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Abstract: In this paper, the optimization of a gear pump after tooth root undercutting has been
investigated; this requires the volumetric, mechanical and total efficiencies of the pump to be
calculated. Due to conflict in the existing model, the total efficiency is often calculated with the
assumption that the other efficiencies have acceptable values. Multiple-dimensional logical functions
are an additional independent method that can be used for the optimization of a pump.

Keywords: multiple-dimensional logical functions; multiple-dimensional logical trees; discrete
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1. Introduction

Hydraulic systems have the ability to transfer large amounts of power with relatively high
efficiency; as a result, they are becoming more and more frequently used. Liquid flow energy
generators are one of the main elements of any hydraulic system. External gear pumps are the most
commonly used type in industry; they are estimated to be used in approximately 50% of installations.
The common use of these units is a result of their compact and simple design, as well as their small
dimensions compared to other pumping units, a high efficiency coefficient, high resistance to working
medium contamination, good operational reliability and a low production cost. In addition to this,
the gear units are able to operate at high speeds and, in this respect, are superior to other types of
reciprocating and rotary pumps. The above mentioned advantages, as well as a total efficiency of up to
90% and high operating pressures of up to 30 MPa, have an influence on their extensive applications in
the control or lubrication drive systems of both plant and machines. It is important that appropriate
software is used for the design of the parametric ranked graphs and trees and to store the algorithms
that are used in order to avoid exponential computational complexity in complex design situations [1].
The proper operation of the system depends on the characteristics and dynamic properties of the
system or component as well as changes in the structural and/or operational parameters [2–4].

2. Research on a Hydraulic Gear Pump with Undercut Tooth Roots

In order to optimize a gear pump, its efficiencies must be calculated: hydraulic-mechanical (ηhm),
volumetric (ηv) and total (ηc). Taking into account the conflict in the existing model, the total efficiency
is often calculated using the direct product, assuming that the remaining efficiencies are met; this leads
to a large possibility for saving energy.
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The total efficiency of a pump is defined by the ratio of the power output
(
Nwy

)
to the power

input (Nwe) which can be written as [4–8]:

ηc =
Nwy

Nwe
� ην × ηhm (1)

The volumetric efficiency of a gear pump (ην) is determined by the ratio of the actual capacity Qrz

to the theoretical capacity Qt:

ην =
Qrz

Qt
(2)

The total volumetric losses in the pump are determined by the following parameters:
compressibility of the liquid, deformation of the pump’s components, internal leaks, the liquid’s
viscosity and density, and incomplete filling of the working chambers during the suction phase.
Taking into account all of the coefficients and the interactions between them, the formula for the
volumetric efficiency can be obtained as follows:

ην = 1− cµ ×
p

2π× µ× n
− cr ×

1
n
×

√
2p
ρ
×

3
√

q−1 (3)

where: cµ—coefficient, which is a function of the size and number of slots in the pump, depending on
the actual capacity of the pump,

p—working pressure,
q—actual performance,
ρ—density of the liquid,
n—the pump’s rotational speed, µ—dynamic viscosity of the liquid,
cr—coefficient that depends on the type and size of the slots and the actual capacity of the pump.

The hydraulic-mechanical efficiency of a pump (ηhm) is defined by the theoretical moment ratio
Mt to the sum of the theoretical moment Mt and the hydraulic-mechanical loss moment ∆M as follows:

η
hm=

Mt
∆M+Mt

(4)

Ultimately, the following formula can be obtained:

ηhm =
1

1 + cν × 2π× µ×n
p + cρ ×

ρ×n2

2p ×
3
√

q2 + cp

(5)

where: cp—coefficient that depends on the type of pump,

cρ—coefficient that mainly depends on the actual capacity of the pump,
cv—coefficient that depends on the type of pump,
p—working pressure,
q—actual performance,
ρ—density of the liquid,
n—the pump’s rotational speed,
µ—dynamic viscosity of the liquid. Using Equation (1), (3) and (5), the equation describing the total
efficiency can be obtained as follows:

