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Abstract: In this paper, we study the volatility forecasts in the Bitcoin market, which has become
popular in the global market in recent years. Since the volatility forecasts help trading decisions
of traders who want a profit, the volatility forecasting is an important task in the market.
For the improvement of the forecasting accuracy of Bitcoin’s volatility, we develop the hybrid
forecasting models combining the GARCH family models with the machine learning (ML) approach.
Specifically, we adopt Artificial Neural Network (ANN) and Higher Order Neural Network (HONN)
for the ML approach and construct the hybrid models using the outputs of the GARCH models and
several relevant variables as input variables. We carry out many experiments based on the proposed
models and compare the forecasting accuracy of the models. In addition, we provide the Model
Confidence Set (MCS) test to find statistically the best model. The results show that the hybrid models
based on HONN provide more accurate forecasts than the other models.

Keywords: Bitcoin; artificial neural network; higher order neural network; volatility forecasting;
hybrid models

1. Introduction and Review of Models

1.1. Introduction

Online transactions over the Internet have depended on trusted financial institutions, which are
central players for safe transactions. Nakamoto [1] proposed Bitcoin as a digital currency to provide
an easy method to perform online transactions. Bitcoin is a peer-to-peer crypocurrency system,
where Bitcoin transactions occur with no central players. All Bitcoin transactions are verified
by the nodes of the peer-to-peer networks and added to the blockchain as the Bitcoin ledger.
The information of all historical transactions and all Bitcoin clients is stored in the blackchain.
That is, Bitcoin transactions are recorded in the blockchain. The value of Bitcoin is not based on
the economic condition in any country and depends on only the supply and demand of the network.
Thus, Bitcoin has been utilized widely as a digital currency that can be exchanged for real products
or services based on the Bitcoin market value. In fact, there are various digital currencies such
as Ethereum, Ripple, Stellar, etc. However, we focus only on Bitcoin because the Bitcoin market
capitalization is about 50% of the total estimated digital currency capitalization at present.

As the Bitcoin market has grown over the years, there have been many studies to analyze the
Bitcoin market in recent years. Urquhart [2] studied the efficiency of Bitcoin market. In an efficient
market, due to the random nature of unpredictable events, variations are random. To find the
inefficiency, Urquhart employed a battery of highly powerful tests for randomness and found
evidence of inefficiency. The high-frequency multifractal properties of Bitcoin were examined
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in [3]. Gajardo et al. [4] analyzed the asymmetric multifractal cross-correlations among stock market
indices, commodities and Bitcoin. Yonghong et al. [5] also investigated the time-varying long-term
memory in the Bitcoin market. Dyhrberg [6,7] showed that Bitcoin has a clear role in the market
for portfolio management. Some researchers studied Bitcoin as an investment vehicle [8–10]. They
found out that Bitcoin investment has characteristic features such as high average return and volatility.
Although the volatilities of various financial indices have an important impact on the Bitcoin market,
the most important factor that affects the high volatility of Bitcoin is the speculative behavior of
users. In addition, there was a study on economic analyses of Bitcoin as a currency [11]. According
to Iwamura et al. [11] and Yermack [12], Bitcoin may not be suitable as currency since Bitcoin has
high volatility. Baur et al. [13] also showed that Bitcoin is used as a speculative investment due to
high volatility and large returns. In practice, since the Bitcoin market has high volatility, the study on
the volatility of Bitcoin has been very important. We focus on the volatility of Bitcoin in this paper.
Specifically, we study the accurate methods for forecasting of Bitcoin volatility.

