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Abstract: The potential affection of any construction, and especially historical sites, is of great concern
for their long-term maintenance and stability. This study has determined the vibration behavior
in poor-quality rock mass conditions generated by some of the most typical equipment used in
construction: excavator, ripper, ripper vibrator, hydraulic hammer, bulldozer and vibrating roller.
Several empirical expressions are proposed to know the maximum velocity at different distances for
each type of equipment, taking into account the intensity of the vibration generated and its pattern.
A general equation has also been defined to determine the vibration propagation along the distance at
a construction site, based on the impact generated by all the possible vibration elements, exogenous
and endogenous, including machinery working individually or in any possible combination and
number. On the other hand, the maximum allowable velocity in the case study is also discussed and
compared to international standards, stating some recommendations. It would be very important to
have a clear legislation in this regard due to the high density of sensitive constructions in Spain and
the economic implications of applying too high or too low standard values.

Keywords: empirical analysis; mechanical excavation; ground vibration; historical construction;
wave propagation

1. Introduction

The concern about historical heritage and its conservation has been growing in our society over
time, having more and more constructions tagged as architectural heritage. This fact, together with the
increase in new infrastructure and population density, makes crucial the determination of potential
vibration affections in sensitive constructions generated by new buildings and mechanical surface
excavations or blasting operations [1-3], while the opening of underground excavations can also have
an important impact [4,5]. Some research has been done to define the impact of using construction
equipment on sensitive constructions [6,7] and identify the structural damage caused by vibrations [8],
as well as the prediction of the maximum vibration that can be generated [9]. Amick et al. [10] described
an interesting investigation regarding the propagation of major vibration sources, such as the movement
of heavy vehicles or construction activities, from the ground to more sensitive areas.

Despite the large quantity of studies done over the last decades, due to the logic implications,
and case studies in urban areas [11,12], there is still a lack of knowledge of the possible damage in
delicate constructions owing to the large variations in rock masses and the proximity and usage of the
equipment. Besides, shielding facilities have been verified as non-effective to reduce the propagation of
the vibration along the ground in these situations. The technical guideline published by the Department
of Environment and Conservation from Australia [13] details some operational mitigation actions, but
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they are not appropriate in all the possible situations and the degree of attenuation of each measure
can vary widely in each case.

There are some national regulations regarding the potential damage of vibrations caused by
mechanical excavation and heavy equipment, while international standards are applied in some
other countries. However, there is still a legal void in some countries, especially in the case of
historical or sensitive constructions [14] that could create situations with too restrictive or permissive
legal requirements.

1.1. Objectives of the Study

The aim of the study is to determine the vibration transmissivity to the ground at different
distances from distinct heavy equipment in the construction sector, either working individually or
simultaneously, defining an attenuation vibration law and a model to predict the potential vibration
affection to the surroundings of the infrastructure under construction. The specific legal requirements
and the international standards are also discussed, giving some recommendations for future legal
thresholds in countries where these standards do not exist, like Spain.

1.2. Literature Review

Vibration issues can be generated by the operation of construction equipment, blasting and traffic
traveling. The potential damage to constructions includes superficial and structural damage [15],
caused by excavation and demolition activities or earth movement. Besides, it can also affect sensitive
equipment, i.e., microelectronic manufacturing equipment, which is very sensitive to ground vibrations
and individuals close to the vibration source [16-18]. Usually, the vibration amplitude of traffic is not
high enough to cause damage to a construction due to suspension systems and pneumatic tires [19].
On the other hand, railways and trains can also have a significant impact on vibrations, making it
necessary to apply countermeasures [20].

The concepts of particle displacement, velocity and acceleration are used to describe ground
vibration, being the peak particle velocity the most appropriate variable to assess the potential
damage to a construction [14]. Vibration amplitude is described by three components: two horizontal
components, transverse and longitudinal, and one vertical component, which generally has the highest
amplitude and it is easy to measure [21].

The duration and amplitude of the vibration change depends on the type of operation and
equipment, ranging from a high amplitude and short duration to lower and longer characteristics,
respectively. The equipment or activities can be classified as continuous, excavation and vibratory
compaction equipment, among others, and single impact with or without a high-rate repeated impact
vibration, like a jackhammer or other similar breakers.

