M
Downsample – 512 × 4 × 4 –

Minibatch stddev – 513 × 4 × 4 –
Conv 3 × 3 LReLU 512 × 4 × 4 2.4M
Conv 4 × 4 LReLU 512 × 1 × 1 4.2M
Fully-connected linear 1 × 1 × 1 513

Total trainable parameters 23.1M

4. LSUN-Stanford Car Dataset

It was discovered in Section 2 that existing large car datasets do not meet the requirements for
GAN training fully, especially in terms of image zoom level and pose. To the best of our knowledge,
the most appropriate datasets for training GANs are currently the LSUN car dataset due to its large
size, and the Stanford car dataset due to its unambiguousness. The LSUN car dataset consists of
5,520,753 car images but has many flaws in terms of noise and image accuracy (e.g., on some images
there is not a single car, but rather some trucks, people, vans, etc.). Some of these problems are
demonstrated in Figure 1. The Stanford car dataset consists of 16,185 car images which are much
more accurate and have less noise, but the size of this dataset is inadequate for GAN training. Due
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to the already large number of images available in the LSUN [4] and Stanford [7] car datasets, it was
decided in this research to couple and prune both datasets in such a way that a merged dataset would
be more suitable for the above-mentioned GAN needs. Serious shortcomings of both datasets are that
images are often taken from online car adverts and unreliable pages, have poor backgrounds, and have
the cars overlapping with other objects in the scene. All this restricts the GANs from being trained
perfectly. A small amount of noise in the dataset is useful as it reduces the possibility of overfitting.
However, a greater amount of noise simply reduces the training quality [20,21]. Some problematic
images from the LSUN and the Stanford car datasets are depicted in Figures 1 and 2.

In the sequel of this research, we took images from the LSUN [4] and the Stanford car [7] datasets
and joined them in one single dataset. The total number of images after merging both datasets
was 5,536,938. Subsequently, pre-trained neural networks and deep learning methods were used to
prune and annotate this new dataset. The most natural way to exclude unsuitable images from our
new big dataset is to annotate images automatically using one of the existing state-of-the-art trained
neural networks. In general, such networks have greater classification precision than humans [22,23].
Accordingly, the object detection techniques were utilized in order to prune and annotate this dataset.
Based on our experience, we selected the MMDetection toolbox [24] for this task. This toolbox was
created on the PyTorch framework, and represents a state-of-the-art architecture for detecting objects.
For each detection within the image, this toolbox returns a mask and a bounding box around the object.
The MMDetection toolbox supports many different backbones and methods [24]. The ResNet-101 [25]
backbone and faster R-CNN [26] were chosen for our research due to their high performance and
accuracy. The ResNet-101 model was pretrained on the Microsoft COCO dataset that contains 91
common object categories, including the car category [27]. After applying object detection to our
new dataset, all objects in images were annotated by bounding boxes and classified in 91 categories
(including a car category). All data about the bounding boxes were stored into the MySQL database.
This database consists of object categories, (bounding) boxes, and images. Images can have multiple
boxes of the same or different categories. The database scheme is shown in Figure 4.

Figure 4. Database scheme for storing objects and bounding boxes within every image of the proposed
LSUN-Stanford car dataset.

The table “images” contains all images from both the LSUN car and the Stanford car datasets,
wherein filenames are retained from the original datasets. The table “object_categories” contains
all 91 common object categories for which bounding boxes are created. The table “boxes” contains
information about (bounding) boxes of a certain category on a selected image. Information about the
(bounding) box, like start and end positions, and probability score, were extracted from the faster
R-CNN object detection method.

