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Abstract: Neurotoxicity is an obvious adverse effect in Patients encountering a complete course of
chemotherapy. The present work is conducted to evaluate the neuroprotective effect of Ginkgo biloba
(Ginkgo) against the neurotoxicity induced by Cisplatin (Cis) in rats. Forty male Wistar albino rats were
arranged into four groups: (1) Control group, rats were given saline; (2) Cis group, rats were injected
by Cis 2 mg/kg body weight i.p., twice a week starting on the fifth day for thirty days; (3) Ginkgo group,
rats were administered Ginkgo (50 mg/kg orally) daily for thirty days; and (4) Ginkgo+Cis group, rats
received Ginkgo (50 mg/kg orally) daily and on the fifth day, rats were injected with Cis (2 mg/Kg body
weight i.p.) twice a week for thirty days. Cis significantly increased Gamma glutamyltransferase
(GGT) and Acetyl Cholinesterase (CHE) as compared to the control group and also disturbed cerebral
oxidative/antioxidant redox. Co-administration of Ginkgo and Cis reversed the adverse effect of Cis
on the brain tissue. Moreover, co-administration of Ginkgo and Cis ameliorated Cis induced brain
damage by reducing Amyloid precursor protein (APP), amyloid β (Aβ), P2Y12R and P2X7R mRNA
expressions and proteins. Furthermore, Ginkgo regulated XIAP/BDNF expressions with a consequent
decrease of caspase-3 and DNA fragmentation%. The current results concluded that concurrent
treatment with Ginkgo can mitigate neurotoxicity mediated by Cis in experimental animals through
exhibiting antioxidant effect by restoring cerebral oxidative/antioxidant redox and anti-apoptotic
effect via regulating cerebral APP/Aβ/P2Y12R/P2X7R and XIAP/BDNF signaling pathways.
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1. Introduction

Cisplatin (cis-diamminedichloroplatinum II) (Cis), is a heavy metal compound that comprises
a central atom of platinum surrounded by two chloride molecules and two ammonia molecules.
Its molecular formula is CL2-H6-N2-Pt [1]. Plasma proteins such as albumin, transferrin and gamma
globulin, irreversibly bound to the platinum component of Cis [2].

Cis is considered one of the most essential anti-cancer chemotherapeutic agents which can be
concerned with the management of numerous human malignancies in different organs [3]. One of the
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most important mechanisms of Cis is its ability to bind with purine bases of deoxyribonucleic acid
(DNA), hinder the repair mechanisms of DNA and boost DNA damage, in addition to prohibition
of cell proliferation, and death of tumor cell [4]. Cis mainly targets DNA and many cytoplasmic
components, such as proteins, thiol peptides and RNA [5].

One of the major apparent complications of Cis chemotherapy is the brain toxicity [6]. The cerebral
toxicity of the Cis is considered dose-dependent [7]. Cis has a powerful penetrating power into
the blood–brain barrier (BBB), and so it can debilitate mature neurons in the brain [8]. Hydrogen
peroxide and hydroxyl radicals are examples of reactive oxygen species (ROS) which are formed by
Cis. The formed free radicals interact with DNA, proteins and fats, resulting in lipid peroxidation and
destruction of DNA [9].

One of greatest key mechanisms of Cis toxicity is the induction of oxidative stress. Under normal
conditions, ROS are controlled by cells through harmonizing the production of ROS with their removal
by scavenging system. Oxidative stress results in extreme damage of cellular proteins, lipids and
DNA, leading to critical cellular injuries. Cis can induce mitochondrial oxidative damage with a
disruption of sulfhydryl group of mitochondrial protein, hindering calcium uptake and weakening
the mitochondrial membrane potential [10], decreasing the antioxidant defense system and reducing
glutathione (GSH) [11].

Indeed, too much ROS production, DNA injury, inflammation, mitochondrial dysfunction, and
also programmed cell death in the nervous system are considered the chief mechanisms in which
neurotoxicity is provoked by Cis [12]. Many previous studies recorded the toxic mechanism of Cis on
the nervous system but there is no satisfactory information to explain the mechanistic pathway of Cis
induced-brain apoptosis.