The maximum velocity component for construction vibration, peak particle velocity (PPV), is used
as a descriptor of the wave effect. This preference results from the close association of construction
vibration with blast vibration monitoring, where particle velocity correlates with the appearance of
cracking [2].

The vibration source creates a disturbance that propagates away, being the R-wave the primary
concern for foundations close to the surface [2]. According to Richard [22], R-waves account for 67% of
the total energy, S- waves for 26% and P-waves for 7% when the exciting force is applied vertically to
the propagation direction. The vibratory excitation propagates radially outward, causing a spreading
loss as the wave finds an increasing volume, reducing the amplitude of the displacement. The general
expression to model the spreading loss is defined in Section 2.3. When the rock mass is highly fractured
and deteriorated, or it is a soil, its behavior is not perfectly elastic, having a damping effect, influenced
by multiple variables such as the type of material, moisture or frequency of the vibration source.
This behavior was defined by Telford et al. [23], also explained in Section 2.3, having two parameters,
v and «, that represent the geometric attenuation coefficient, depending on the wave type, and the
attenuation coefficient of the material. Dowding [2] and Jones and Stokes Associates [24] gathered the
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typical values of the attenuation coefficient, however, there is a large possible range in each type of
material. On the other hand, Sambuelli [25] proposed an interesting approach to forecast the maximum
particle velocity on the basis of blasting design and rock parameters, detailing an analytical approach
to support the empirical expressions used. The dependence on frequency caused by construction
equipment is commonly considered as weak. It is often assumed independent from frequency [26].
Therefore, the greatest concern is related to the distance from the vibration source.

Amick [27] and Hendriks [21] gathered many of the damping coefficients depending on the
type of material. Besides, Amick [27] mentions that it is a proper methodology to determine the
impact to structures and people. However, most of the information is for soils and not for rocks.
Besides, it analyses individual vibration effects, not the global effect of several equipment working at
the same time. In this regard, Santamaria et al. [28] suggested different y coefficients for rock depending
on the type of wave, body or surface, and for poor rock mass that still needs blasting operations.

The effect of vibration to constructions has attracted the attention of many researchers over time,
focused primarily on the potential damage from mining and blasting [29]. Kadiri et al. [30] gathered
an interesting revision of the empirical equations developed in recent decades to improve the vibration
prediction caused by blasting.

Currently, there are many different standards used depending on the type of construction, structural
conditions and age [24,31], including specific criteria for sensitive and historic buildings [2,32]. There is
also an extensive knowledge of vibrations generated in linear constructions such as roads or railways.
Crabb and Hiller [33] measured vibrations from several types of construction equipment in a controlled
experiment, while Jackson et al. [26] and Hanson et al. [34], provided a national approach to assessing
vibrations from construction equipment in the USA.

Some literature is focused on defining the peak particle velocity (PPV) depending on the type of
equipment [35,36]. For instance, Hiller and Crabb [37] and Jackson et al. [38] developed an expression
to determine the vibration generated by a roller drum at a short distance, taking into account the
length of the roller drum. Moreover, Hanson et al. [34] proposed an empirical equation to predict
vibration from pile driving. Dowding [2] also proposed an expression for the impact hammer based on
experimental data. However, several machines work at the same time usually, which is necessary to
analyze the overall vibration impact.

All this knowledge has fostered the development of international standards to provide guidance
for building damage from mechanized construction, as well as blasting. The most common are the
following: German Standard DIN 4150-3:1999, British Standard BS 7385-2:1993 and Swiss Standard
VS5-5N640-312a:1992, all taking into account the effect on sensitive or historical constructions in all
of them, but with different approaches. Additional research has been done regarding the maximum
allowable vibration velocity, such as the American Association of State Highway and Transportation
Officials [39], that defines different allowable velocities for transient sources and continuous or frequent
intermittent sources. On the other hand, Schiappa de Azevedo and Patricio [40] considered that the
maximum velocity permitted depends on the type of ground where the historical building is placed.