Subsequently, the new joint dataset was pruned and some anomalies were removed. Let us
describe this step more in detail. Only bounding boxes with cars were retained, and eventually,
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bounding boxes with cars and drivers. We also requested that bounding boxes on the image do not
overlap. All images were discarded that did not meet both criteria. This resulted in around two million
pruned images. Afterwards, the images having multiple bounding boxes and multiple instances of
cars in them were counted. It can be observed from Figure 5 that the new dataset obtained just by
merging both existing datasets (i.e., in its initial form and without pruning), will not satisfy the training
requirements for the GANs. Namely, many images contain more than one bounding box, and often
more than one instance of a car in a single image. Besides, many images contain objects of other
categories. The total number of images containing only one bounding box is 2,067,710 and the total
number of images containing one bounding box of a car is 1,792,280. In order to increase the number
of training images, we permit that images containing multiple cars that do not overlap are selected as
well. Of course, such images should not contain objects other than cars. Exceptionally, an overlapping
is allowed if a bounding box within the car is a bounding box of a person. We hypothesized that the
person is a driver in such a situation. The result of pruning the initial LSUN and Stanford combined
datasets in terms of number of bounding boxes can be seen in Figure 6. Sample images annotated with
bounding boxes are depicted in Figure 7.
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Figure 5. A number of images with respect to bounding boxes per image in the joined LSUN car dataset
and the Stanford car dataset (without pruning). It can be seen clearly that in many images there are not
just cars, but also many other objects (that represent noise for GAN training). The scale of the y-axis is
logarithmic in order to present the distribution of data better.
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Figure 6. A number of images with respect to bounding boxes per image for our proposed LSUN-Standford
car dataset. It can be seen clearly that, in the majority of images, there is just a car present, while in a few
images there is a car with a driver (i.e., in images with two bounding boxes).
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Figure 7. LSUN-Stanford car dataset: Images with appropriate bounding boxes.

Finally, the remaining images were cropped and resized in such a way that the aspect ratio was
not altered (if possible) to achieve more accurate representations of images. Many authors, such as
Karras et al. [1], have neglected this phase, and just resized the initial image, which could distort it.
Consequently, the new LSUN-Stanford car dataset was constructed using the processing procedures
described above. Our proposed car dataset with user instructions, MySQL database, and Python
scripts for image manipulations is publicly available on the link https://github.com/Tin-Kramberger/
LSUN-Stanford-dataset.

5. Computer Methods and Experimental Setup

We would like to demonstrate the benefits of the newly created LSUN-Stanford car dataset in
this experimental part. Therefore, we retrained the StyleGAN neural network with our proposed
dataset. Finally, we compared the obtained results with the state-of-the-art approach by Karras et al. [1].
The StyleGAN network should be trained by images of the size 512 × 384 pixels. For that reason,
only images of that size or larger were considered from the LSUN-Standford dataset. The StyleGAN
was trained in our experiment with the same hyperparameters as in [1]. That is why our results can be
compared directly to results from [1]. The same progressive grow technique was implemented as that
in [1]. This technique starts training the StyleGAN with images of size of 8 × 8 pixels, whereupon the
size of training images grows progressively up to the size of 512 × 384 pixels.

6. Results

In our experiments, the StyleGAN network was implemented using the CUDA 10.0 library and
Tensorflow 1.15.0, while PyTorch 1.2 was employed for the MMDetection toolkit. The object detection
using MMDetection toolbox was performed on a computer with one Nvidia 1080 Ti graphics card. The
estimated object detection speed using MMDetection toolbox is 10.9 frames per second [24]. However,
with image preprocessing and postprocessing, the effective object detection speed was slightly lower
in our experiments, i.e., around 10 frames per second. With approximately 5.5 million images in the
LSUN and the Standford car datasets, a simple calculation points out that the object detection for
both datasets took approximately six days and nine hours of processing time. Our implementation of
the StyleGAN network was trained on a computer with two NVIDIA 1080 Ti GPUs, an AMD 1950X
processor, and 32GB of RAM. The StyleGAN was trained by 46 million images. This training phase
was completed in around 46 days and nine hours on our hardware.

Identically to Karras et al. [1], we utilized the Fréchet Inception Distance (FID) to assess the quality
and efficiency of a trained GAN network. The Inception v3 neural network model [28] was utilized to
calculate FID. Specifically, the last pooling layer prior to the output classification of images was used
to capture computer vision-specific features of an output image. These activations were calculated
for a collection of images. FID [8] is much more consistent than inception score [6] at estimating the

https://github.com/Tin-Kramberger/LSUN-Stanford-dataset
https://github.com/Tin-Kramberger/LSUN-Stanford-dataset
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distance between a real and a generated image. Namely, FID applies real-world sample images for the
comparison with synthetic images, unlike inception score, which uses only fake images to assess the
quality of generated images.

