

Article

Assessment and Mitigation of Heavy Metals Uptake by Edible Vegetables Grown in a Turin Contaminated Soil Used as Vegetable Garden

Elisa Gaggero^{1,*}, Paola Calza¹, Debora Fabbri¹, Anna Fusconi², Marco Mucciarelli², Giorgio Bordiglia¹, Ornella Abollino³ and Mery Malandrino¹

- ¹ Department of Chemistry, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; paola.calza@unito.it(P.C.); debora.fabbri@unito.it (D.F.); giorgio.bordiglia@gmail.com(G.B.); mery.malandrino@unito.it(M.M.2)
- ² Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; anna.fusconi@unito.it(A.F.); marco.mucciarelli@unito.it(M.M.1)
- ³ Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 9, 10125 Turin, Italy; <u>ornella.abollino@unito.it</u> (O.A.)
- * Correspondence: elisa.gaggero@unito.it (E.G.)

Supplementary materials

Table S1. Summary of multiple comparisons for pairs of plants weights and morphometric parameters with Tukey test. NOB= plants grown in Nobile soil, CA= plants grown in Campana soil, AM = addition of amendment to the soil, *Ls=Lactuca sativa, Bo= Brassica oleracea*. Letter B identifies weights and parameters whose means are significantly lower than the ones obtained for weights and parameters identified by letter A; the same concept applies to letter C with respect to letter B, letter D with respect to letter C and letter E with respect to letter D.

Soil	Group	Parameter				
NOBLSAM	А					
NOBBoAM	В					
CALsAM	С	Λ arial part track waight (a)				
CABoAM	CD	Aeriai part fresh weight (g)				
NOBLs	DE					
NOBBo, CALs, CABo	Е					
NOBLSAM	А					
CALsAM	AB	Deet freeh weight (g)				
NOBBoAM, CABoAM, NOBLs	ВC	Koot iresn weight (g)				
CALs, NOBBo, CABo	С					
CALs, CABo	А					
NOBLS, NOBBo, CALSAM,	A B	Root fresh weight/ aerial part fresh weight (g)				
CABOAM	P					
NOBBOAM, NOBLSAM	В					
NOBBo	А					
NOBBoAM	В					
CABo	ВC					
CABoAM	BCD	Aerial part dry weight/ aerial part fresh weight (g)				
CALs	C D E					
NOBLs	D E					
CALsAM, NOBLsAM	Е					

NOBLSAM, CALSAM	А	
NOBLs, CALs, NOBB0AM, CAB0AM	В	Stem diameter (mm)
NOBBo, CABo	С	
NOBLSAM, CALSAM	А	
NOBLs, CALs	В	
CABoAM, NOBBoAM	ВC	Leaves number
NOBBo	CD	
CABo	D	
NOBBoAM	А	
NOBLSAM	В	
CALsAM, CABoAM	С	$L \cot (cm^2)$
NOBLs, NOBBo	D	Leai aiea (CIII-)
CALs	DE	
CABo	Е	

Table S2. Elements concentration [mg kg⁻¹ dry weight] \pm SD in *L. sativa* aerial part. NOB= plants grown in Nobile soil, CA= plants grown in Campana soil, AM = amendment.

	NOB wit	hou	t AM	NOB w	NOB with AM		CA without AM			CA w	CA with AM			
Al	29	±	1	18	±	1	276	±	23	72	±	3		
As	0.016	±	0.002	0.0967	±	1 10-4	0.29	±	0.03*	0.29	±	0.03**		
Ba	3.5	±	0.1	5.85	±	0.06	63.5	±	0.3	37.93	±	0.03		
Ca	9122	±	123	8251	±	22	22971	±	481	20925	±	487		
Cd	0.166	±	0.005	0.073	±	0.001	0.18	±	0.01*	0.088	±	0.003**		
Co	0.050	±	0.003	0.031	±	0.001	0.22	±	0.01	0.083	±	0.008		
Cr	0.193	±	0.006	0.11	±	0.01	1.7	±	0.2	1.0	±	0.1		
Cu	3.2	±	0.2	1.57	±	0.02	3.5	±	0.5	1.68	±	0.04		
Fe	45.7	±	0.7	54.6	±	2	312	±	10	121	±	9		
Κ	29313	±	427	59220	±	789	18185	±	170	57041	±	1772		
Mg	1520	±	13	1758	±	22	1885	±	26	2993	±	343		
Mn	23.1	±	0.1	26.8	±	0.2	41	±	1	50	±	2		
Na	204	±	3	5051	±	129	280	±	8	7823	±	527		
Ni	0.88	±	0.02	0.144	±	0.009	1.9	±	0.2	0.55	±	0.03		
Р	1453	±	23	3097	±	37	2586	±	25	2546	±	154		
Pb	0.105	±	0.002	0.050	±	0.001	2.3	±	0.1	0.65	±	0.04		
Sr	11.7	±	0.2	13.3	±	0.3	53.8	±	0.4	39	±	1		
Ti	3.43	±	0.09	0.44	±	0.06	8	±	2	2.12	±	0.03		
V	0.054	±	0.002	0.033	±	0.001	0.6	±	0.1	0.16	±	0.02		
Zn	21.3	±	0.2	19.5	±	0.3	36	±	1	34.3	±	0.4		