Several methods to reduce the vibration are proposed. One of the most common among them
is a wave barrier, which cut the wave transmission from the source to the receiver. Wave barriers
must be very deep and long to be effective, and they are not cost-effective for temporary applications
such as pile driving vibration mitigation [15]. Other measures or elements, like crushing equipment
when working in concrete or hard rock can be used to reduce the vibration from a hydraulic breaker,
however, it cannot always be applied [15]. Other more general measures such as maintenance of the
machines, reducing the time that different equipment are working simultaneously or their size can also
be evaluated, but it is impossible to avoid the whole problem, and it is often not feasible [14].
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2. Materials and Methods

2.1. Case Study

A cut and cover tunnel was planned to be constructed parallel to a heritage construction site,
around 100 m away, in northwest of Asturias, Spain (Figure 1). The excavation was done by a mechanical
method, using different excavators equipped with a V-type bucket, a ripper and a hydraulic hammer
as well as a bulldozer and a vibrating roller for the management of the backfill material. The hydraulic
hammer was subsequently replaced by a vibration ripper due to operational considerations, such as
the weakness of the rock mass, during the excavation process.

Figure 1. Case study. (a) Cut and cover tunnel under construction. (b) Historical site where the field

instrumentation was placed.

The rock mass of the case study site is composed of Ordovician shale materials (dark shale from
the Luarca Formation) which are found in a massive scale and with an 80° dip. Several uniaxial
compression strength tests were done, obtaining a value between 12.5 and 23 MPa. Besides, the rock
mass is highly fractured with several joint directions, having a medium to low rock mass rating (RMR),
between 21 and 40, classified as poor-quality rock mass.

The rock mass excavatability can be classified as diggable and/or rippable under the criterion
of Tsiambaos y Saroglou [41]. These authors define, on the Hoek-Brown abacus, the zones in which
different excavation methods can be used: digging, ripping, breaker hammer and blasting. The GSI
index and the point-load strength I are the representative parameters of the rock mass.

In this case, the rock mass can be considered blocky/disturbed, with a GSI between 20 and 40.
On the other hand, an I value between 0.5 and 1 can be deduced from the rock compressive strength.
Consequently, the rock mass can be classified as diggable and/or rippable (Figure 2). These assumptions
were verified during the field work, where the excavation was carried out almost totally with excavators
and rippers.

On the other hand, the backfill material was spread and compacted in different layers as the base
and sub-base for the infrastructure. It is a material with a granulometry that ranges between 80 and
0.08 mm, mainly composed of sand and gravel, with less than 2.4% of fine elements. The density
during the test was around 1.8 tn/m?3.
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Figure 2. Excavatability of the shale rock mass for Is < 3 according to Tsiambaos and Saroglou [41].
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2.2. Equipment for Data Adquisition

The equipment used for the data obtaining were three seismographs of the Vibracord type,
one seismograph of the Instantel Blastmate II type and two seismic stations of the MarSlite type. In the
case of the seismographs, they have three seismic channels (vertical, longitudinal and transversal) and
the following operational range of velocity, 0-150 mm/s, and frequency, 2-250 Hz. The attachment of the
equipment to the ground was done following the criteria stablished by the UNE 22-381. The detection
limit of the seismographs and seismic stations are 0.01 and 0.001 mm/s, respectively. The procedure
followed was similar to the one explained by Lane and Pelham [11] and Andrews et al. [15], having two
main stages to determine the vibration behavior in this case:

1.  Several tests were done in situ to determine the attenuation vibration law for the specific ground
of the case study and for each piece of equipment, described in Section 2, in the real location and
carrying out a regular operation;

2. Recording of the vibration transmission in the historical site foundations during 48 work days,
24 h a day.

2.3. Vibration Fundamentals

The vibration propagation to the ground depends on many different factors, such as the rock mass
anisotropy, its heterogeneity and the degree of fracturing, among other elements [42].

The vibration behavior along the distance, from a certain source, can be analyzed taking into
account, or not, a damped response from the rock mass. Its simplest way is the attenuation vibration
law without a damped effect, as it is seen in Equation (1).

Umax = 00 (1’70);/ (€))
where vinax (mmy/s) is the peak particle velocity (PPV) or maximum velocity at a distance r from the
source; it is assumed that the initial velocity vy (mm/s) at a certain distance ry (m) is known. The vy
coefficient (dimensionless) is an empirical value that depends on the characteristics of the ground and
the wave frequency, usually between 1.4 and 1.7 [43], obtaining the value by in situ measurements or
using bibliographical values. Equation (1) can be applied when the rock mass has very good quality
and for short distances, assuming that the vibration amplitude waves diminish with distance due to
the expansion of the wave front [44].