Many researchers have investigated the analysis and prediction of Bitcoin volatility recently. Baur
and Dimpfl [14] analyzed asymmetric volatility effects for Bitcoin. Other studies attempted to show
that Bitcoin volatility has some properties such as chaos, randomness, multi-fractality and long-range
memory [15,16]. Additionally, there have been many studies on the forecasting of Bitcoin volatility.
Balcilar et al. [17] studied the prediction of Bitcoin volatility with a quantile test based on the trading
volume. Katsiampa [18] investigated several GARCH family models to find the best model for Bitcoin
volatility and found that the AR-CGARCH is the optimal model. Chu et al. [19] provided the best
fitting models based on GARCH models for volatilities of cryptocurrencies including Bitcoin. They fit
12 GARCH models to each cryptocurrency and found that IGARCH (1,1) model provides a good fit.
Conrad et al. [20] used the GARCH-MIDAS model to improve the prediction of long-term Bitcoin
volatility. However, GARCH models have limitations that are hard to capture complex fluctuation
and nonlinear correlation of time series data. In order to overcome these limitations, many researchers
have proposed the non-parametric forecasting methods based on machine learning approaches such
as ANN for better forecasting of Bitcoin volatility [21–23].

Over the past few years, there have been various hybrid models based on ANN to improve
the forecasting ability of the time series data. In particular, the hybrid models based on ANN and
GARCH models have been proposed to improve forecast accuracy for the time-series data such as
market indices, exchange rate, stock volatility, gold price, oil price and metal, etc. [24–30]. These results
have shown that the hybrid models have an advantage compared to ANN models. The so-called
ANN-GARCH models are the hybrid models that incorporate the GARCH forecasts as the explanatory
variables to the ANN models and have been developed consistently by many researchers. For instance,
Hajizadeh et al. [31] proposed two ANN-GARCH models to improve the forecasting performance
of the S&P 500 index volatility. They used various input variables including financial indicators and
the simulated volatility by GARCH models, and the proposed hybrid model with EGARCH model
show better accuracy than the traditional GARCH models and ANN models. Kristjanpoller et al. [32]
provided the methodology and the application for the volatility forecast of three Latin American stock
indexes using a hybrid ANN-GARCH model. Lahmiri and Boukadoum [33] presented an ensemble
system based on a hybrid EGARCH-ANN model which is trained with a different distributional
assumption. In addition, Seo et al. [34] constructed the hybrid ANN-GARCH model with Google
domestic trend and various activation functions for better forecasting accuracy of S&P 500 index
volatility. In this paper, we also employ the ANN-GARCH models for accurate forecasting of the
realized volatility of Bitcoin. Specifically, we develop ANN-GARCH models with HONN and Google
trends (GT) data and compare the proposed models to find the best fitting model for Bitcoin volatility.

The contribution of this work is to find the optimal hybrid model for forecasting Bitcoin’s volatility.
To present our result, this paper is structured as follows. In the next subsection, we review the models
used in this paper. In Section 2, we describe the data used for the proposed hybrid models. In Section 3,
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we construct efficient hybrid models and provide the results of the experiments by the proposed
models. In Section 4, we present the concluding remarks.

1.2. Review of Models

In this section, we introduce GARCH family models used to construct our hybrid models.
More specifically, we review the GARCH model, EGARCH model and GJR-GARCH model.
The forecasts by GARCH family models are used as the explanatory variables to ANN. We also
review ANN model and HONN model with various activation functions used in this paper.

1.2.1. GARCH Model

The ARCH model proposed by Engle [35] was the first model with the conditional distribution
to describe the fat tail characteristics or the volatility clustering properties of time series.
However, the ARCH model has computational problems when a large number of parameters are
needed for a high order model. To solve these problems, Bollerslev [36] proposed the GARCH model,
which is one of the most popular models for forecasting the volatility of time series. Since the GARCH
models include the conditional variance terms as well as the squared residual terms, the models can
predict the volatility well by using a sum of weighted products of the predicted variance from the past.

The GARCH (p, q) model is defined as the follows.

y2
t = w +

q

∑
i=1

αiε
2
t−i +

p

∑
i=1

βiy2
t−i, (1)

where εt = ytZt, {Zt} is a sequence of independent and identically distributed random variables with
zero mean and unit variance, {εt} is a sequence of the error terms, the positive parameters αi and
βi satisfy the condition ∑

q
i=1 αi + ∑

p
i=1 βi < 1 for the stability of the GARCH model. This condition

ensures that the conditional variance yt has nonnegative values and finite expected value. Here, w, αi
and βi are the estimated parameters by using maximum likelihood estimation.