Nowadays, a great attention is given to the amyloid precursor protein (APP) and β amyloid
(Aβ) as they have a pivotal role to play in the development of Alzheimer’s disease (AD). Free-radical
oxidative stress, neuronal lipids peroxidation, proteins denaturation and DNA fragmentation were
detected in AD brain areas in which Aβ is abundant [13]. APP and Aβ are considered sensitive
biomarkers in neuronal damage and neuronal cell death [14]. It is reported that accumulation of
Aβ directly activates caspase-3 concerned with the death of neuronal cells [15]. Also, it increases
the expression of Purinergic receptors especially P2Y12R and P2X7R [16]. These receptors became a
target for examination of the sites of chronic inflammation, neuro-degeneration, and neuropsychiatric
troubles [17] as they enhance the formation of neuro-immune cells [18] and the release of IL-1β; one of
the neuro-degenerative and neuro-inflammatory mediators [19].

On the contrary, there are many protective mechanisms and mediators which can protect against
cerebral injuries and apoptosis. One of the most important inhibitor apoptosis proteins (IPAs) is XIAP. It
directly binds and inhibits the caspases which carry out the cell-death program [20]. Another important
neuro-protective protein is brain-derived neurotrophic factor (BDNF). BDNF belongs to neurotrophin
family proteins which can be detected in both the peripheral and central nervous systems [21]. It has an
essential function in survival, development, differentiation and plasticity of neurons. It could protect
neurons from induced neuronal cell oxidative stress and apoptosis [22]. Many studies have revealed
that cleaved caspases and caspase-3 mediate the release of the cytokines interleukin-1β (IL-1β) and
IL-18. In addition, inflammatory caspases modulate distinct forms of programmed cell death [23].
Liu et al. stated that both cleaved caspase-3 and caspase-3 are sensitive biomarkers for apoptosis and
different tumor stages [24].

The previously mentioned research has provoked the need to find novel, effective and safe
neuroprotective agents to protect against the cis-induced cerebral apoptosis. So we aimed to study the
anti-apoptotic effect of a well-known antioxidant herbal plant; Ginkgo biloba (Ginkgo) on Cis-induced
cerebral apoptosis. Ginkgo is used as a conventional herbal medicine to cure anxiety, headaches,
depression, and poor memory in Asia and Europe [25]. Ginkgo is composed chemically of flavonoid
glycosides (22−27%), terpenetrilactones (5.4−6.6%), ginkgolides (2.8−3.4%), bilobalide (2.6−3.2%) and
trace ginkgolic acid [26,27].
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Noticeable cerebral antioxidant, anti-ischemic, anti-apoptotic effects of Ginkgo have been previously
reported [28,29]. The antioxidant effect of Ginkgo could be attributed to its ability to reduce cerebral
H2O2 and ROS production especially superoxide anion in the brain cell [30–32]. These influential
properties of Ginkgo could be attributed to the flavonoid contents of Ginkgo [33]. A previous report
recorded that Ginkgo has a power anti-apoptotic effect in rat brains with acute cerebral infarction [34].
Added to that, Ginkgo has potent antioxidant and anti-inflammatory effects in the cerebral infarction [35].
No available studies concern the effect of Ginkgo on inhibitor apoptosis protein (IAPs) or BDNF in the
brain toxicity induced by Cis.

We aimed to verify whether Ginkgo therapy may eliminate the toxic effect of Cis on the brain tissue.
Thus, this study was designed to assess the effect of Ginkgo as a neuroprotective agent on neurotoxicity
induced by Cis in the rat model by assessing the antioxidant condition, certain gene expressions and
anti-apoptotic specific protein markers in the brain tissue of experimental animals.

2. Materials and Methods

2.1. Drugs and Chemicals

Ginkgo was obtained as a commercial preparation Ginkgo Biloba® (Future Pharmaceuticals for
industries for EMA Pharma, Cairo, Egypt). Ginkgo contains 24% Ginkgoflavones glycosides and 6%
terpenoids. Ginkgo was given orally using stomach gavage. Cis was received from Sigma Chemicals
(Sigma-Aldrich Louis, MO, USA).

2.2. Animals

Forty male Wistar Albino rats weighing (180–250 g) were received from the animal facility at
El Nahda University (Beni-Suef, Egypt). Rats were adapted to laboratory conditions for two weeks
before the start of the experimental work, then, rats were put in metal cages (each one contained 3
rats), kept under standard laboratory conditions with an optimum temperature (25 ± 2 ◦C), humidity
(70%), 12 h of dark/light cycle and free access to rat chow and drinking water. The present work
was approved by the Experimental Animal Ethics Committee at the faculty of Veterinary Medicine,
Beni-Suef University, Egypt and all procedures used during dealing with animals were in harmony
with the National Institutes of Health (NIH) guide for the care and use of laboratory animals (NIH
Publications No. 8023, revised 1978) and the body weights were recorded weekly.