On the other hand, the attenuation vibration with the damped effect occurs when we have soil or
poor-quality rock masses and long distances, having an inelastic attenuation due to heat losses and
yielding of the ground. Therefore, the vibration amplitude decreases because of the expansion of the
wave front and the inelastic behavior, as in Equation (2).

Omax = UO(T%O))/ED‘ (ro=1) (2)
where a (m™!) is an empirical coefficient based on the damping characteristics of the material [44].
Depending on the case, both methods could be used successfully, obtaining even similar results at short
or middle distances. Nevertheless, in some cases, such as the one studied here, the first method cannot
be used to properly predict the peak particle velocity over all the range of distances. Therefore, it is
assumed that Equation (2) is the most adequate expression in this case study.

Parameters « and y have been adjusted to the case study from the point cloud of the measurements
done in situ analyzing the different types of equipment. The envelope curve defines the maximum
potential vibration based on the data measured.
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The great advantages of empirical formulas, such as Equations (1) and (2), are their simplicity
and easy understanding. They are widely accepted in real projects [27,33-38], achieving very good
correlations with in situ measurements if they are applied under the proper conditions. However, further
developments are necessary to cover as many conditions as possible in future situations.

The procedure to fit Equations (1) and (2) to observed data from different soils or rock masses is
extensively explained by Amick and Gendreau [17], obtaining the y coefficient from each specific case
study. This approach has been successfully used in many previous studies [21,24,37].

2.4. Set Up

The installation of the seismic stations and seismographs to determine the vibration created by
each type of equipment is displayed in Figure 3, having the characteristics detailed below.

p [ Semicsaron ]

Ty
2

Figure 3. Layout of the equipment for monitoring the work of: (a) V-type bucket, (b) ripper (c) hydraulic
hammer and (d) bulldozer and a vibrating roller.

(@) Mechanical excavation using a Hitachi 500 with a V-type bucket for rock. Installation of
4 seismographs and 2 seismic stations;

(b) Ripping operation using a Komatsu PC 450 LC6K equipped with a ripper. Installation of
3 seismographs and 2 seismic stations;

(c) Fragmentation using a Hitachi ZX240 equipped with a hydraulic breaker hammer Furukawa F45.
Installation of 4 seismographs and 2 seismic stations;

(d) Earth moving and compacting roller. The first operation was done with a Bulldozer Cat D6N,
while the second one using a Bomag BD211D. In both cases 4 seismographs and 2 seismic stations
were used.
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The seismic stations not seen in Figure 3 were placed between 30 and 40 m far from the operation
in the direction of the historical site. All measurements were done while the equipment was performing
the operations.

2.5. Maximum Allowable Velocity

The competent authority established a maximum value of 0.1 mm/s for this particular case study.
However, there is not a clear legal value in Spain for this type of vibration source. Table 1 gathers the
main international values in this regard.

Table 1. Values stablished by different sources/authors.

Source Threshold Value (mm/s)
Studer and Suesstrunk [45] 1.8-3
Forsblad [46] 2
Swiss Standard 3
Standard DIN 4150 2.5-10
Schiappa de Azevedo and Patricio [37] 1.75-10

The German standard DIN 4150 gives a range of maximum values for historical sites depending
on the frequency and type of vibration, short- or long-term exposure, while the Swiss Standard VSS
SN640 is commonly considered as very conservative [34]. However, this last one has been widely used
by many different public administrations [31]. Another widespread reference, the British Standard
BS 7385 from 1993, does not include a threshold for sensitive or historical constructions, but it depends
on the type of construction. On the other hand, the Spanish maximum legal value regarding blasting
operations close to old or historical buildings is 4 mm/s, UNE 22381-93.

3. Results and Discussion

3.1. Anlalysis of the Equipment

The vibration level is characterized by the maximum velocity or peak particle velocity (PPV) in the
vertical direction because it is less influenced by the alignment of the geophone than the longitudinal
or transversal components. Table 2, Table 3, Table 4, gather the peak particle velocities at different
distances, recorded in situ for the equipment working directly in shale rock mass and backfill material.

Table 2. Velocities at different distances for the excavation equipment.