1.2.2. EGARCH Model

The exponential GARCH (EGARCH) model proposed by Nelson [37] allows negative parameters
unlike the GARCH model. That is, the parameters of the model have no restrictions to ensure the
non-negativity of the volatility. This model can describe the volatility leverage effect which reflects the
asymmetric impacts and captures asymmetric behavior of the time series.

The EGARCH (p, q) model is defined as follows.

log y2
t = w +

q

∑
i=1

αi

[
|εt−i|
yt−i

−
√

2
π

+ γ
εt−i
yt−i

]
+

p

∑
i=1

βi log y2
t−i, (2)

where αi with no restrictions captures the volatility clustering effect, βi measures the persistence in
conditional volatility irrespective of the events in the market and γ measures the asymmetric leverage
coefficient to describe the leverage effect of volatility. αi, βi and γ are parameters to be estimated.

1.2.3. GJR-GARCH Model

The GJR-GARCH model proposed by Glosten et al. [38] is one of nonlinear GARCH family
models to allow for asymmetry effects by integrating a dichotomous variable into the GARCH model.
This model allows the larger impact of negative shocks to have a more distinct impact on volatility
than a positive impact. The model also presented improved forecasting ability [39].



Appl. Sci. 2020, 10, 4768 4 of 16

The conditional variance of GJR-GARCH (p, q) model is defined as follows.

y2
t = w +

q

∑
i=1

[
αi + γi1{εt−i<0}

]
ε2

t−i +
p

∑
i=1

βiy2
t−i, (3)

where

1{ ·} =

{
1, εt−i < 0,
0, εt−i ≥ 0,

and

w ≥ 0, p ≥ 0, q ≥ 0, αi ≥ 0, βi ≥ 0, αi + γi ≥ 0 and
p

∑
i=1

αi +
q

∑
i=1

βi +
1
2

q

∑
i=1

γi < 1.

where αi and βi are similar to the coefficients in the EGARCH model, and γi means the asymmetric
leverage coefficient. The parameters w, αi, βi and γi are estimated by the maximum likelihood approach.

1.2.4. Artificial Neural Network (ANN)

ANN is one of the nonparametric nonlinear models which are used widely to overcome the
limitations of the linear models in machine learning. ANN is constructed appropriately based on
the characteristics extracted from the real data and has no hypothesis about the underlying model.
ANN also has at least three layers (input layer, hidden layer, output layer). ANN with single hidden
layer used for forecasting is illustrated in Figure 1.

.
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Figure 1. The structure of Artificial Neural Network (ANN).

The output result from input layer and hidden layer is generally as follows.

output = f

(
n

∑
i=0

xiwi

)
, (4)

where xi and wi represent the set of input data from node i and the weight associated with the
connection to the node i, and f is one of the activation functions. The activation functions used in
this paper are presented in Table 1. The sigmoid function shows high sensitivity to small changes
in input variables. This property provides a good classifier. The hyperbolic tangent function (Tanh)
has an advantage over the sigmoid function. Since the derivative of the function is steeper, it will
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have faster learning and grading. In addition, it is well known that the Rectified Linear Unit (ReLU)
is a good estimator and show very efficient calculation when all neurons are activated in the same
manner. Exponential Linear Unit (ELU) provides fast learning because ELU shrinks the difference
between the unit natural gradient and the normal gradient.

Table 1. Activation functions used in this paper.

Name Activation Function

Sigmoid f (x) = 1
1+e−x

Hyperbolic Tangent (Tanh) f (x) = ex−e−x

ex+e−x

Rectified Linear Unit (ReLU) f (x) =

{
0 for x < 0
x for x ≥ 0

Exponential Linear Unit (ELU) f (x) =

{
α(ex − 1) for x < 0
x for x ≥ 0

The main work of ANN is to find the optimal weights for better performance using the activation
functions. We use the back-propagation method to obtain the weights. We also carry out many
experiments with four activation functions to find the best forecasting model.

