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Featured Application: The research results included in the paper can be widely used in designing
thin-walled steel elements for use in construction. The use of the presented calculation model for
the calculation of continuous beams allows for more optimal and economical design of sections
of this element class under resistance conditions. In this model, the real behavior of thin-walled
beams under load was taken into account much more precisely in relation to the Eurocode.
This made it possible to use the resistance reserves resulting from the effect of longitudinal
stress variation and the elastic restraint of the thin-walled cross-section walls.

Abstract: In modern steel construction, thin-walled elements with Class 4 cross-sections are commonly
used. For the sake of the computation of such elements according to European Eurocode 3 (EC3),
simplified computational models are applied. These models do not account for important parameters
that affect the behavior of a structure susceptible to local stability loss. This study discussed the effect
of local buckling on the design ultimate resistance of a continuous beam with a thin-walled Class 4
I-shaped cross-section. In the investigations, a more accurate computational model was employed.
A new calculation model was proposed, based on the analysis of local buckling separately for the span
segment and the support segment of the first span, which are characterized by different distributions
of bending moments. Critical stress was determined using the critical plate method (CPM), taking
into account the effect of the mutual elastic restraint of the cross-section walls. The stability analysis
also accounted for the effect of longitudinal stress variation resulting from the varied distribution of
bending moments along the continuous beam length. The results of the calculations were compared
with the numerical simulations using the finite element method. The obtained results showed
very good congruence. The phenomena mentioned above are not taken into consideration in the
computational model provided in EC3. Based on the critical stress calculated as above, “local” critical
moments were determined. These constitute a limit on the validity of the Vlasov theory of thin-walled
bars. Design ultimate resistance of the I-shaped cross-section was determined from the plastic yield
condition of the most compressed edge under the assumptions specified in the study. Detailed
calculations were performed for I-sections welded from thin metal sheets, and for sections made from
two cold-formed channels (2C). The impact of the following factors on the critical resistance and
design ultimate resistance of the midspan and support cross-sections was analyzed: (1) longitudinal
stress variation, (2) relative plate slenderness of the flange, and (3) span length of the continuous
beam. The results were compared with the outcomes obtained for box sections with the same contour
dimensions, and also with those produced acc. EC3. It was shown that compared with calculations
acc. EC3, those performed in accordance with the CPM described much more accurately the behavior
of the uniformly loaded continuous beam with a thin-walled section. This could lead to a more
effective design of structures of this class.
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1. Introduction

In modern metal construction, thin-walled lightweight components that are sensitive to local
stability loss are increasingly being used. Local buckling of a thin-walled member causes lateral
(in relation to the direction of compressive stress) displacement of the component walls of the
cross-section. This reduces the load capacity of the critical cross-section, which reduces the resistance
of the entire structural member. In the European Eurocode 3 (EC3) [1–3] standards, cross-sections
that are subjected to local buckling (in the elastic range) are included in Class 4 cross-sections.
The classification of a steel cross-section into Class 4 is based on a comparison of slenderness (b/t)
of separated component walls of the section with the limit values for Class 3. In the event the
limits of at least one of the component walls being exceeded, the cross-section is qualified as Class
4, which implies the need to include the effects of local buckling in the calculation model. However,
an interest in thin-walled members is currently growing due to a significant reduction in the weight of
structural steel cross-sections. For example, hot-formed bisymmetric sections (e.g., IPE, HEB), much
lighter cold-formed open sections (monosymmetric or compound cross-sections, e.g., two-branch
cross-sections), or bisymmetrical box sections can be used for supporting elements of light halls, floor
beams, trusses, columns, or purlins. This approach reduces the weight of the structure. The use of
steels with ever higher strength as well as modern automatic welding technologies also affects the
development of thin-walled welded I-sections. Such Class 4 bisymmetrical and monosymmetrical
welded cross-sections are characterized by low weight, with an analogous degree of reliability of the
structural member in relation to hot-formed members.