2.3. Experimental Design

As shown in Figure 1 and after the accommodation period, rats were randomly divided into four
groups (n = 10) as follows:

Control group: Rats were injected with 0.9% saline 0.5 mL i.p., twice a week on the 5th day, for
30 days.

Cis group: Rats were given Cis 2 mg/kg body weight i.p., twice a week starting on the 5th day for
30 days [36].

Ginkgo group: Rats received Ginkgo (50 mg/kg body weight PO) daily for 30 consecutive days [37].
Ginkgo+Cis group: Rats received Ginkgo (50 mg/kg body weight PO) daily 30 days [38]. On the

5th day, rats were injected with Cis 2 mg/Kg body weight IP twice a week for 30 days [36].
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Figure 1. Experimental design including all treated groups. Experimental design outlining the cisplatin
(Cis) induced cerebral damage model and Ginkgo treatment protocol where n = 10 rats for each group.
Control group: Rats were injected with 0.9% saline 0.5 mL i.p. twice a week on the 5th day, for 30 days.
Cis group: Rats were given Cis 2 mg/kg body weight i.p. twice a week starting on the 5th day for
30 days. Ginkgo group: Rats received Ginkgo (50 mg/kg body weight orally) daily for 30 consecutive
days. Ginkgo+Cis group: Rats received Ginkgo (50 mg/kg body weight orally) daily for 30 days, and on
the 5th day, rats were injected with Cis 2 mg/Kg body weight i.p. twice a week for 30 days. All measured
parameters were blind examined to confirm the accuracy of the results.

Twenty-four hours after the last treatment, the rats were fasted overnight and then sacrificed by
decapitation. The brain tissues were collected, weighed then washed with phosphate-buffered saline
(PBS) and divided into two parts. The first part was used to obtain a uniform suspension, 0.5 g of brain
tissue was suspended in 5 mL PBS (pH: 7) and homogenized by using tissue homogenizer (Ortoalresa,
Spain). The supernatant was kept at −80 ◦C for further biochemical evaluation. The second part
was kept for molecular investigations (Western blot analysis and real-time polymerase chain reaction
(RT-PCR) analyses) according to the instruction kits.

2.4. Methods

2.4.1. Biochemical Investigations

All used kits were purchased from Sigma-Aldrich Chemicals, St Louis, MO, USA. Acetyl
Cholinesterase activity (CHE) was measured by using CHE assay kit (Cat. No. 119BJ11A25) according
to [39]. Gamma glutamyl transferase activity (GGT) was measured by using GGT assay kit (Cat. No.
6A03K07840) according to [40]. Reduced glutathione concentration (GSH) was measured by using
GSH assay kit (Cat. No. 099M4064V) according to [41]. Super oxide dismutase activity (SOD) was
measured by using SOD assay kit (Cat. No. BCCC1068) according to the method of [42]. Total
antioxidant capacity (TAC) was measured by using TAC assay kit (Cat. No. 059M4154V) according to
the method of [43]. Malondialdehyde content (MDA) was measured by using MDA assay kit (Cat. No.
6A20K07390) according to the method of [44].
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2.4.2. Western Blot Technique for Measurement of (APP, Aβ, X1AP and Caspase-3)

The concentration of cerebral APP, Aβ, X1AP and caspase-3 were quantified through immune
blotting with the corresponding antibody and then the proteins were separated according to their
molecular weight by gel electrophoresis. We used TGX Stain-Free™ Fast-Cast™ Acrylamide Kit
(sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)) which was provided by
Bio-Rad Laboratories, TNC, USA, Catalog No. 161-0181. The SDS-PAGE TGX Stain-Free Fast Cast
was prepared according to the manufacturer’s instructions. Bands were visualized using Clarity™
Western ECL substrate (Bio-Rad, USA cat#170-5060), and the intensity of the bands was assessed
against that of β-actin with the image analysis software Chemi Doc MP imager (Markham Ontario L3R
8T4 Canada) [45,46].

2.4.3. Determination of BDNF, P2Y12R and P2X7R Gene Expression by Real-Time-Polymerase Chain
Reaction (RT-PCR)

By using RNeasy Purification Reagent (Qiagen, Valencia, CA, USA), RNA of the brain tissue was
isolated. Primers specific for BDNF, P2Y12R and P2X7R were used and are listed in Table 1. Real time
quantitative PCR was used to determine gene expression according to the instructions for Applied
Biosystems version 3.1 software and SYBR Green I (Step One™, USA). All data are expressed relative
to the β-actin gene [47].