1.2.5. Higher Order Neural Network (HONN)

HONN proposed by Giles and Maxwell [40] has been widely used to simulate the higher-order
nonlinear inputs and to provide some basis for the simulations as ‘open box’ [41]. Because first-order
networks do not take advantage of meaningful relationships between the input variables, the networks
need a lot of training passes with a large training set. To improve this disadvantage, HONN has been
developed. In general, with the selection of good input variables, it is known that HONN provides
better forecasting performance than the classic ANN.

In Equation (4), the independent variable is presented as the linear combination.
Specifically, the variable is expressed by multiplying each input variable (xi) by a weight (wi) and
adding the results. We can easily make out the higher-order terms of the inputs from the first-order
terms. Here, we consider the second order HONN to improve the volatility forecasting. Let us define
the input vector ~x and the weight vector ~w by

~x = [x0, x1, · · · , xn] and ~w = [w0, w1, · · · , wn],

respectively. Then the input vector ~xh and the weight vector ~wh in HONN are given by

~xh = [x0, x1, · · · , xn, x2
0, x0x1, x0x2, · · · , xn−1xn, x2

n] and ~wh = [w0, w1, · · · , wn, w00, w01, w02, · · · , wn−1n, wnn],

respectively. From these vectors, the output with the activation functions f can be calculated as follows.

output = f (~wh ·~xh) = f

(
n

∑
i=0

wixi +
n

∑
i=0

n

∑
j=i

wijxixj

)
. (5)

The structure of a second-order HONN used in this paper is illustrated in Figure 2. We construct
the hybrid models based on this second-order HONN for the accurate forecasting.
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Figure 2. The structure of Higher Order Neural Network (HONN).

2. Material and Methods

The time series data analyzed in this paper were the daily historical prices of Bitcoin over the
period between 1 January 2012 and 30 November 2019. The data were downloaded from the website
(https://bitcoincharts.com/). To define the volatility of Bitcoin price, the closing prices pt at time t
are transformed into log return rt = log pt − log pt−1. The realized volatility of Bitcoin was computed
as the variance of rt, and the realized volatilities in a 5-day window as weekly volatilities are used to
analyze the volatility of Bitcoin in this paper. Then, the realized volatility (RVt) of Bitcoin at time t is
computed as

RVt =
1
5

t+5

∑
i=t+1

(ri − rt)
2,

where rt is mean of rt during 5 days after time t.
In order to improve the accuracy of the volatility forecast, the selection of the input data which

influence on the volatility of Bitcoin is very important. In this paper, we consider the GT data and VIX
data as the explanatory variables. GT is the data that presents the popularity of search queries related
to various sectors in Google. In fact, GT data has been used as explanatory variables in the ANN to
forecast of the financial time series by many researchers [34,42–44]. We used ‘Bitcoin’ GT data as the
input variable, which is a good measure to describe the Bitcoin market [45]. VIX index introduced the
Chicago Board Options Exchange (CBOE) in 2004 extrapolates the future volatility from the liquid
options written on the S&P 500 and is calculated as the square root of the risk-neutral expectation of
the 30 days variance of the S&P 500 return which is estimated by the forward option price expiring
in 30 days. From the previous works [46,47], we can find the significant relationship between the
VIX index and Bitcoin. Thus, we choose the VIX index as the input data to the ANN-based on the
researches. Specifically, 5-days moving averages of VIX index and GT data are used as the input data.
In Figure 3, the time series of log return rt of Bitcoin price are displayed. Figures 4 and 5 illustrate the
realized volatility of bitcoin price and VIX index, respectively.

https://bitcoincharts.com/
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Figure 3. Log return rt of Bitcoin price from 1 January 2012 to 30 November 2019.
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Figure 4. Realized volatility RVt of rt afrom 1 January 2012 to 30 November 2019.
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Figure 5. VIX index from 1 January 2012 to 30 November 2019.