ηc =
1− cµ ×

p
2π×µ×n − cr ×

1
n ×

√
2p
ρ ×

3
√

q−1

1 + cν × 2π× µ×n
p + cρ ×

ρ×n2

2p ×
3
√

q2 + cp

(6)
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In this study, (ηv), (ηhm) and (ηc) were considered as functions, while the parameters were assumed
to be decision variables: M, n, pt, Qrz. The above procedure serves the purpose of using a gear pump,
after tooth root undercutting, in various systems in order to demonstrate the accuracy and correctness
of the mathematical calculations, and determine the discrepancies in the calculation that result from
the different algorithms that were used during the design of the gear pump:

• Determination of the maximum hydraulic-mechanical efficiency, assuming the permissible
volumetric efficiency;

• Determination of the maximum volumetric efficiency, assuming the permissible
hydraulic-mechanical efficiency;

• Determination of the maximum overall efficiency [4–8].
• More detailed descriptions of the analyzed parameters can be given. The rated parameter

expressed in the formula has been taken into account [7,8]:

k =
n× µ

p
(7)

Such an approach requires constant consideration of the conflicting criteria of both the
hydraulic-mechanical efficiency (ηhm) and volumetric efficiency (ηv).

The novelty of the prototype pump consists in the modification of the involute profile in its upper
part through the so-called tooth root relief (undercut). The modification can be made by means of
a cutting tool with the so-called prominence or by means of an appropriate choice of engagement
correction (Figure 1) [5].
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3. Discrete Optimization of a Gear Pump with Undercut Tooth Roots

For optimization of a gear pump’s calculated efficiencies: hydraulic-mechanical, volumetric
and total [5], the efficiency of the pump can be optimized as either mono-criteria or multi-criteria.
Optimization can be carried out with variable structural and operating parameters, separately searching
for the maximum efficiency value, assuming that the function of the target is the total efficiency of the
pump and that the parameters that are being sought are the values of the structural and/or operating
parameters [4,6]. The maximum efficiency for a pump of a particular design can be achieved by
selecting the appropriate structural and operating parameters.

4. Logical Decision Trees

The logical structures of a decision tree contain a logical decision variable at each level of the tree
which is assigned to a particular construction and/or operational parameter. Changes in the arithmetic
values of the structural and/or operational parameters are coded to the branches with logical values
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from left to right for individual variables and take the following values in each decision branch pt = 0,
1, 2, 3, 4, 5, 6, 7, M = 0, 1, 2, 3 and Qrz, n = 0, 1, 2, 3, 4. The layout or element design can be carried out
according to any combination of parameter changes. Only decision trees with a minimum number of
true branches (marked in bold), without isolated branches after graphical simplification of the full
top-to-bottom nodes, give a description of the true importance of the structural and/or operational
parameters, from the most important at the bottom at the root, to the least important at the top or at
the tip of the tree [9]. There is a rule that that states that there can only be one decision variable per
level/floor of a tree [9,10].

Arithmetic values were selected for the analysis of the examined parameters; these were then
coded with the logical decision variables for the logical decision trees for the optimization of a discrete
gear pump after tooth root undercutting [5]:

n = 500 [rpm] ~ 0; n = 800 [rpm] ~ 1; n = 1000 [rpm] ~ 2; n = 1500 [rpm] ~ 3; n = 2000 [rpm] ~ 4;
pt = ≈ 0 [MPa] ~ 0; pt = 5 [MPa] ~ 1; pt = 10 [MPa] ~ 2; pt = 15 [MPa] ~ 3; pt = 20 [MPa] ~ 4; pt = 25
[MPa] ~ 5;
pt = 28 [MPa] ~ 6; pt = 30 [MPa] ~ 7;

Qrz ∈ 〈20.2; 21.1〉
[

l
min

]
∼ 0; Qrz ∈ 〈34.2; 34.9〉

[
l

min

]
∼ 1; Qrz ∈ 〈43.3; 44.5〉

[
l

min

]
∼ 2;

Qrz ∈ 〈65.5; 67.3〉
[

l
min

]
∼ 3; Qrz ∈ 〈87.6; 89.3〉

[
l

min

]
∼ 4;

M ∈ 〈2.0; 47.0〉 [Nm] ∼ 0; M ∈ 〈77.0; 125.0〉 [Nm] ∼ 1;

M ∈ 〈138.0; 182.0〉 [Nm] ∼ 2; M ∈ 〈200.0; 259.0〉 [Nm] ∼ 3

The next step was to code the logical decision variables into complex multi-value logical decision
trees. Numerical values of the individual efficiency changes were adopted as follows: ηv ≥ 0.96; ηhm ≥ 0.89;
ηc ≥ 0.86 (Table 1) [5].