Table 1. Primers used for real-time quantitative PCR.

Primer Sequence

BDNF Forward: 5′-AGTGATGACCATCCTTTTCCTTAC3′

Reverse: 5′-CCTCAAATGTGTCATCCAAGGA-3′
Gene ID: 24225

Accession number of chromosome:
NC_005102.4

P2Y12R
Forward primer:

5-CCAGTGCATCCCTAAATATTCC-3
Reverse primer: 5-CCAGCGTTCCCATATACCAG-3

Gene ID: 6803
Accession number on

chromosome: NC_005101.4

P2X7R

Forward primer:
GAACCTCGAGTGAGCCACAACCAGAACACT

Reverse primer:
GACAAGATCTATGGCCCAAGGAGCTCGGT-3

Gene ID: 29665
Accession number of chromosome:

NC_005111.4

Beta actin
Forward:

5′-GCACCCAGCACAATGAAGATCAAG-3′

Reverse: 5′-TCATACTCCTGCTTGCTGATCCAC-3

Gene ID: 11461
Accession number of chromosome:

NC_000071.6

2.4.4. DNA fragmentation%

The percentage of DNA fragmentation in the brain tissue was measured according to the method
described by [48], and the percentage was calculated by using the following equation:

DNA fragmentation% =
Optical Denisty o f Supernatant

Optical Denisty o f Sediment + Optical denisty o f supernatant
× 100

2.5. Statistical Analysis

All obtained data are described as arithmetic means ± standard error (SE). The results were
assessed by SPSS 20 (SPSS, Chicago, IL, USA). One-way ANOVA followed by Tukey’s post hoc test
were done to evaluate and compare the significance between testing groups. Values of p < 0.05 were
referred to as significant.
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3. Results

Administration of Ginkgo alone in the Ginkgo group caused no significance at (p < 0.05) as
compared to control group in all measured parameters.

3.1. Effect of Ginkgo on CHE and GGT Activities in Brain Toxicity

The activities of cholinesterase (Figure 2A) and GGT (Figure 2B) were significantly (p < 0.05)
increased in the Cis group in comparison with the control group. Administration of Ginkgo with Cis
in Ginkgo+Cis group decreased the activities of CHE and GGT compared to Cis only in Cis group at
(p < 0.05).
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Figure 2. Changes of Cholinestrase (CHE) and Gamma glutamyl transferase (GGT) activities of different
groups. The effect of Cis, Ginkgo, and their combination on choline esterase (A) and GGT (B). Data
are presented as mean ± SE (n = 10). a indicates a significant difference compared to control group, b
indicates a significant change compared to Cis group. a and b indicate statistical significance at p < 0.05
using ANOVA followed by Tukey–Kramer as a post ANOVA test.

3.2. Effect of Ginkgo on Oxidant/Antioxidant Parameters in Brain Toxicity

Cis administration caused a significant decrease of GSH concentration (Figure 3A), SOD activity
(Figure 3B), TAC concentration (Figure 3C) and a significant increase of MDA concentration (Figure 3D)
in comparison with the control group (p < 0.05). Administration of Ginkgo with Cis reversed the
adverse effect of Cis as Ginkgo+Cis group indicated a significant boost of GSH concentration, SOD
activity, TAC concentration and a significant reduction of MDA in comparison with the Cis group
(p < 0.05).

3.3. Effect of Ginkgo on APP, Aβ, XIAP and Caspase-3

Cis caused a significant increase of APP (Figure 4A) and Aβ (Figure 4B), decrease of XIAP
(Figure 4C) and increase of caspase-3 (Figure 4D) in comparison with the control group (p < 0.05).
Ginkgo reversed the effect of Cis as Ginkgo administration in the Ginkgo+Cis group decreased APP, Aβ