* [As] (mg kg⁻¹ fresh weight) = 0.040 ± 0.009 , [Cd] (mg kg⁻¹ fresh weight) = 0.025 ± 0.005 .

** [As] (mg kg⁻¹ fresh weight) = 0.020 ± 0.004 , [Cd] (mg kg⁻¹ fresh weight) = 0.006 ± 0.001 .

	NOB with	hou	t AM	NOB w	ith .	AM	CA with	out	AM	CA wi	th A	M
Al	347	±	21	534	±	63	4157	±	1577	9710	±	67
As	0.26	±	0.01	1.00	±	0.03	4	±	2	4.4	±	0.2
Ва	8.1	±	0.1	9.964	±	0.002	90	±	35	171	±	35
Ca	5413	±	71	5531	±	15	7152	±	1151	12945	±	989
Cd	0.329	±	0.002	0.087	±	0.006	0.26	±	0.07	0.34	±	0.05
Co	0.82	±	0.06	0.95	±	0.01	3	±	1	5.7	±	0.9
Cr	1.83	±	0.06	2.4	±	0.1	17	±	5	54.5	±	0.7
Cu	26.1	±	0.4	5.0	±	0.1	45	±	8	27	±	1
Fe	316	±	7	620	±	12	5666	±	2212	12436	±	365
Κ	14537	±	139	29632	±	489	10201	±	571	8579	±	307
Mg	4180	±	187	1947	±	49	3773	±	653	7492	±	442
Mn	17.9	±	0.3	30.9	±	0.1	210	±	83	389	±	77
Na	2161	±	28	3667	±	34	1250	±	198	1266	±	111
Ni	6.3	±	0.2	3.3	±	0.1	19	±	6	45	±	3
Р	1411	±	28	2218	±	33	2712	±	257	2534	±	141
Pb	1.16	±	0.01	0.33	±	0.02	40	±	16	71	±	3
Sr	18.2	±	0.3	21.6	±	0.4	32	±	2	37	±	6
Ti	5.70	±	0.04	11.7	±	0.2	87	±	30	215	±	1
V	1.63	±	0.07	1.8	±	0.1	10	±	3	18.0	±	0.5
Zn	40.2	±	0.6	50	±	2	100	±	28	129	±	11

Table S3. Elements concentration $[mg kg^{-1} dry weight] \pm SD$ in *L. sativa* roots. NOB= plants grown in Nobile soil, CA= plants grown in Campana soil, AM = amendment.

Table S4. Elements concentration [mg kg⁻¹ dry weight] \pm SD in *B. oleracea* aerial part. NOB= plants grown in Nobile soil, CA= plants grown in Campana soil, AM = amendment.

	NOB with	nou	t AM	NOB wi	th A	M	CA with	out	AM	CA w	vith	AM
Al	3.75	±	0.07	2.4	±	0.3	7	±	2	10.7	±	0.1
As	0.05	±	0.01	0.17	±	0.02	0.079	±	0.008*	0.10	±	0.01**
Ва	8.3	±	0.2	7.6	±	0.2	56	±	7	32	±	2
Ca	23066	±	1080	11704	±	117	18591	±	1144	10324	±	444
Cd	0.060	±	0.003	0.066	±	0.001	0.10	±	0.01*	0.08	±	0.01**
Co	0.180	±	0.008	0.16	±	0.02	0.134	±	0.008	0.0790	±	0.0004
Cr	0.12	±	0.04	0.082	±	0.006	0.26	±	0.03	0.17	±	0.01
Cu	0.60	±	0.03	0.74	±	0.03	0.76	±	0.03	0.95	±	0.02
Fe	21.6	±	0.2	21.7	±	0.3	22	±	3	23	±	1
Κ	9890	±	693	21747	±	937	8063	±	1085	23153	±	716
Mg	1875	±	24	1708	±	121	1694	±	78	1791	±	227
Mn	30	±	1	15.7	±	0.8	32	±	1	14.6	±	0.3
Na	28	±	4	1645	±	84	130	±	7	1668	±	142
Ni	0.74	±	0.03	0.27	±	0.02	0.37	±	0.06	0.14	±	0.04
Р	500	±	10	3104	±	164	1627	±	165	3286	±	198
Pb	0.021	±	0.003	0.015	±	0.001	0.17	±	0.02	0.11	±	0.01
Sr	26.5	±	0.8	18.0	±	0.5	43	±	3	22	±	2
Ti	0.05	±	0.01	0.030	±	0.003	0.14	±	0.09	0.14	±	0.02
V	0.017	±	0.001	0.029	±	0.001	0.082	±	0.009	0.035	±	0.005
Zn	9.52	±	0.03	9.7	±	0.6	15	±	2	19	±	1