From the point of view of the occurring instability phenomena, I-section beams may be subject
to local buckling and lateral torsional buckling, including flexural–torsional loss of stability with the
so-called forced rotation axis (e.g., wind suction purlin or from gravity loads in the supporting segment
of continuous beams). This is due to the fact that thin-walled open cross-sections are characterized
by low wall stiffness to local buckling and low rigidity of the whole cross-section to torsion [4,5].
However, a forced rotation axis at lateral–torsional buckling, e.g., with a suitably rigid cover, results in
a significant increase in critical moment and, in many cases, the adverse effects of lateral–torsional
buckling can be neglected.

Therefore, in the Class 4 thin-walled I-section beams, protected against lateral buckling, the
influence of local stability loss remains, especially because thin-walled I-cross-sections are much less
resistant to local buckling than, for example, box cross-sections [6]. This results from the fact that in
such a cross-section there are cantilever walls, which are much less resistant to buckling in relation
to internal walls [7,8] or cantilever walls with a stiffening bend [9]. However, the use of I-sections
(in relation to box sections) allows for simpler shaping of connections and nodes due to free and
double-sided access, e.g., to bolt joints. Moreover, continuous beam systems, due to the favourable
longitudinal distribution of bending moments, enable the effect of longitudinal stress variation to be
used in local stability analysis [10].

The resistance of a thin-walled cross-section is determined using the effective width method [3].
This method consists of determining the critical stresses of local buckling (σcr = kσE, where k is the
plate buckling coefficient) for individual cross-section walls, assuming their hinged support and
constant distribution of stresses along the member length. On this basis, the relative plate slenderness
(λp =

√
fy/σcr, where fy is the yield strength of steel) and effective widths of individual walls (plates)

are determined be f f = ρ
(
λp

)
b, where ρ is the reduction factor.

Reference [6] presents an analysis of the so-called “local” critical resistance (i.e., determined from
the condition of the local buckling) and the design ultimate resistance of a continuous beam with a
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Class 4 thin-walled box section. It was shown that the resistance of a five-span beam can be determined
from the supporting segment of the first span. Calculations were made using the critical plate method
(CPM) [10]. The following were analyzed with respect to their effect on the “local” critical and design
ultimate resistance of box cross-sections: (1) the relative plate slenderness of the flange, and (2) the
span length of the continuous beam.

In the case of transversely bent beams made of thin-walled I-sections, which are protected against
lateral–torsional buckling, the possibility of local buckling of the compression flange must be taken
into account along with, for adequately high cross-sections, the possibility of local buckling of the
bending and shear web [11].

This study dealt with the determination of the resistance of a continuous beam (e.g., purlins) with a
thin-walled I-section (sheet-welded or composed of two cold-formed channel sections). The calculations
accounted for (1) the effect of the elastic restraint of the weakest cross-section wall in the stiffening
wall, and (2) the effect of longitudinal stress variation caused by the variability of bending moments.

The analysis was based on the fixed I-section along the whole length of the beam (Figure 1). In this
case, the resistance of the continuous beam is determined by the end span. The case where the first
(extreme) span is additionally reinforced, and the resistance is determined by the intermediate spans,
will be the subject of a separate work.
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Figure 1. Static model of a continuous beam end span with thin-walled I-section.

2. Computational Model for Local Cross-Section Buckling

The Class 4 cross-section calculation model according to European standards EC3 [1–3] assumes
that all component plates of athe cross-section are hinge-supported at their bonding edges. This means
that the plates do not interact with each other, and the local buckling of the whole cross-section is
determined by the weakest separated plate (cross-section wall).

However, in many technically important cases this model is too conservative, which has been
confirmed by numerous experimental studies, e.g., References [5,12–14]; theoretical studies, e.g.,
References [4,7,15,16]; and numerical simulations, e.g., References [17–23]. This is due to the fact that in
real thin-wall cross-sections, there is an effect of mutual, elastic interaction of component plates (walls).