4! = 24 decision trees were drawn for each of the efficiency measures in order to obtain
accurate results; this showed all of the possible combinations of decision variable swaps on four levels.
The optimal arrangement was then chosen; i.e., the tree with the smallest number of true branches.

The general table of values presents all of the coded arithmetic and logical values for M, n, pt, Qrz

(Table 1), and each of the efficiency values have been selected and grouped accordingly: ηv, ηhm and ηc

(Tables 2–4) [3–6].
The end result of the encoding was that the values of the variables could be applied in multi-value

logical tree structures; therefore, allowing the appropriate conclusions to be obtained, as in the
literature [9,10].

On the basis of the data from Table 2, the resulting logical trees (Figures 2–5) were drawn for the
efficiency values of, ηv, ηhm, ηc [11].

It can be proven that the best system, in terms of volumetric efficiency, hydraulic and mechanical
efficiency, as well as total efficiency, in terms of a minimum number of real branches, is the floor
arrangement starting from the roots nQrzMpt and QrznMpt.
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Table 1. Arithmetic and logical values of the established structural and/or operational parameters and
target functions [5]. * Numerical values of the individual efficiency changes were adopted as follows:
ηv ≥ 0.96; ηhm ≥ 0.89; ηc ≥ 0.86.

No. n pt Qrz M ηv [%] ηhm [%] ηc [%]

1. 0 0 0 0 94.6 0.0 0.0
2. 0 1 0 0 92.1 98.0 * 90.3 *
3. 0 2 0 1 91.3 91.8 * 83.8
4. 0 3 0 1 90.9 91.5 * 83.1
5. 0 4 0 2 90.9 90.7 * 82.4
6. 0 5 0 3 92.1 88.5 81.5
7. 0 6 0 3 92.5 90.9 * 84.1
8. 0 7 0 3 93.0 90.0 * 83.6
9. 1 0 1 0 98.0 * 0.0 0.0

10. 1 1 1 0 97.5 * 92.8 * 90.5 *
11. 1 2 1 1 96.2 * 90.6 * 87.2 *
12. 1 3 1 1 96.0 * 89.9 * 86.3 *
13. 1 4 1 2 95.7 88.4 84.6
14. 1 5 1 3 97.0 * 87.6 85.0
15. 1 6 1 3 97.5 * 88.5 86.3 *
16. 1 7 1 3 97.8 * 88.5 86.5 *
17. 2 0 2 0 99.9 * 0.0 0.0
18. 2 1 2 0 99.1 * 92.8 * 92.0 *
19. 2 2 2 1 98.7 * 86.2 85.1
20. 2 3 2 1 97.4 * 85.6 83.4
21. 2 4 2 2 97.4 * 84.2 82.1
22. 2 5 2 3 97.4 * 85.1 82.9
23. 2 6 2 3 97.4 * 84.7 82.5
24. 2 7 2 3 97.2 * 85.3 82.9
25. 3 0 3 0 100.9 * 0.0 0.0
26. 3 1 3 0 100.0 * 84.0 84.0
27. 3 2 3 1 99.6 * 84.1 83.8
28. 3 3 3 1 99.1 * 84.9 84.1
29. 3 4 3 2 98.1 * 82.3 80.7
30. 3 5 3 3 98.4 * 84.2 82.9
31. 3 6 3 3 98.2 * 84.3 82.8
32. 3 7 3 3 98.1 * 83.3 81.7
33. 4 0 4 0 100.3 * 0.0 0.0
34. 4 1 4 0 100.0 * 75.0 75.0
35. 4 2 4 1 99.3 * 75.2 74.6
36. 4 3 4 1 98.8 * 76.9 76.0
37. 4 4 4 2 98.4 * 77.8 76.5
38. 4 5 4 3 98.8 * 82.7 81.7
39. 4 6 4 3 98.7 * 82.2 81.2
40. 4 7 4 3 98.6 * 82.0 80.9
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Figure 2. Volumetric efficiency ηv.

Table 2. Logically coded data for ηv. The data were from the green tree branches in Figure 2.