In order to construct a more accurate model for forecasting of Bitcoin volatility, we use the 1-day
lagged weekly volatility (LVt) as the endogenous variable and the outputs of GARCH family models
as the exogenous variables. In other words, LVt and GARCH family outputs are used as the input
variables to improve the forecasting ability of the hybrid model. Here, the outputs of the GARCH
models introduced in the previous section are used, and LVt is calculated by

LVt =
1
5

t−5

∑
i=t−1

(ri − rt)
2. (6)

Note that days in windows of LVt have no intersection with 5 days in windows of RVt. LVt

is displayed in Figure 6. In this study, 80% of the data set (in-sample: 2012.01.01–2018.04.30) are
used for training, and 20% (out-of-sample: 2018.05.01–2019.11.30) of the data set are used for testing.
All experiments are implemented using Python 3. Additionally, we utilize three measures to compare
the performance of the proposed models. These measures are the mean absolute error (MAE), the root
mean square error (RMSE) and the mean absolute percentage error (MAPE) and as follows.

MAE =
1
n ∑

t
|σ̂t − RVt|,

RMSE =

(
1
n ∑

t
(σ̂t − RVt)

2

)1/2

,

MAPE =
1
n ∑

t

∣∣∣∣ σ̂t − RVt

RVt

∣∣∣∣ ,

where σ̂t is the predicted volatility of Bitcoin and n is the number of the predicted data.
Obviously, the lower values of the measures, the better accuracy of the model. For more details,
see [48].



Appl. Sci. 2020, 10, 4768 9 of 16

2012 2013 2014 2015 2016 2017 2018 2019 2020

Date

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

L
a

g
g

e
d

 v
o

la
ti
lit

y

Figure 6. Lagged volatility LVt of rt from 1 January 2012 to 30 November 2019.

3. Hybrid Models and Results

In this paper, we propose several hybrid models based on GARCH family models, ANN and
HONN to find a more accurate model for forecasting of Bitcoin volatility. Specifically, the hybrid models
are constructed with the ANN by using the selected GARCH models and the selected explanatory
variables. The models are implemented by the ANN with a single hidden layer and various neurons
using the back-propagation method and classified according to whether including the explanatory
variables or not. The proposed models are used for 1-day ahead forecast of weekly realized volatility,
and then the best model is determined by comparing the results.

We compare the proposed models to find the best volatility forecasting model in the bitcoin market.
We first forecast the volatility of Bitcoin price using the classic GARCH family models. Concretely,
we use GARCH, EGARCH and GJR-GARCH model among the GARCH family models and the (p, q)
parameters ranging from (1,1) to (3,3). In order to find the optimal GARCH model for the hybrid
model, we provide AIC and BIC values in Table 2 and three measures to compare the performances
of the models for forecasting volatilities in Table 3. According to the results in Table 2 and AIC and
BIC criteria, EGARCH(3,3) model is the best model. On the other hand, according to the results in
Table 3, we can see that the GJR-GARCH(1,1) model performs the best among the introduced GARCH
family models.

Table 2. GARCH models.

Models (p, q) AIC BIC

GARCH (1,1) −7593.56 −7570.83
GARCH (2,2) −7633.38 −7599.30
GARCH (3,3) −7630.73 −7585.28

GJR-GARCH (1,1) −7589.75 −7561.34
GJR-GARCH (2,2) −7577.91 −7538.14
GJR-GARCH (3,3) −7558.42 −7507.29

EGARCH (1,1) −7646.91 −7618.51
EGARCH (2,2) −7665.96 −7626.19
EGARCH (3,3) −7687.68 −7636.55
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Table 3. GARCH models performance.

Models (p, q) MAE RMSE MAPE

GARCH (1,1) 0.01820086 0.022997082 60.71728437
GARCH (2,2) 0.018615039 0.023244302 62.97792289
GARCH (3,3) 0.031275112 0.274933282 104.4275052

GJR-GARCH (1,1) 0.018100989 0.022782066 59.57816469
GJR-GARCH (2,2) 0.018273329 0.022976453 61.3172729
GJR-GARCH (3,3) 0.018353907 0.023128309 61.44172661

EGARCH (1,1) 0.021923047 0.025916869 80.21691954
EGARCH (2,2) 0.021758949 0.025850653 79.23566863
EGARCH (3,3) 0.022439612 0.026596278 81.70952727