Further, the standard computational model assumes that after determining the relative slenderness
of the individual simply supported plates, their respective effective widths are determined, which
determine the effective cross-section of the thin-walled member. In the calculation according to EC3,
the effect of longitudinal stress variation, which often occurs in practice (e.g., in continuous beams), is
also ignored.

In References [19,21], the effect of the mutual elastic restraint of thin-walled section walls was
considered. Various load cases were taken into account, ranging from axial compression to pure
bending relative to both axes of the section gravity, including interactive loads. Very large sets of
simulation results were analyzed via the finite strip method using CUFSM software [18]. Calculations
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were made for many load cases and approximate analytical formulas were proposed for determining
the plate buckling coefficient k [19] and the local buckling half-wavelengths [21] for various types of
hot-rolled and welded sections. In Reference [22], in turn, approximation formulas of the k coefficient
for hot-rolled sections under simple loads (axial compression, bending relative to the stronger and
weaker axis of the cross-section) were given. However, the solutions obtained in References [19,21,22]
relate only to constant stress distributions over the length of the structural member.

In References [7,24,25], the impact of longitudinal stress variation in the compressed cantilever
plate (which is, for example, a component of an I-cross-section) was taken into account, but only for
extreme support conditions (hinge or full restraint).

Meanwhile, in Reference [26], the approximation formulas of the plate buckling coefficient k for
an axially compressed cantilever plate with any degree of elastic restraint of the supported edge and
longitudinal stress distribution according to the linear function and 2◦ parabola were derived. At the
same time, graphs of k coefficients were determined in References [27,28] for elastically restrained
and eccentrically compressed cantilever plates with longitudinal stress variation. Many technically
important load cases have been considered.

Reference [10] presents a more accurate computational model of the effect of local buckling on the
resistance of thin-walled cross-sections. The critical plate method (CPM) takes into account the effect
of both the elastic restraint of the cross-section plates and that of longitudinal stress variation.

3. “Local” Critical Resistance and Design Ultimate Resistance of the Cross-Section

In Reference [10], the bending moment inducing local buckling of a thin-walled cross-section was
called the “local” critical moment (ML

cr), which can be determined from the formula

ML
cr = σL

crWel,y/γM0, (1)

where σL
cr—critical buckling stress determined according to a more accurate computational model

(CPM) and related to the extreme edge of the cross-section,
Wel,y = Iy/zc – elastic section modulus,
γM0—partial factor for cross-section resistance.
This moment is a limitation of the pre-buckling range of cross-section behavior and determines

the limit of validity of Vlasov’s thin-walled bar theory. On its basis, the critical resistance (critical load)
of the structure can be determined from the condition of local stability loss of the weakest cross-section.

As regards the reliability of metal building structures, the designer’s interest lies in the so-called
design resistance [1], which can be determined from the formula

Me f f = We f f fy/γM0, (2)

where We f f = Ie f f /ze f f —effective section modulus.
The “local” critical moment according to (1) can in practice be treated as the resistance of a

thin-walled section in the pre-buckling range, assuming unlimited material elasticity. Therefore, where
Welσ

L
cr > We f f fy, the design resistance of a Class 4 cross-section must necessarily be determined using

Equation (2).
The so-called design ultimate cross-section resistance defined in References [6,10] (taking into

account a more accurate model of local buckling) is a lower (conservative) estimate of the failure load
determined for the mechanism of plastic hinge [29]. The resistance of a thin-walled cross-section,
which is obtained during the failure phase, cannot be applied in the design of building structures.
However, it can be applied, for example, in designing so-called mechanical energy absorbers [30].

4. The Idea of the Critical Plate Method (CPM)

The idea of the critical plate method [10] consists of determining the buckling stress of the weakest
component plate of the cross-section, taking into account its elastic restraint in adjacent plates (walls),
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for which the buckling stresses are higher. In addition, the method allows the effect of longitudinal
stress variation to be taken into account. In this computational model, the so-called critical plate (CP)
must be identified, which determines the local buckling of the section in a given loading condition.