* [As] (mg kg⁻¹ fresh weight) = 0.018 ± 0.003 , [Cd] (mg kg⁻¹ fresh weight) = 0.023 ± 0.004 .

** [As] (mg kg⁻¹ fresh weight) = 0.019 ± 0.004 , [Cd] (mg kg⁻¹ fresh weight) = 0.016 ± 0.003 .

	NOB with	hou	t AM	NOB wi	th A	Μ	CA with	out	AM	CA w	ith	AM
Al	2525	±	273	2057	±	39	5462	±	590	3608	±	895
As	1.2	±	0.1	1.01	±	0.04	5.9	±	0.6	2.7	±	0.3
Ba	23	±	3	26.3	±	0.7	144	±	17	108	±	35
Ca	8561	±	480	10106	±	198	14429	±	810	18765	±	4490
Cd	0.33	±	0.04	0.31	±	0.02	1.1	±	0.1	0.41	±	0.07
Co	2.1	±	0.3	1.52	±	0.09	3.4	±	0.4	2.0	±	0.7
Cr	16	±	1	13.3	±	0.1	29	±	2	19	±	7
Cu	13.5	±	0.9	8.9	±	0.5	50	±	3	27.9	±	0.5
Fe	2816	±	276	2117	±	134	6725	±	660	3708	±	1865
Κ	17417	±	622	14736	±	482	16340	±	584	15362	±	3313
Mg	3969	±	271	3660	±	160	3812	±	260	3232	±	509
Mn	127	±	16	82	±	4	348	±	42	156	±	43
Na	1028	±	60	1516	±	33	490	±	29	1127	±	121
Ni	18	±	2	13.7	±	0.7	25	±	2	17	±	6
Р	1662	±	71	4801	±	42	4749	±	204	5694	±	626
Pb	1.7	±	0.2	2.0	±	0.2	90	±	10	34	±	9
Sr	25	±	1	28	±	1	40	±	2	77	±	53
Ti	51	±	4	43	±	1	100	±	8	93	±	57
V	7.4	±	0.6	11.5	±	0.5	33	±	3	36	±	5
Zn	42	±	3	57.3	±	0.6	140	±	12	137	±	4

Table S5. Elements concentration [mg kg⁻¹ dry weight] \pm SD in *B. oleracea* roots. NOB= plants grown in Nobile soil, CA= plants grown in Campana soil, AM = amendment.

Table S6. Summary of multiple pairwise comparisons on element concentrations in *Lactuca sativa* roots obtained with ANOVA and Tukey tests. NOB= plants grown in Nobile soil, CA= plants grown in Campana soil, AM = addition of amendment to the soil. Letter B identifies soil samples whose mean concentrations in the respective elements are significantly lower than the ones obtained for soil samples identified by letter A; the same concept applies to letter C with respect to letter B.

Lactuca sativa roots concentration	Group	Elements
CA+AM	А	
CA	В	Cr, Ni, Pb, Ba
NOB, NOB+AM	С	
CA	А	
CA+AM, NOB	В	Cu
NOB+AM	С	
CA+AM, CA	А	Zn Ac
NOB+AM, NOB	В	ZII, AS
CA+AM	А	
CA, NOB+AM	В	Co
NOB	С	
CA+AM, CA, NOB	А	Cd
NOB+AM	В	Ca

Table S7. Summary of multiple pairwise comparisons on element concentrations in *Lactuca sativa* aerial part obtained with ANOVA and Tukey tests. NOB= plants grown in Nobile soil, CA= plants grown in Campana soil, AM = addition of amendment to the soil. Letter B identifies plant samples whose mean concentrations in the respective elements are significantly lower than the ones obtained for plant samples identified by letter A; the same concept applies to letter C with respect to letter B and letter D with respect to letter C.