V Bucket Ripper
Distance (m) Velocity (mm/s) Distance (m) Velocity (mm/s)

2.5 1.36 4 1.36
5 1.33 10 0.38

6 0.66 10 0.25
6.6 0.38 11 0.095
6.6 0.51 11 0.183
9.5 0.23 30 0.009
10 0.215 30 0.019
40 0.008

40 0.009




Appl. Sci. 2020, 10, 4689 90f19

Table 3. Velocities at different distances for the excavation/fragmentation equipment.

Vibrating Ripper Hydraulic Hammer
Distance (m) Velocity (mm/s) Distance (m) Velocity (mm/s)
2 4.31 2 3.33
2 3.63 3.5 1.99
10 1.85 3.5 2.72
15 1.39 5 1.36
18 1.16 8 0.88
18 1.39 8.5 0.90
27 1.38 9.5 0.51
27 0.46 10 0.40
35 0.92 10 0.119
35 0.69 10 0.137
35 0.62 30 0.012

30 0.006

Table 4. Backfill operations with different equipment.

Bulldozer Vibrating Roller
Distance (m) Velocity (mm/s) Distance (m) Velocity (mm/s)
1 5.1 1.5 3.33

3 2.5 3 15.76
3 1.14 3.5 4.99
45 2.5 5 4.54
5 1.77 5 6.12
7 1.58 5 3.99
7 0.51 6.5 3.85
8.5 0.45 7 5.44
9 1.33 7 5.33
11 14 8.5 431
11 1.36 9 6.6
12.5 0.66 10.5 1.27
30 0.044 30 0.27
30 0.035 30 0.27
30 0.039 30 0.27

It can be seen that the behavior of three types of equipment (excavator, ripper and breaker hammer)
working on the shale bed rock is quite similar, achieving very low velocity values from 30 m and further,
being much lower than the threshold values established by the legal requirements and international
standards. The rock mass behavior to the vibration transmission is almost the same in the three types
of equipment, varying only in the vibration intensity, especially in the case of the hydraulic hammer.

On the other hand, a few differences have also been detected. The excavation using the bucket
has a more uniform evolution regarding the distance of measurement, while the ripper operation has
a higher value close to the source and, then, the velocity decreases faster. A plot of the actual data,
taking into account the distance from the vibration source, is included in Figure 4, showing an almost
linear trend with a negative slope.
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Figure 4. Logarithmic graph of the excavation, ripping and fragmentation equipment (without vibration).

It has to be pointed out that the vibrating ripper generates vibration levels of about one order
of magnitude bigger than the other equipment (Figure 5). This vibrating ripper will be considered,
from a ground vibration point of view, equivalent to the vibrating roller which is analyzed henceforward.

100

10

0.1

Peak particle velocity PPV (mm/s)
|

0.01

0.001

1 10 100

Distance to the source (m)

Figure 5. Logarithmic graph of the ripping with vibration.

In the case of compacted granular material, the velocity achieves a value lower than 0.1 mm/s at
a distance around 25 m for the bulldozer and 50 m for the vibrating roller, with the usage of the last
one having a much higher impact (Table 4). The actual data plotted in Figures 6 and 7 also display
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an almost linear trend with a negative slope, but with a higher dispersion of the measurements at
a short distance from the source in the case of the vibrating roller (Figure 7).
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Figure 6. Logarithmic graph of the bulldozer.
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Figure 7. Logarithmic graph of the vibrating roller.

The values from Tables 24 give slightly different results, for the same type of equipment,
to previous research for a similar case study [47]. In this regard, an adjustment of the o coefficient is
done based on the characteristics of each equipment. The following expressions, Equations (3)—(5),
define the representative vibration attenuation law for the use of each type of equipment, obtained from
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Equation (2) and actual data. The actual data show that the same expression can be used for the
vibrating roller and the vibrating ripper, either at short or long distances.
Excavator equipped with a V bucket or a ripper:

Opax = 4.5 1705 ¢0-060 (1-r) .

Bulldozer:

Umax = 10 ’,—0.5 60'055 (1-7) (4)

Vibrating roller or excavator equipped with a vibrating ripper:

Oy = 35 105 0055 (1-7) ®)

The « values obtained range from 0.055 to 0.060 m™~! for a poor rock mass and a frequency between
50 and 100 Hz, while « is 0.055 m~! for backfill materials with a frequency between 30 and 40 Hz.
The results are consistent with previous publications on rock masses ranging from very poor to very
good [2]. Besides, if Equations (4) and (5) are applied, i.e., r = 7.6 m, the PPV obtained for the bulldozer
and the vibrating roller are 2.5 and 8.8 mm/s, respectively, which are very similar to the results obtained
by Hanson et al. [34].