The elastic restraint against longitudinal edge rotation of the CP results from the action of the
adjacent restraining plate (RP). For example, for certain proportions of the bending I-section [10],
the critical plate may be a compressed cantilever wall of the width bs as a outstanding part of the flange
width b f = 2bs, and the restraining plate will be a web of height hw. The buckling stress for the CP
so determined is higher than that determined under the assumption of its simple support. This is
especially true for cantilever plates, for which the elastic restraint against rotation of the longitudinal
supported edge significantly affects the buckling stress values. The difference in plate buckling
coefficients for an uniform compressed cantilever plate between a hinged support (kσ = 0.43) [3] and a
fully restrained support (kσ = 1.25) [7,19] is almost threefold.

In References [19,21], attention was paid to the additional phenomenon of the so-called mutual
constraint of the component walls of the cross-section (affecting the increase of buckling stress), despite
the fact that the theoretical critical stresses of individual walls (determined under the assumption
of their hinged support) are equal. This was found to be due to the different buckling lengths of
the internal and cantilever plates. Therefore, in Reference [21], approximation formulas for the local
buckling half-wavelengths of the full cross-section were derived. This length is between the buckling
length for a separate, simply supported, and fully restrained plate, on which the critical resistance of
the full cross-section depends. Knowledge of local buckling half-wavelengths is useful for the direct
definition of geometric imperfections in analytical and numerical models.

On the other hand, in Reference [10], it was assumed that in a thin-walled section where
thought-separated hinge-supported walls theoretically have the same buckling stresses, the effect
of mutual constraint is insignificant (i.e., increases the buckling stress from 5 to 20%) and can be
conservatively ignored. On this basis, so-called “zero” cross-sections were defined, in which the
thought-separated hinge-supported plates have the same buckling stresses, and the resistance of such
cross-sections can be calculated according to the standard procedure [1,3].

The distinction between “zero” and “non-zero” cross-sections significantly simplifies the
identification of the critical plate in the latter and allows for a slightly conservative (safe) estimation of
the buckling stress. Therefore, the elastic restraint coefficient of the CP in RP can be estimated using
Equation (3) [10]

κ = 1/(1 + 2Ds/bsCθ), (3)

where Cθrotational spring stiffness equal to the bending moment created during rotation by unit angle
(Cθ = M/θ), bs—CP width, Ds—plate flexural rigidity according to the formula

Ds =
Et3

s

12(1− ν2)
(4)

where for E = 210 GPa and ν= 0.3, it can be approximately assumed that Ds = 19, 200t3
s , ts—CP thickness.

The restraint coefficient according to Equation (3) varies from κ = 0 for simple support to κ = 1
for full restraint.

When the above-mentioned effects are taken into consideration, it is possible to determine the
critical stress causing the cross-section local buckling in a more accurate way. Based on the critical
stress, the following can be determined: (1) the “local” critical resistance of the cross-section ML

cr, (2) the
effective width of the critical plate, and (3) the design ultimate resistance of the cross-section MCP

e f f
according to Reference [10].

5. Algorithm of the CPM Method for Thin-Walled I-Cross-Sections under Bending

For the transverse bending of I-beams of a Class 4 cross-section (Figure 2), their resistance is
usually determined by local buckling of the compression flange (of width b f � 2bs and thickness t f ) or
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local buckling of the web (of height hw and thickness tw) under bending and shear interaction. Because
of their geometric topology, those cross-sections were categorised in Reference [10] as part of the group
of so-called “simple” cross-sections.

The ultimate height h0 of the cross-sections at which the compression flange buckling and web
in-plane bending with a slight impact of shear stresses (τ ≤ 0.25τcr) occur almost simultaneously can
be determined using Equation (5) [10]

h0 =

√√
k0

w

k0
f

·

(
twbs

t f

)
(5)

where k0
i —basic buckling coefficient for the hinged supported i-th plate at given load distribution