Other models except for the classic GARCH models are based upon the ANN approach or the
HONN approach. In other words, the models are constructed by using the selected input variables
to ANN or HONN. Similar to [31,34], we propose the ANN-GARCH models for the forecasting of
the Bitcoin volatility using the outputs of the GARCH family models. Specifically, we define the
GT-GARCH model and GT-VIX-GARCH model according to the input variables. The input variables
of the models are in Table 4. In order to find the optimal number of nodes in the hidden layer and
the activation function for the models, we carry out the experiments using the Adam optimizer
method [49] to update the network weights. The results are indicated with four activation functions in
Tables 5 and 6. As shown in Tables 5 and 6, two measures (MAE, RMSE) show that the GT-GARCH
model is better than the GT-VIX-GARCH model, and one measure (MAPE) shows a different result.
From these results, we can not find a significant performance difference between the GT-VIX-GARCH
model and the GT-GARCH model. That is, we conclude that two models may have a similar predictive
ability. To improve the accuracy of the model, we adopt the HONN approach. Specifically, we propose
three types of hybrid models (GT-H model, GT-VIX-H model, GT-VIX-GARCH-H model) based on
the HONN.

Tables 7–9 are presented the results of the models based on the HONN. To examine well the
proposed models based on the HONN, we present a summary of the input variables of each model
in Table 10. In Table 10, ‘LVt’ is in Equation (6), ‘GT’ means Google trends data, ‘VIX’ means VIX
index data, ‘GJR-GARCH(1,1)’ means forecast by GJR-GARCH(1,1) and ‘EGARCH(3,3)’ means forecast
by EGARCH(3,3). Tables 7 and 8 present the results of the HONN model without the outputs of
GARCH models as shown in Table 10. We can see that MAE and MAPE in Tables 7 and 8 increase
in all cases as compared to the values in Tables 5 and 6. That is, GT-H model and GT-VIX-H model
do not show better performance compared to the models based on the ANN. To improve the model,
we adopt the HONN model with the outputs of GARCH family models. Among the introduced
GARCH models, we chose GJR-GARCH(1,1) and EGARCH(3,3) from the results in Tables 2 and 3. By
using the outputs of GJR-GARCH(1,1) and EGARCH(3,3) as input variables in the HONN, we finally
construct and propose a new type of hybrid model (GT-VIX-GARCH-H model) for better forecasting
of Bitcoin volatility.

Table 4. Input variables of models.

Models Selected Input Variables

GT-GARCH model {GARCH(1,1), GARCH(2,2), GARCH(3,3), GJR-GARCH(1,1), GJR-GARCH(2,2),
GJR-GARCH(3,3), EGARCH(1,1), EGARCH(2,2), EGARCH(3,3), GT, LVt }

GT-VIX-GARCH model {GARCH(1,1), GARCH(2,2), GARCH(3,3), GJR-GARCH(1,1), GJR-GARCH(2,2),
GJR-GARCH(3,3), EGARCH(1,1), EGARCH(2,2), EGARCH(3,3), GT, LVt, VIX }
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Table 5. GT-GARCH model performance.

Model Activation Function Nodes MAE RMSE MAPE

GT-GARCH Relu 10 0.016455061 0.0228628 44.03939302
20 0.016455761 0.02286762 44.01794052
30 0.016456899 0.022870071 44.01377941
40 0.016457765 0.02287134 44.01490369
50 0.016456698 0.022868367 44.01481934

Tanh 10 0.01645589 0.022866914 44.02158481
20 0.016456046 0.022867024 44.02205182
30 0.016457015 0.022869247 44.01766755
40 0.016457969 0.022870135 44.0273439
50 0.016457073 0.022869712 44.01422672

Elu 10 0.016456301 0.022867778 44.01894413
20 0.016451684 0.02284573 44.10871
30 0.016456961 0.022866742 44.03292253
40 0.016455294 0.022864722 44.02362704
50 0.016456115 0.022866339 44.0296898

Sigmoid 10 0.016456811 0.02286878 44.02080023
20 0.016457144 0.022869732 44.01885011
30 0.016456885 0.022867327 44.02887424
40 0.016456888 0.022870528 44.01028107
50 0.016457102 0.022868327 44.02443017

Table 6. GT-VIX-GARCH model performance.