and caspase-3 and increased XIAP in comparison with the Cis group (p < 0.05).
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Figure 3. The changes of oxidant/antioxidant parameters of different groups. The Effect of Cis, Ginkgo,
and their combination on reduced glutathione (GSH) (A), super oxide dismutase (SOD) (B), Total
antioxidant capacity (TAC) (C) and Malondialdehyde (MDA) (D). Data were presented as mean ± SE
(n = 10). a indicates a significant difference compared to control group, b indicates a significant change
compared to Cis group. a and b indicate statistical significance at p < 0.05 using ANOVA followed by
Tukey–Kramer as a post ANOVA test.
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Figure 4. The changes of amyloid precursor protein (APP), Aβ, XIAP and caspase-3 in different groups.
The effect of Cis, Ginkgo, and their combination on the expression levels of APP (A), Amyloid β (Aβ)
(B), XIAP (C), caspase-3 (D) in rat brain tissues. Data present as mean ± SE (n = 10). a indicates a
significant difference compared to control group, b indicates a significant change compared to Cis
group. a and b indicate statistical significance at p < 0.05 using ANOVA followed by Tukey–Kramer as
a post ANOVA test.
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3.4. Effect of Ginkgo on BDNF, P2Y12R and P2X7R mRNA Expressions in Brain Toxicity

Administration of Cis caused a significant reduction of BDNF mRNA expression (p < 0.05) in
comparison with the control group (Figure 5A). Moreover, Cis caused a significant increase of P2Y12R
(Figure 5B) and P2X7R (Figure 5C) mRNA expressions (p < 0.05) in comparison with the control group.
Ginkgo caused a significant augmentation of BDNF mRNA expression and decreased P2Y12R and
P2X7R mRNA expressions in the Ginkgo+Cis group in comparison with the Cis group (p < 0.05).
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Figure 5. The changes of BDNF, P2Y12R and P2X7R mRNA expressions in different group. The Effect
of Cis, Ginkgo, and their combination on the expression levels of BDNF (A), PY12R (B) and P2X7R (C)
in rat brain tissues. Data were presented as mean ± SE (n = 10). a indicates a significant difference
compared to control group, b indicates a significant change compared to Cis group. a and b indicate
statistical significance at p < 0.05 using ANOVA followed by Tukey–Kramer as a post ANOVA test.

3.5. DNA Fragmentation%

Cis caused a significant increase of DNA fragmentation% (Figure 6) in comparison with the
control group (p < 0.05). Ginkgo ameliorates the effect of Cis as Ginkgo decreased DNA fragmentation%
in comparison with Cis group (p < 0.05).
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Figure 6. The changes of DNA fragmentation% in different groups. The effect of Cis, Ginkgo, and
their combination on the expression level of DNA fragmentation% in rat brain tissues. Data present
as mean ± SE (n = 10). a indicates a significant difference compared to control group, b indicates a
significant change compared to Cis group. a and b indicate statistical significance at p < 0.05 using
ANOVA followed by Tukey–Kramer as a post ANOVA test.

4. Discussion

Although Cis is a potent chemotherapeutic drug, it has many harmful complications. In the
existing study we focused on the toxic effect of Cis on the brain; the main target of Cis. It crosses the
BBB and inhibits the proliferation of neuronal stem cells [3]. During Cis therapy, a marked decrease in
the hippocampus neurons number has been identified [49].

Our results showed that Cis causes severe cerebral damage which is manifested by a significant
increase of CHE and GGT activities in the Cis group in comparison with the control group. These
findings are in agreement with [50–52]. References [53,54] reported that GGT is posited as an early
and a delicate marker for brain damage. CHE is an important enzyme involved in acetyl choline
catabolism at cholinergic synapses into acetic acid and choline [55]. Also, CHE is considered a target
enzyme for Cis induced cerebral damage as the inhibition of CHE activity leads to the disturbance of
the neurotransmitter acetylcholine [56] and an obvious disturbance in the nerve impulse transmission
will take place [57].

Treatment with Ginkgo significantly reduced CHE and GGT activities compared to the Cis group.
This effect might be explained by the efficacy of Ginkgo to scavenge the free radicals and suppress the
leakage of enzymes through plasma membranes [58].
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Furthermore, our results showed that Cis causes severe cerebral oxidative stress which is revealed
by the severe depletion of GSH concentration [59], SOD activity, TAC with a concurrent augmentation
of MDA. These findings are in accordance with [60]. Stimulation of lipid membrane peroxidation
via augmentation of free oxygen radicals generation together with down regulation of antioxidant
defense could explain the oxidative harmful effects of Cis [61]. Based on the existing work, the potent
antioxidant outcome of Ginkgo on Cis-stimulated cerebral oxidative stress was so clear and could be
inferred by the significant reduction of MDA [62] and increase in cerebral antioxidant defense GSH
and SOD [63]. The antioxidant properties of Ginkgo are related to its efficacy to work as a free radical
scavenger by preventing the lipid peroxidation [58]. The bio-flavonoid contents of Ginkgo have the
upper hand in its antioxidant properties [64] through the direct scavenging effect on ROS, removing
pro-oxidant transitional metal ions and boosting antioxidant proteins [65].