Volumetric Efficiency Data ηv

No. Qrz n M pt

9. 1 1 0 0
10. 1 1 0 1
11. 1 1 1 2
12. 1 1 1 3
14. 1 1 3 5
15. 1 1 3 6
16. 1 1 3 7
17. 2 2 0 0
18. 2 2 0 1
19. 2 2 1 2
20. 2 2 1 3
21. 2 2 2 4
22. 2 2 3 5
23. 2 2 3 6
24. 2 2 3 7
25. 3 3 0 0
26. 3 3 0 1
27. 3 3 1 2
28. 3 3 1 3
29. 3 3 2 4
30. 3 3 3 5
31. 3 3 3 6
32. 3 3 3 7
33. 4 4 0 0
34. 4 4 1 1
35. 4 4 1 2
36. 4 4 2 3
37. 4 4 3 4
38. 4 4 3 5
39. 4 4 3 6
40. 4 4 3 7
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Table 3. Logically coded data for ηhm. The data were from the red tree branches in Figure 3.

Hydraulic-Mechanical Efficiency Data ηhm

No. Qrz n M pt

2. 0 0 0 1
3. 0 0 1 2
4. 0 0 1 3
5. 0 0 2 4
7. 0 0 3 6
8. 0 0 3 7

10. 1 1 0 1
11. 1 1 1 2
12. 1 1 1 3
18. 2 2 0 1

Table 4. Logically coded data for ηc.

Total Efficiency Data ηc

No. Qrz n M pt

2. 0 0 0 1
10. 1 1 0 1
11. 1 1 1 2
12. 1 1 1 3
15. 1 1 3 6
16. 1 1 3 7
18. 2 2 0 1
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5. Quine–McCluskey Algorithm for Determining the Most Important Design Guidelines

The arithmetic changes in the structural and/or operational parameters, coded by branch logical
values for particular variables, take the following values (Table 5):

n = 0, 1, 2, 3, 4.
pt = 0, 1, 2, 3, 4, 5, 6, 7.
Qrz = 0, 1, 2, 3, 4.
M = 0, 1, 2, 3.

Every path of the logical decision tree is a multi-value logical conjunction. The code entries
are justified by the Rosser–Turquette system, provided that different multi-values of the variables
exist [1,12–16].

The collection of logical functions is as follows:

• constants 0, . . . , m − 1 = max{m1 − 1, . . . , mn − 1},
• alternative (sum)—max (x1, x2),
• conjunction (product)—min (x1, x2),
• characteristic function ji(x), where:

jk(xi) =

{
m− 1, xi = k
0, xi , k
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for xi = 0, . . . , mi− 1; i = 1, . . . , n is functionally complete in Zm1 ,... ,mn (Rosser–Turquette partial system).

Table 5. Logical data arranged by the sum of the digits in the records of the data. (•—empty set).

ηc ηhm ηv

n pt Qrz M n pt Qrz M n pt Qrz M

0 1 0 0 0 1 0 0 1 0 1 0

• • 1 1 1 0

1 1 1 0 0 2 0 1 2 0 2 0

• 1 1 1 0 1 2 1 1

2 1 2 0 0 3 0 1 2 1 2 0

1 2 1 1 1 2 1 1 1 3 1 1

1 3 1 1 2 1 2 0 3 0 3 0

• 0 4 0 2 2 2 2 1

• 1 3 1 1 3 1 3 0

• • 2 3 2 1

• • 4 0 4 0

1 6 1 3 0 6 0 3 3 2 3 1

1 7 1 3 0 7 0 3 4 1 4 0

1 5 1 3
2 4 2 2
3 3 3 1

1 6 1 3
4 2 4 1

1 7 1 3
2 5 2 3
3 4 3 2
4 3 4 1

2 6 2 3

2 7 2 3
3 5 3 3
4 4 4 2

3 6 3 3

3 7 3 3
4 5 4 3

4 6 4 3

4 7 4 3

In the Rosser–Turquette partial system, the following correlations occur (x1, . . . , xn—variables):

1. (x1 + x2) + x3 = x1 + (x2 + x3)

2. (x1 × x2) × x3 = x1 × (x2 × x3)