Model Activation Function Nodes MAE RMSE MAPE

GT-VIX-GARCH Relu 10 0.016464618 0.022961953 43.6754142
20 0.016463169 0.022961503 43.66309023
30 0.016464239 0.022963376 43.66271481
40 0.016464096 0.022965466 43.65610286
50 0.016468159 0.022966994 43.68492065

Tanh 10 0.016465239 0.022964124 43.67126798
20 0.016463913 0.022960066 43.67926114
30 0.016464939 0.022962888 43.67179649
40 0.01646529 0.022962936 43.68079538
50 0.016463781 0.022958457 43.68308928

Elu 10 0.016464796 0.022964955 43.66256389
20 0.016465883 0.02296502 43.67128545
30 0.016464635 0.022962084 43.67544449
40 0.016466452 0.022966505 43.66998111
50 0.016462585 0.022957731 43.67119374

Sigmoid 10 0.01646477 0.022963578 43.67003712
20 0.016461495 0.022957864 43.67131767
30 0.016464624 0.022961432 43.67831534
40 0.016464975 0.022965387 43.66149144
50 0.01647861 0.02302727 43.4274305
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Table 7. GT-H model performance.

Model Activation Function Nodes MAE RMSE MAPE

GT-H Relu 10 0.016941584 0.022027929 52.70636488
20 0.016941599 0.02202816 52.70680583
30 0.016941163 0.022027678 52.70298093
40 0.016940914 0.022027074 52.70274993
50 0.016941279 0.022027853 52.70347102

Tanh 10 0.016941714 0.022027935 52.70708064
20 0.016942079 0.022028228 52.70821739
30 0.016941977 0.022028122 52.70722389
40 0.016941485 0.022028033 52.70475844
50 0.016940999 0.022027369 52.70261778

Elu 10 0.01694181 0.022028066 52.70750404
20 0.016941503 0.022027574 52.70587155
30 0.016942019 0.022027821 52.7097488
40 0.01694203 0.022027968 52.70826475
50 0.01694185 0.022027961 52.71021157

Sigmoid 10 0.016941511 0.022027945 52.70543218
20 0.016941295 0.022027628 52.70568077
30 0.016941514 0.022028015 52.70581447
40 0.016942199 0.022028407 52.70889483
50 0.016941966 0.022027852 52.70746498

Table 8. GT-VIX-H model performance.

Model Activation Function Nodes MAE RMSE MAPE

GT-VIX-H Relu 10 0.016745304 0.022489019 48.02497968
20 0.01674541 0.02248914 48.0246867
30 0.016746443 0.022489882 48.02759455
40 0.016745041 0.022488647 48.02404413
50 0.016748236 0.022522086 47.82463374

Tanh 10 0.016745657 0.022489571 48.02533742
20 0.016745787 0.02248942 48.02683015
30 0.016745458 0.02248931 48.02374776
40 0.016744942 0.022489028 48.0238152
50 0.01674544 0.022489515 48.02256555

Elu 10 0.01674516 0.02248885 48.02508728
20 0.016745349 0.022488898 48.02401028
30 0.016745336 0.022489 48.02517194
40 0.016745663 0.022488933 48.02556819
50 0.016745491 0.022489525 48.02760086

Sigmoid 10 0.016745208 0.022489047 48.02402778
20 0.016745744 0.022489067 48.02780298
30 0.0167453 0.022489284 48.0246795
40 0.016745533 0.022488691 48.02600782
50 0.016745073 0.022489534 48.02441867
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Table 9. GT-VIX-GARCH-H model performance.