(k0
f = 0.43 for axial cantilever plate compression, k0

w = 23.9 for bending in the plane of the web plate).
For h < h0, it is the compression flange that determines local buckling of the cross-section, whereas

for h > h0, the weakest wall is the web under in-plane bending.
For the mean proportion of shear stresses (0.25τcr ≤ τ ≤ 0.5τcr) Equaiton (5) can be modified to

the form:

h0 =

√√
k0

w

k0
f

·

(
twbs

t f

)[
1−

(
τ
τcr

)2
]0.25

(6)

where: τcr—critical stress for the web plate in shear.
However, if there is a large proportion of transverse forces in the slender webs (plates supported

at four edges) that are part of beam cross-sections, shear stresses τ may need to be considered more
closely, as their contribution to local loss of web stability may be significant. Appropriate formulas
for elastic strain energy and work done by external forces allowing critical stresses to be determined
(using the energy method) for internal plates loaded (within their plane) with bending with high shear
were derived in Reference [11].

For thin-walled I-sections, for which h < h0 according to Equation (6), the CPM assumptions are
as follows: (1) the compression flange of the cross-section consists of two critical plates (CPs) which
width of bs ≤ b f /2 each, which are supported on a web plate of the height hw, (note: dimensions bs and
hw can be determined based on the rules given in Reference [10]); (2) a single CP acts as a cantilever
plate, with one side elastically restrained against rotation; (3) the CP to RP connection (i.e., the web) is
rigid (i.e., on the longitudinal edge of their connection, the conditions of continuity of displacements
(rotation angles) and forces (bending moments), are met); (4) the transverse edges of the plates (CP and
RP) are simply supported on the segment ends; and (5) the thin-walled bar segment (with the length ls),
as in Reference [6], is defined as follows: (a) for constant longitudinal stress distribution, as the distance
between the so-called buckling nodal lines, (b) for longitudinal stress variation, as the distance between
transverse stiffeners (diaphragms, ribs, or supports) that maintain a rigid cross-section contour, but not
longer than the range of the compression zone in the critical plate [26]. The conditions under which
Assumption 3 can be adopted were discussed in Reference [10].

The case of I-sections with high and slender webs (at h > h0 acc. to Equation (6)), where the
“local” critical resistance is determined by the buckling of the bent and shear web, will be discussed in
a separate study.
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Figure 2. Division of I-cross-section into critical plate (CP) and restraining plate (RP) for h < h0.

The calculation algorithm is as follows:

(1) Division of the cross-section into component plates according to Figure 2;
(2) Identifying CP for a “simple” cross-section based on the condition

σ0
cr = min

{
σ0

cr,i

}
(7)

σ0
cr,i = k0

i σE,i (8)

where σE,i—Euler stress for the i-th plate according to the formula: σE,i = 190, 000(ti/bi)
2. Note:

for h < h0 acc. to Equation (6), the critical plate (CP) is the cantilever wall of the compression
flange and the rigid plate (RP) is the web;

(3) Adoption of the initial CP edge restraint coefficient value (for the so-called zero step), e.g.,
κ0 = 0.4;

(4) Estimation of the critical length (lcr) for a single half-wave of CP buckling [26] according to
the formula

lcr = bs

(2.02− 0.37κ
κ0.25

)
(9)

(5) Determination of the coefficient η [31], depending on the static scheme and the way of forcing
(loading) RP by buckling CP (Figure 2) for the critical length according to Equation (9) [10]

η =

√
33.4 + 50.7(br/lcr)

2
− 2.78 (10)

where br—RP width;
(6) Determination of σL

cr according to the formula

σL
cr = k∗σE,s (11)

where k*—buckling coefficient according to a more accurate calculation model. The k* coefficient
can be determined on the basis of Reference [26] from the following formulas:

• for linear stress distribution (Figure 3a),

k∗(κ, m,γ) = k∞(κ) +
[
0.765m− 0.31m2 + 0.227m3+(

3.201m− 0.307m2
− 3.724m3 + 2.842m4

)
κ2+(

−3.887m− 9.205m2 + 21.528m3
− 12.306m4

)
κ3+(

−1.132m + 22.933m2
− 37.767m3 + 19.091m4

)
κ4+(

2.559m− 14.341m2 + 20.975m3
− 10.023m4

)
κ5

]
/γ(0.59+0.16m)

s

(12)
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• for non-linear stress distribution (according to 2◦ parabola, Figure 3b),

k∗(κ, m,γ) = k∞(κ) +
[
1.096m− 0.808m2 + 0.363m3+(

20.064m− 63.78m2 + 74.842m3
− 30.565m4

)
κ2+(

−58.826m + 195.88m2
− 232.857m3 + 95.684m4

)
κ3+(

61.802m− 211.851m2 + 254.031m3
− 104.82m4

)
κ4+(

−22.086m + 77.761m2
− 93.977m3 + 38.925m4

)
κ5]/γ(1.06+0.04m)

s

(13)

where m = 1 − σ1/σ0—longitudinal stress distribution coefficient (Figure 3), γs = ls/bs.
The plate buckling coefficient k∞(κ) of an elastically restrained and infinitely long cantilever
plate can be determined according to Reference [26], using the formula

k∞(κ) = 0.425 + 2.893κ− 19.433κ2 + 83.849κ3
− 195.943κ4 + 250.971κ5

−165.321κ6 + 43.833κ7 (14)

On the other hand, Reference [28] presents a simplified formula for k∞(κ) within the range
0.05 ≤ κ ≤ 1 in the form of

k∞(κ) = 0.49 + 0.974κ− 0.822κ2 + 0.632κ3 (15)

(7) Estimation of the critical stress σcr,r for a RP bent in its plane (width br) [32] for one half-wave of
CP buckling length lcr according to Point 4.

σcr,r =
Et2

r

l2crb4
r

(
11.32l4cr + 1.97b4

r + 12.06l2crb
2
r

)
(16)

(8) Determination of rotational spring stiffness Cθ according to Equation (17) and the restraint
coefficient κi+1 according to Equation (3) for the first (i = 1) and subsequent iteration steps.

Cθ =
c jη jDr

br

(
1−

σL
cr

σcr,r

)
(17)

where c j—parameter of geometrical configuration of plates in contact with the j-th edge (for a
welded I-section c j = 1/2 [10]; note: for an I-section made up of two channel sections c j = 1, i.e.,
one web with thickness tw stabilizes one CP of the flange on one edge), Dr = 19, 200t3

r RP flexural
rigidity, tr—RP thickness;

(9) Repetition of Steps (4) to (8) up to the moment when κi ≈ κi+1;
(10) σL

cr(κi+1) according to Equation (11) is the sought buckling stress for CP;
(11) Determination of the “local” critical resistance of the cross-section according to Equation (1);
(12) Determination of the design ultimate resistance of the cross-section according to Equation (2) for

the We f f coefficient calculated with the following assumptions [10]:

(a) the slenderness of the critical plate (CP) shall be determined from the buckling stress
determined by Step 10 (i.e., taking into account the elastic restraint effect of the cantilever
plate and the effect of longitudinal stress variation);

(b) for the web (rigid plate RP), a simple support shall be provided at the same edge;
(c) the boundary conditions at the other edge of the RP have a slight impact on the result of

the calculations (conservatively, simple support can also be assumed here),
(d) the effect of possible longitudinal stress variation in RP is insignificant and can be ignored,
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(e) the effective widths so determined “shall be folded” into an effective cross-section, for
which We f f is determined.
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Figure 3. Longitudinal stress distribution in a cantilever plate: (a) linear, (b) non-linear according to
2◦ parabola.

The algorithm proposed above, compared to the classical version of the effective width method,
allows for a more accurate consideration of the behavior of a thin-walled section, the resistance of
which is determined by the local buckling phenomenon. A more detailed comparative analysis on this
issue is presented in Reference [10].