3. x1 + x2 = x2 + x1

4. x1 × x2 = x2 × x1

5. xi + 0 = 0 + xi = xi; xi × 0 = 0× xi = 0
6. xi × (mi − 1) = (mi − 1) × xi = xi

xi + (mi − 1) = (mi − 1) + xi = mi − 1
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xi × (m− 1) = (m− 1) × xi = xi
xi + (m− 1) = (m− 1) + xi = m− 1

7. x1 + (x2 × x3) = (x1 + x2) × (x1 + x3)

8. x1 × (x2 + x3) = x1 × x2 + x1 × x3

9. xi = 0× j0(xi) + . . .+ (mi − 1) × jmi−1(xi)

10. j0(xi) + . . .+ jmi−1(xi) = m− 1

11. ju(xi) × jv(xi) =

{
ju(xi), u = v
0, u , v

12. ju( jv(xi)) =


jv(xi), u = m− 1
0 , 0 < u < m− 1
j0(xi) + . . .+ jv−1(xi) + jv+1(xi) + . . .+ jmi−1(xi), u = 0

13. ju(x + y) = ju(x) × ( j0(y) + . . .+ ju(y)) + ju(y) × ( jo(x) + . . .+ ju(x))
14. ju(x× y) = ju(x) × ( ju(y) + . . .+ jm−1(y)) + ju(y) × ( ju(x) + . . .+ jm−1(x))

Some of the above correlations can be written in a different form; however, the alternative-conjunctive
notation has been purposefully used, e.g.,:

jo( jv(x)) =
{

0⇐⇒ jv(x) , 0⇐⇒ x = v
m− 1⇐⇒ jv(x) = 0 ⇐⇒ x , v

Setting the most important design guidelines results in a logical minimization on the multi-value
logical conjunction. A procedure such as this is correct, as the logical product is an essential design
guideline, assuming that each element qualitatively describes only one structural and/or operational
parameter. If a product subset has identical logical values that qualitatively describe all of the structural
and/or operational parameters with the exception of only one parameter, therefore, allowing all of
the possible variations for the purpose of designing the system under the given operating conditions,
then a logical minimization can be carried out for the parameter. From a practical perspective, such an
approach produces indifference, i.e., exclusion of a given parameter, as it does not play any role in
the correct operation of the system. In mathematical logic and automatics theory, the result of the
minimization is written in the form of a dash (—) which indicates indifference. The Quine–McCluskey
algorithm that is used to minimize the multi-valued logical functions ensures that all the dashes
for a given set of design guidelines can be found from the sum of the logical products. By using
dependencies, the following can be found:

A× jo(xr) + . . .+ A× jm−1(xr) = A
A× ju(xr) + A = A

where, A = A(x1, . . . , xr−1, xr+1, . . . , xn),

ju(xr) =

{
m− 1, u = xr

0, u , xr
0 ≤ u ≤ m− 1

a dash (—) can be obtained to indicate indifference for xr.

5.1. Example 1

The multi-value logical function f (x1, x2, x3) of three variables x1, x2 = 0, 1, 2; x3 = 0, 1, 2,
3, 4, allocated to three structural and/or operational parameters X1, X2, X3 with arithmetic values
and physical dimensions, were used to code a set of design guidelines in the form of products.
Where 0, 1, 2 conventionally represents “0” a decrease in the arithmetic value, “1” leaving it unchanged
and “2” an increase in the arithmetic value, respectively, for X1, X2, for X3 the logical values of 0, 1, 2,
3, 4 respectively represents leaving it unchanged “2”, “0” and “1”—a large decrease and a decrease;
“3” and “4”—an increase and a large increase in the arithmetic value.
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The minimization for a partial multi-value logical function, according to the simplified version of
the McCluskey algorithm, is performed in the following order:

020 V
200 V
101 V 02–

021 V V 20–
201 V V 1–1

111 V 21–
210 V 2–1

022 V –21
202 V
121 V V
211 V V

023 V
203 V
212 V
221 V V

024 V
204 V
213 V

214 V

1. 021 + 121 + 221 = (– 2 1)
j0(x1)j2(x2)j1(x3) + j1(x1)j2(x2)j1(x3) + j2(x1)j2(x2)j1(x3) = j2(x2)j1(x3);

•

•

•

6. 020 + 021 + 022 + 023 + 024 = (02–)
j0(x1)j2(x2)j0(x3) + j0(x1)j2(x2)j1(x3) + j0(x1)j2(x2)j2(x3) + j0(x1)j2(x2)j3(x3) + j0(x1)j2(x2)j4(x3) = j0(x1)j2(x2).