Figure 8 gathers the vibration behavior generated by each type of equipment in a highly fractured
shale rock mass and backfill material. Taking into account the legal requirement established by the
administration, the minimum safety distance to the historical site is 35 m for the excavation operations,
50 m for the bulldozer and 80 m for the vibrating roller. The huge impact, in terms of the vibration
generated, by the vibrating roller has also been mentioned in previous research [48]. During the
excavation process, the hydraulic breaker hammer practically was not used, while the vibration ripper
worked most of the excavation time.
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Figure 8. Vibration behavior of the equipment, based on the distance.



Appl. Sci. 2020, 10, 4689 13 of 19

3.2. Historical Site Analysis

Figure 9 shows different machinery working in the initial trench for the cut and cover tunnel.
The ground vibrations were recorded with a seismic station located close to the foundation of the
historical building while machinery was working.

Figure 9. Machinery working in the trench.

The measurements were carried out when the machinery was working on the side nearest to the
building to control vibrations under the most unfavorable conditions, having a practically constant
distance to the building. On the other hand, the excavation depth did not vary too much during
the whole monitoring period. The whole data set from the historical site foundation is included in
Figure 10 regarding the maximum velocity. The distance during the recording period is around 100 m,
which is the minimum distance during the excavation period.

0.1
0.09
0.08
0.07
0.06
0.05

0.04

Velocity (mm/s)

0.03

0.02

0.01

0
0 5 10 15 20 25 30 35 40 45 50

Day
Figure 10. Maximum daily velocities recorded in the foundations of the historical site.

The maximum velocities only exceed 0.04 mm/s on five days. These days with the higher values
correspond to the usage of, at least, the vibrating ripper and vibrating roller simultaneously, working the
two types of equipment with the higher potential of vibration. Values are especially high when the
vibrating roller is working. The excavation equipment was used on all the operating days, while the
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bulldozer was used on all the days with a registration of 0.03 mm/s or higher. When the vibrating
roller is added, the maximum vibration is doubled.

On the other hand, days with a value around 0.01 mm/s coincide with the weekend or situations
with no simultaneous activities and without the usage of the bulldozer and/or the vibrating roller.
Besides, some abnormal situations have also been detected: measurement 23 corresponds to an
earthquake more than 100 km away, while measurement 34 is related to a landslide close to the
construction site.

A completely vibration-free excavation is unachievable [48], therefore background vibration
will be always present, varying from the area of study. In this case, it reached around 0.005 mm/s.
Moreover, what also have to be considered are other elements influencing the background that
can increase it to around 0.01 mmy/s. In this regard, the location of the historical site, close to the
Cantabrian Sea, can suffer strong wind and high tidal conditions that increase the background values.
Other elements, like agricultural activity around the area, were also identified, reaching occasional
values around 0.066 mm/s.

A specific analysis of the equipment, either individual or combined, was also done to know the
maximum potential vibration. The data collected in the historical site were correlated with the type
and number of machines working, taking into account the time. Table 5 gathers different combinations
of the maximum vertical vibration velocity associated with the usage of equipment at the same time,
which was daily known. The abnormal values obtained due to the specific conditions detailed in the
previous paragraphs have been filtered. These abnormal peaks were easily identified, being isolated
maximums, while peaks related to the machine’s activity are repeated many times along the day or
working period.

Table 5. Vibration velocity and type and number of machines working.

V Bucket Ripper Vibration Ripper Bulldozer Vibrating Roller Velocity

1 0 0 1 0 0.006

1 0 1 0 0.008
0 0 0 0 0 0.005
0 0 0 0 0 0.005
1 1 0 1 0 0.006
1 1 0 1 0 0.006
1 1 0 1 0 0.006
1 1 0 1 0 0.006
1 1 0 1 0 0.007
0 0 0 0 0 0.005
0 0 0 0 0 0.005
1 1 0 1 0 0.006
1 1 1 1 0 0.030
1 1 1 1 0 0.025
1 0 1 1 0 0.020
0 0 0 0 0 0.005
0 0 0 0 0 0.005
0 0 0 0 0 0.005
1 1 1 1 0 0.020
1 1 1 1 0 0.020
1 1 1 1 0 0.015
1 0 1 1 1 0.030
1 0 1 1 1 0.040
0 0 0 0 0 0.003
0 0 0 0 0 0.003
1 0 1 1 0 0.015
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Table 5. Cont.