The same evaluation protocol was employed as in Karras et al. [1]. We calculated the FIDs using
50,000 images drawn randomly from the LSUN-Standford dataset, and reported the lowest FID metrics
during the training (all other images from this dataset were employed for the training). The number of
images used for FID calculation is a parameter that can be set arbitrarily. However, it should be chosen
appropriately to have FID values be as precise as possible, and such that the FID calculation would not
take an extremely large amount of processing time. The calculation of the FID metric on 50,000 images
was considered to be representative, because it was verified that the so-calculated FID metrics do not
differ significantly from the FID metrics calculated on the entire dataset [6,29]. Figure 8 depicts how
the FID metrics were changing during training of our StyleGAN network.

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000
Number of training images x1000

5

10

15

20

25

FI
D

Figure 8. Change of FID metrics during training of the StyleGAN network. The proposed LSUN-Stanford
car dataset was used. Axis x denotes the number of training images seen by the discriminator of the
StyleGAN network. Some unstable behaviour can be noticed between 7M and 9M training images, which is
a consequence of significant changes in the images‘ resolution and properties of the StyleGAN.

The final FID metric obtained after completing the training of our StyleGAN neural network on
the pruned LSUN-Stanford Car Dataset was 3.15. For comparison, let us summarise the result if the
SyleGAN neural network is trained just on the original LSUN car dataset. The calculated FID equalled
3.27 in this case [1]. Lower FID means better results. Around 3.7% improvement was observed when
using the proposed LSUN-Standford car dataset for the StyleGAN training. It should be stressed that
the same training protocol and StyleGAN hyperparameters were used in both experiments.

Let us also present some qualitative results. Figure 9 depicts generated images obtained by the
generator network of our trained StyleGAN network. The visual quality is also exceptional for other
generated images. For non-experts regarding cars, it is almost impossible to pinpoint the obvious
flaws in generated cars. The process of our StyleGAN network training and generating cars for some
sample images after each training epoch is demonstrated on the link https://youtu.be/NCuJAda7Qus.
For comparison, we can inspect the generated cars in Figure 10. These images were generated by the
StyleGAN, trained just with the original LSUN car dataset. The difference in visual quality between
the two approaches or datasets is obvious.

https://youtu.be/NCuJAda7Qus
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Figure 9. Images of cars generated by our trained StyleGAN neural network using the proposed
LSUN-Stanford car dataset.

Figure 10. Images of cars generated by the StyleGAN neural network trained on the original LSUN
car dataset.

7. Discussion and Conclusions

The main intention of this paper was to introduce a public database of cars that is suitable for
training GAN neural networks. We constructed a coupled dataset of cars using the LSUN car dataset
and the Stanford car dataset. After coupling the datasets into one, it was pruned and the whole process
of pruning was stored into a database. We provided the database structure and Python scripts which
allow users to interact and export images from coupled datasets to their needs. The pruned and
exported dataset was tested on the StyleGAN neural network. The results show a 3.7% lower FID
compared to the StyleGAN trained just on the original LSUN dataset. These results can be explained
by the fact that pruning made the dataset more consistent in terms of zoom levels, which yielded a
better overall performance. One could argue that the better results were obtained because the Stanford
car dataset was added to the LSUN dataset and then the StyleGAN was trained. However, it should
be emphasized that we added less than 0.3% of images to the combined LSUN-Stanford car dataset.
The original LSUN car dataset was already used to train other GAN architectures. Let us give some
results for the comparison. It was noticed that the FID can vary largely with respect to the architecture.
For example, FID was measured at 8.36 in [2] and at 2.66 in [30]. The metrics, especially the last one,
were comparable to our results. In this experimental part, by maintaining the GAN architecture and
just by modifying the database, we achieved a significant improvement of results. Therefore, we
recommend to use this new combined LSUN-Stanford car dataset for GAN training.

The LSUN-Stanford car dataset leaves a lot of room for further improvements. The positions
of observed objects in the image are extremely important when training a GAN neural network.
Therefore, our first future work direction is to annotate the position of the car. Positioning can be done
by annotating the headlights and tail lights, as well as the position of the wheels on each car that is
already bounded by the box. In addition, it is also possible to annotate the car brand by using deep
neural networks. This step could be very simple. For example, transfer learning could be utilized on
the LSUN-Stanford car dataset, on which the weights of pre-trained neural network on the Stanford
car dataset would be used. It should be stressed that the Stanford car dataset contains car types
and brands.
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