Model Activation Function Nodes MAE RMSE MAPE

GT-VIX-GARCH-H Relu 10 0.016099377 0.022304876 41.97126277
20 0.016101827 0.02228648 42.07658833
30 0.016095555 0.022284853 42.03342476
40 0.016109686 0.022277813 42.13001676
50 0.016097934 0.02228606 42.05669279

Tanh 10 0.016098348 0.022302633 41.964812188
20 0.01609808 0.022231812 42.38508374
30 0.016094577 0.022298402 42.01919185
40 0.016098404 0.022302775 42.04282541
50 0.016096921 0.022285756 42.04785915

Elu 10 0.016108832 0.02236164 41.71558473
20 0.016100976 0.022290669 42.06674165
30 0.016098687 0.022285274 42.06192355
40 0.016101002 0.022291082 42.06727282
50 0.016105162 0.022295976 42.088699

Sigmoid 10 0.016099661 0.022292957 42.06001306
20 0.016099905 0.022281962 42.06856524
30 0.016100028 0.022278299 42.07671847
40 0.016105448 0.022285267 42.1902812
50 0.016096398 0.02229977 42.03760228

Table 10. Input variables of models.

Input Variables
Models LVt (x0) GT (x1) VIX (x2) GJR-GARCH(1,1) (x3) EGARCH(3,3) (x4)

GT-H model O O X X X
GT-VIX-H model O O O X X

GT-VIX-GARCH-H model O O O O O

Table 9 shows the results of three performance measures obtained by the GT-VIX-GARCH-H
model. We can see the improvement in forecasting accuracy in Table 9. The results in Table 9 show
that the hybrid models with selected GARCH models based on the HONN model for volatility
forecasting of Bitcoin reduce the performance measures (MAE, RMSE, MAPE). That is, in all cases,
the measures decrease compared to the measures of the other models. More specifically, compared to
the GJR-GARCH(1,1) forecast, MAE is reduced by 11 %, MAPE is reduced by 30 %. Furthermore,
we analyze the robustness of our results to determine whether the proposed models are statistically
significant. For the analysis, we apply the MCS test [50] to GT-VIX-GARCH-H models. The detailed
results of the MCS test, which can be interpreted as a level of confidence for the forecasts, are presented
in Table 11. According to the results in Table 11, we can find that the GT-VIX-GARCH-H model
with the Relu function and 30 nodes, which has the lowest MAE, is the best model for forecasting of
Bitcoin volatility.

Table 11. Model confidence set.

Loss Function
Ranking Model Activation Function Nodes MAE MCS

1 GT-VIX-GARCH-H Relu 30 0.016095555 1.000
2 GT-VIX-GARCH-H Tanh 20 0.01609808 0.991
3 GT-VIX-GARCH-H Tanh 30 0.016094577 0.991
4 GT-VIX-GARCH-H Relu 50 0.016097934 0.991
5 GT-VIX-GARCH-H Tanh 40 0.016098404 0.991
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4. Concluding Remarks

We develop the models based on the neural networks for forecasting volatility of Bitcoin price in
this paper. Specifically, we propose several hybrid models to improve the forecasting and conduct more
than 10,000 experiments to find the optimized model. We investigate as follows. Firstly, we construct
the ANN-GARCH models with 1-day lagged volatility, Google Trends, VIX and outputs of GARCH
models based on the previous works. Secondly, we propose the new hybrid models which incorporate
the outputs of GARCH models as input to HONN model. HONN model, which use the linear
combinations of the variables as the input variables, is efficient and performs generally better than
the classic ANN mode when the number of good input variables for the ANN model is small. In fact,
most of the proposed hybrid models show good performances with no statistical difference, but we
focus on finding the best forecasting model for Bitcoin’s volatility.

In order to find the best model among the proposed models, we carry out many experiments
changing the activation functions and the number of nodes. We also adopt three performance measures
to compare the forecasting accuracy of the proposed models. Consequently, the hybrid models based on
the HONN model which can capture higher-order correlations in input variables show the improved
performance for forecasting of Bitcoin volatility. Compared to the best GARCH model, the best
GT-VIX-GARCH-H model improves by 11%, 2.2% and 30% for MAE, RMSE and MAPE, respectively.
In addition, compared to the best ANN-GARCH model, the best GT-VIX-GARCH-H model improves
by 2.2%, 2.5% and 3.9% for MAE, RMSE and MAPE, respectively. In other words, these results show
that the hybrid models based on the HONN model provide more accurate forecasting results and are
appropriate for forecasting of volatility in the Bitcoin market.
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