Apoptosis, which is clarified as a programmed cell death, controls cell repair and the removal
of injured cells [66]. Cis induces neuronal loss by promoting neuronal apoptosis and inhibiting
neurogenesis [67].

A novel finding is the ability of Cis to increase the production of APP and accumulation of Aβ,
which is generated by proteolytic processing of the APP via β-secretase (β-amyloid cleavage enzyme)
and γ-secretase complex [68]. Over accumulation of Aβ is one of the most acceptable hypotheses
explaining the induction of neuronal oxidative damage and cell expiration in Alzheimer’s disease
(AD) [15,69,70]. The neuronal apoptosis of AD is distinguished by the presence of many apoptotic
markers which are found in the brains of AD sufferers after death, such as inducing caspase activities
and DNA fragmentations [71,72].

Based on our findings, Cis increases the expression of some purinergic receptors such as P2Y12R
and P2X7R. It is recorded that purinergic receptors significantly increased the neurotoxicity [73]. They
are implicated in several CNS disorders, such as neuronal damage [74] and Alzheimer’s disease [75].
These receptors are activated by binding certain nucleotides that are released from injured neurons [76],
and then activated in microglia [77]. Various pro-inflammatory mediators are generated by the
activated microglia such as cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-a), and interleukin
6 (IL-6) [78], leading to neuronal damage, disability of tissue renovate and neuronal lesions [79].
A previous study reported that over concentration of Aβ in the brain tissue leads to the over expression
of P2Y12R and P2X7R in the brain tissue [16].

Another apoptotic pathway of Cis is the inhibition of XIAP. XIAP belongs to the IAP family [80].
Reference [81] stated that XIAP has a powerful neuroprotective effect by reducing cerebral apoptosis.
Our results showed that Cis administration diminished cerebral XIAP concentration with a concurrent
up-regulation of caspase-3 which activates apoptotic cell death through a pathway of signal transduction
Figure 7. The down-regulation of XIAP inhibits the phosphorylation of the tropomyosin linked kinase-B
(TrkB) receptor; one of the most important membrane receptors of BDNF [82] and this could explain
the significant reduction of BDNF expression in Cis treated rats. Added to that, Peng stated that too
much accumulation of Aβ reduces the BDNF expression [83]. The reduction of BDNF inhibits Bcl-2
which is an important factor inhibiting apoptosis. Thus, caspase-3 is augmented and the intrinsic
pathway of apoptosis is initiated in the brain tissue [84].

From what has been previously mentioned, using anti-apoptotic agent such as Ginkgo is a logic
approach to protect against cis induced cerebral apoptosis. Ginkgo has a powerful protective effect
against the induced neuronal apoptosis which may be developed due to many sets of conditions, such
as oxidative stress [85], and aggregation of Aβ [86]. Our data reported that co-administration of Ginkgo
and Cis reduced APP causes a consequent reduction of Aβ accumulation in the brain tissue [87,88].
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Figure 7. The mechanistic cascades of Cis induced brain apoptosis. The integration of possible
mechanistic cascades of Cis induced brain apoptosis. Cis directly activates APP, β-amyloid and P2X7R.
On the contrary, Cis can inhibit BDNF directly and indirectly via inhibiting XIAP. The decrease of
DDNF is subsequently associated with the decrease of Bcl2, and so caspase-3 is activated and finally
cerebral apoptosis is induced.

Our obtained results showed a significant reduction of P2Y12R, P2X7R and up-regulation of
XIAP in the Ginkgo+Cis group. These changes were followed by a significant increase of BDNF.
The overexpression of BDNF is in accordance with [89] who reported that Ginkgo protects against
acrylamide induced brain toxicity.

The increased BDNF expression promotes the neuronal regeneration [89], inhibits many
inflammatory mediators, up-regulates anti-apoptotic proteins such as Bcl-2 [90], thus blocking apoptotic
markers such as caspase-3 [91].

5. Conclusions

The results of the existing study verify that concurrent treatment with Ginkgo attenuated
Cis-induced cerebral apoptosis in rats. Thus, Ginkgo is considered an effective adjuvant for Cis
as it has the ability to inhibit cerebral oxidative stress and apoptosis via regulating XIAP and BDNF
levels and inhibiting APP, P2Y12R, P2X7R and caspase-3 in the brain tissue.
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