V Bucket Ripper Vibration Ripper Bulldozer Vibrating Roller Velocity

0.015
0.015
0.015
0.008
0.005
0.005
0.015
0.050
0.040
0.020
0.015
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005

—_
o
—_
—_
o
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Assuming the superimposition principle, the maximum vibration of the day can be expressed by
Equation (6). This approach is considered acceptable because the vibration periods are for an order of
magnitude of milliseconds, compared with the daily measurements. In short, if two machines work
the same day, their vibrations coincide many times along the day.

vmax(loo) = UBmax + NExVExmax + NRURmax + NVROVRmax + NBDVBDmax + NCRV CRmax (6)

VBmax: background maximum velocity;
VExmax: €xcavator maximum velocity;
VRmax: Tipper maximum velocity;

VVRmax: vibrating ripper maximum velocity;
VBDmax: bulldozer maximum velocity;
VcRmax: vibrating roller maximum velocity;
n: number of equipment.

If Equations (3)—(5) are applied for a distance r = 100 m from the vibration source, the maximum
velocities are: excavator Vpxmax = 0.0012 mmy/s, ripper Vrmax = 0.0012 mm/s, vibrating ripper
VvRmax = 0.015 mm/s, bulldozer Vgpmax = 0.0043 mm/s and vibrating roller Vcrmax = 0.015 mmy/s.
These values, multiplied by the type and number of machines working each day and the background
constant velocity Vemax = 0.005 mm/s give the potential velocity estimated, as in Figure 11, validating the
accuracy of the equations proposed for the purpose of the study.

Figure 12 displays the comparison between the actual values and values using Equation (6).
As it can be seen, the equipment with the highest influence are the vibration ripper and vibrating roller,
while the other type of machine has an impact between 10 and 15 times lower.
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Figure 11. Maximum filtered daily velocities, in blue, and estimated values using Equations (3)-(5),
in red.
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Figure 12. Correlation between actual velocities and velocities estimated by Equation (6).

It can be observed from the previous figure that the values obtained by Equation (6) slightly
overestimate the velocity, allowing a certain safety factor in real situations and ensuring no affectation
to the infrastructure or construction.

The empirical laws proposed in this section can be used to assess the ground vibration level
and solve complex problems in a practical way. Moreover, the influential variables are easy to
understand and measure in real situations. Equations (3)—(6) are also useful in many different scenarios
in construction works. However, their applicability should be limited to similar conditions to those
found in the case study, either rock mass or machinery.
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4. Conclusions

The coefficients o and y for a poor-quality shale rock mass and backfilled material have been
determined for the different mechanical excavation equipment (excavator equipped with a V bucket,
a ripper, a vibration ripper and a breaker hammer) and the backfill equipment (bulldozer and vibrating
roller). The vibration propagation at different distances has been defined for any type of equipment,
obtaining three expressions, Equations (3)—(5), and validating their accuracy. In addition, a two-step
procedure has been defined to determine the real ground vibration attenuation law: (1) monitoring
the vibration emitted by each source and (2) monitoring the whole excavation taking into account the
multiple sources. The method proposed allows to define the attenuation law at short and long distances.

The vibration pattern is similar within the two groups of activities, excavation and backfill, but it
has different intensities. The vibration ripper and the vibrating roller display the highest values.
Besides, a general expression considering the different type of equipment and number, working
simultaneously, has been proposed, as in Equation (6), including the background vibration of the area.

The results from the case study show a condition with lower velocities than the maximum
established by the public administration of 0.1 mm/s. However, the conditions imposed were too
restrictive compared with the international legislation and vibration caused by other methods, such as
blasting, as it has been stated in this research. It would be advisable to define a threshold similar to the
international standards, which range between 18 and 30 times higher than the restriction established
in the case study, as well as in the same order of magnitude as the Spanish limit value for blasting
operations. The outcomes also give a wider range of operational conditions for poor rock masses that
can be mechanically excavated.
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