6. Calculation Method for a Continuous I-Beam

In the case of a multi-span continuous uniformly loaded beam (Figure 4), a non-linear bending
moment distribution My occurs in the first (end) span with maximum values (Mp and Ms). For the
range (lp + c), the graph My is convex, while for the range ls the graph is concave. Such longitudinal
distributions of My cause non-linear (along the length of the beam) normal stress distributions σx,
which may cause local loss of stability [6].
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Figure 4. Static scheme of a beam: (a) load distribution, (b) moment diagram for the first (extreme)
span, (c) welded I-section, (d) 2C compound I-section.

Reference [33] showed that in the case of non-linear stress distribution for the full span range
lk = lp + c (Figure 5), the k coefficient takes basically the same values as those determined for the
reduced range lp (e.g., for lk/bs ≥ 4 differences not exceeding 2%). However, in Reference [26], it was
shown that if the stress mark changes, the design segment length can be limited to the range of
the compression zone. This is applicable to the support zone ls of a continuous beam. Therefore,
similarly to Reference [6], in order to take into account the effect of longitudinal stress variation when
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determining the span cross-section resistance, it is sufficient to assume the segment length to be lp, and
for the support cross-section to be a segment with the length of ls.
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Figure 5. Calculation model of the first (end) span of a uniformly loaded continuous beam.

For the span segment, there is a non-linear (according to 2◦ parabola) stress distribution. For the
support segment, however, the concave stress distribution can be conservatively approximated by the
linear distribution.

7. Example of Using CPM to Determine the Resistance of a Continuous I-Beam

7.1. Statics and Cross-Sectional Forces

The calculations were carried out, among others, for five-span continuous beams (e.g., purlins)
(cf. Figure 4) with a constant span length L and thin-walled I-sections either (a) welded from thin
sheets (I; Figure 4b,c) or (b) composed of two cold-formed channel sections (type 2C; Figure 4d). It was
assumed that the above-mentioned sections after welding (I) or cold-forming (2C) were subjected to
appropriate heat treatment to reduce the impact of residual stresses. In References [23,34], the influence
of remaining welding stress on the behavior and resistance of welded I-sections was investigated.
It was shown that this effect is greatest in the case of axial compression, but in some cases, bending
elements should also be considered. Therefore, the effect of residual stresses on the local buckling of
continuous beams with welded I-sections will be described in a separate study.

The beams were under continuous, uniformly distributed load. It was assumed that the elements
were structurally protected against lateral–torsional buckling. In this case, the resistance of the beam
depends on the resistance of the most stressed cross-section.

The relationship between Ms and Mp (Figure 4) in the first span was u = Ms/Mp = 1.351,
irrespective of the type of cross-section and the span length. In the support cross-sections of the beam,
two-sided stiffening ribs were used to transfer the support reactions without causing distortion of the
thin-walled cross-section.

7.2. Welded Section

7.2.1. Calculation of Critical Resistance According to CPM

Detailed calculations were carried out for a five-span continuous beam with a span length L = 4 m
and a thin-walled I-section welded from sheets of dimensions I-300×tw×250×tf (I-h×tw×b×tf) for t =

tf = tw = 5, 6, 7, and 8 mm made of S355-grade steel. It should be noted that in this case, adopting a
smaller web thickness, i.e., tw < tf, led to a significant reduction in the elastic restraint of the compressed
flange in the plate of the web. This resulted in a much greater reduction in the cross-sectional resistance
than that resulting from a reduction in the elastic section modulus caused solely by a reduction in the
thickness of tw.

Table 1 shows the results of the calculation of “local” critical moments for the ruling cross-sections:
span ML

cr,p, support ML
cr,s, and the critical loads qcr determined from them. The symbol qCP

cr,s indicates
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the critical load value determined from the condition of reaching ML
cr,s in the support cross-section, and

the symbol qCP
cr,p indicates that determined from the condition of reaching ML

cr,p in the span cross-section.
(Note: in Table 1, the values of the moments ML

cr,s and ML
cr,p are given as absolute values). The critical

resistance of the beam is determined by the minimum load qCP
cr,min = min

{
qCP

cr,p, qCP
cr,s

}
.

Table 1. Summary of critical results according to critical plate method (CPM) and European Eurocode
3 (EC3) for the I-300×t×250×t section and four wall thickness variants.