Six results were obtained from the minimization process as reduced logical products that describe
the most important design guidelines, e.g.,: (1—1) leaving it unchanged for X1 and freedom for X2

(reduction, unchanged or increased) and a reduction for X3 of the appropriate arithmetic values in order
to design the system for the specified operating conditions. The formal method of logical minimization
can often not be applied literally to the graphical logical decision-making processes. Due to the fact that
there are isolated branches on multivalent logical trees, which are an adverse phenomenon, this means
that there are interrupted decision paths from the root at the bottom, to the tips at the top.

5.2. Example 2

For the sum of the multi-value logical products (02–) + (20–) + (1–1) + (21–) + (2–1) + (–21),
which are the most important design guidelines, a logical tree with isolated branches can be produced
(Figure 6).
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Figure 6. Logical tree with isolated branches.

5.3. Example 3

F(x1, x2, x3) = x1 x2 x3 + x1x2 x3 + x1 x2 x3 + x1x2x3 + x1x2x3 =

= j0(x1) j0(x2) j0(x3) + j1(x1) j0(x2) j0(x3) + j0(x1) j0(x2) j1(x3) + j1(x1) j1(x2) j1(x3) + j1(x1) j0(x2) j1(x3);
F(x1, x2, x3) = x2 + x1x3 = j0(x2) + j1(x1) j1(x3);
000 + 100 + 001 + 111 + 101 = (— 0 —) + (1—1)

as shown in [1] and Figure 7
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Figure 7. Traditional two-valued minimization.

F̃(x1, x2, x3) = F(x2, x1, x3) = 000 + 001 + 010 + 011 + 111 = (0−−) + 1(11)
F̃(x1, x2, x3) = F(x2, x1, x3) = x2 + x2x1x3 = j0(x2) + j1(x2)( j1(x1) j1(x3))

as shown in [1] and Figure 8
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6. Multi-Dimensional Decision Trees

Determining the maximum volumetric efficiency ην, while satisfying the permissible
hydraulic-mechanical efficiency ηhm or determining the maximum hydraulic-mechanical efficiency ηhm
while satisfying the permissible volumetric efficiency ην, concerns the same gear pump after tooth
root undercutting. Therefore, instead of additionally counting the total efficiency ηc independently,
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multi-value, multi-dimensional logical trees can be created for ην, ηhm with level layouts that are
identical to the best ones for ην, ηhm separately (Figure 5), which are similar to those in the literature [9].

Figure 5 shows the identical decision paths (simultaneously) for ην, ηhm and has compared them
with ηc (Figure 4) in order to produce the final optimal structural selection according to Table 1 and the
corresponding level layouts nQrzMpt and QrznMpt.

7. Conclusions

For the gear pump after tooth root undercutting that has been presented in this paper, there were
no dashes (—) in the coded logical data; this was because the conditions for minimization were not met.
Hence, no minimization was carried out and the multi-value logical trees did not have branches that
were isolated for ηv, ηhm Multi-dimensional logical decision trees are independent of any other complex
design methods. The shared pathways that were pursued implied the fulfilment of a compromise in
order to achieve an optimal solution according to a set of criteria. Any deviations in the calculation
were mostly due to incorrect arithmetical computational rounding for efficiencies ηv, ηhm, ηc.

The best solutions for the gear pump after tooth root undercutting in this example were trees with
the order of levels: nQrzMpt and QrznMpt and multi-dimensional decision trees (which differ by only a
few branches at the top levels of the trees).

Since the trees for the layout nQrzMpt appear the same, and as the values Qrz and n take the same
parameters (Tables 1–4), Figure 4 only shows the system QrznMpt for efficiencies ηv, ηhm, ηc.

A similar analysis of multi-dimensional logical trees was performed in the literature [9]. The total
efficiency ηc was determined independently and a logical multi-dimensional tree was produced for
both volumetric efficiency ηv and hydraulic-mechanical efficiency ηhm and then compared with the
logical decision tree for total efficiency ηc.

More complex cases require the development of a special algorithm in order to determine the
optimal multi-value multi-dimensional logic trees and multi-value logical functions; this is a task for
future research.
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