Lactuca sativa aerial part concentration	Group	Elements		
CA	А			
CA+AM	В	Cr, Pb, Co		
NOB, NOB+AM	С			
CA, CA+AM	А			
NOB+AM	В	As		
NOB	С			
CA+AM, CA	А	7		
NOB+AM, NOB	В	Zn		
СА	А			
NOB	В	NI:		
CA+AM	С	111		
NOB+AM	D			
CA, NOB	А	Cre		
CA+AM, NOB+AM	В	Cu		
CA, NOB	А			
CA+AM	В	Cd		
NOB+AM	С			
СА	А			
CA+AM	В	Pa		
NOB+AM	С	Ба		
NOB	D			

Table S8. Summary of multiple pairwise comparisons on element concentrations in *Brassica oleracea* roots obtained with ANOVA and Tukey tests. NOB= plants grown in Nobile soil, CA= plants grown in Campana soil, AM = addition of amendment to the soil. Letter B identifies plant samples whose mean concentrations in the respective elements are significantly lower than the ones obtained for plant samples identified by letter A; the same concept applies to letter C with respect to letter B and letter D with respect to letter C.

Brassica oleracea roots concentration	Group	Elements
CA	А	
CA+AM	В	Pb, As
NOB, NOB+AM	С	
СА	А	
CA+AM, NOB	AB	Ni
NOB+AM	В	
СА	А	
CA+AM, NOB+AM, NOB	В	Cr, Co, Ca
CA	А	
CA+AM	В	C
NOB	С	Cu
NOB+AM	D	
CA+AM, CA	А	7. D.
NOB+AM, NOB	В	Zn, Ba

Table S9. Summary of multiple pairwise comparisons on element concentrations in *Brassica oleracea* aerial part obtained with ANOVA and Tukey tests. NOB= plants grown in Nobile soil, CA= plants grown in Campana soil, AM = addition of amendment to the soil. Letter B identifies plant samples whose mean concentrations in the respective elements are significantly lower than the ones obtained for plant samples identified by letter A; the same concept applies to letter C with respect to letter B and letter D with respect to letter C.

Brassica oleracea aerial part concentration	Group	Elements
CA	А	
CA+AM	В	Pb, Ba
NOB, NOB+AM	С	
CA	А	
CA+AM	В	C.
NOB	BC	Cr
NOB+AM	С	
NOB	А	
CA, NOB+AM	В	Ni
CA+AM	С	
CA+AM	А	
CA, NOB+AM	В	Cu
NOB	С	
NOB, NOB+AM	А	
CA	В	Co
CA+AM	С	
NOB+AM	А	
CA+AM	В	٨
CA	BC	AS
NOB	С	
СА	А	
CA+AM	AB	
NOB+AM	BC	Ca
NOB	С	
CA, CA+AM	А	7.
NOB, NOB+AM	В	ΔΠ

Table S10. Summary of multiple comparisons for pairs of *Lactuca sativa* BF with Tukey test. CA= plants grown in Campana soil, AM = addition of amendment to the soil. Letter B identifies BF values whose means are significantly lower than the ones obtained for BF values identified by letter A.

BF	Group	Elements
CA, CA+AM	А	As, Ba, Zn
CA	А	Cu
CA+AM	В	Cu
CA+AM	А	
CA	В	Ca, Co, Cr, NI, Pb

TF	Group	Elements
CA, CA+AM	А	As, Cu, Zn
CA	А	De C.I. Ce Cr. Ni Dh
CA+AM	В	ba, Cu, Co, Cr, NI, Pb
CA+AM	А	1
CA	В	/

Table S11. Summary of multiple comparisons for pairs of *Lactuca sativa* TF with Tukey test. CA= plants grown in Campana soil, AM = addition of amendment to the soil. Letter B identifies TF values whose means are significantly lower than the ones obtained for TF values identified by letter A.

Table S12. Summary of multiple comparisons for pairs of *Brassica oleracea* BF with Tukey test. CA= plants grown in Campana soil, AM = addition of amendment to the soil. Letter B identifies BF values whose means are significantly lower than the ones obtained for BF values identified by letter A.

BF	Group	Elements	
CA, CA+AM	А	Ba, Cu, Zn	
CA	А		
CA+AM	В	As, Co, Cr	
CA+AM	А	CINE DL	
CA	В	Cu, Ni, Pb	

Table S13. Summary of multiple comparisons for pairs of *Brassica oleracea* TF with Tukey test. CA= plants grown in Campana soil, AM = addition of amendment to the soil. Letter B identifies TF values whose means are significantly lower than the ones obtained for TF values identified by letter A.

TF	Group	Elements
CA, CA+AM	А	Ba, Co, Cr, Cu, Pb
CA	А	Ni
CA+AM	В	
CA+AM	А	As, Cd, Zn
CA	В	