Wall Thickness (mm) t= 8 7 6 5

Slenderness λ=b/t= 15.63 17.86 20.83 25.00

Euler stress (N/mm2)
Flange σE,i= 778.24 595.84 437.76 304.00

Web σE,i= 135.11 103.44 76.00 52.78

Buckling coefficient for lp: k*= 0.800 0.800 0.800 0.800
for ls: k*= 0.950 0.950 0.950 0.950

Critical stress acc. CPM (N/mm2)
for lp: σcr,p= 622.60 476.67 350.21 243.20
for ls: σcr,s= 739.08 565.86 415.73 288.70

Critical stress acc. EC3 (N/mm2) σcr,0= 334.64 256.21 188.24 130.72

Local critical resistance (kNm)
for lp: ML

cr,p= 448.36 300.35 189.13 109.45
for ls: ML

cr,s= 532.24 356.54 224.52 129.93
MEC3

cr = 240.99 161.44 101.66 58.83

Critical load acc. CPM (kN/m) for lp: qCP
cr,p= 359.72 240.97 151.74 87.81

for ls: qCP
cr,s= 316.02 211.70 133.31 77.14

Critical load acc. EC3 (kN/m) qEC3
cr = 143.09 95.85 60.36 34.93

Percentage increase of resistance (%) qCP
cr /qEC3

cr = 120.86 120.86 120.86 120.86

Furthermore, in Table 1, the symbol MEC3
cr indicates the critical cross-sectional moment determined

according to σcr calculated according to EC3 [3], and the symbol qEC3
cr,min stands for the minimum value

of critical load determined on the basis of MEC3
cr . Due to the simplified calculation model used in the

standard, MEC3
cr does not depend on the longitudinal stress distribution or on the degree of mutual

elastic restraint of the cross-section component walls. It therefore determines the critical resistance of
both the span cross-section (p) and the support cross-section (s).

Note: in the example under consideration, determined on the basis of the qCP
cr,min parameter h0

according to Equation (6), h0 = 880 mm and was almost three times greater than the cross-section
height h = 300 mm. Of course, the determination of the parameter h0 according to Equation (6) was
iterative because the shear stresses τ and τcr depend on the cross-section height, among other things.
This check calculation allows the correct identification of the critical plate in a given cross-section
loading condition to be confirmed.

A comparison of the results in Table 1 shows that ML
cr,s was approx. 18.7% higher than ML

cr,p.
This was due to different stress distributions and different reliable lengths of the span (lp) and support
(ls) segments. Despite the fact that ML

cr,p < ML
cr,s, the critical resistance of the beam was determined by

the support zone, because: u = 1.351 > ML
cr,s/ML

cr,p = 1.187. The percentage increase of ML
cr,s in relation

to MEC3
cr was about 121%. The same relationship occurred for the corresponding critical loads qmin

cr .

7.2.2. Finite Element and Finite Strip Analysis

The critical stresses listed in Table 1 (σcr,s, σcr,p) were verified via the finite element method (FEM)
using ABAQUS software [35], and the finite strip method (FSM) using CUFSM software [18].

The FEM enables the analysis of local buckling of the extreme span of a continuous beam by
taking into account both the effect of mutual elastic restraint of cross-section’s components plates, as
well as the effect of longitudinal stress variation. However, the commonly used finite strip method
(FSM) allows the effect of mutual elastic restraint of cross-section’s component plates to be considered,
but with the assumption of a constant stress distribution over the length of the member.
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For the numerical simulations in ABAQUS v. 6.12, the first (extreme) span of a continuous beam
was modeled. Due to the small wall thickness (compared to other dimensions), the cross-section’s
geometry was simplified to so-called centerline. S4R shell elements (four nodes with six degrees
of freedom in the node) were used, and the dimensions of the finite element were assumed to be
12.5 × 12.5 mm. Such division made it possible to obtain technically sufficient accuracy while reducing
calculation time. The transverse load was applied in the form of uniform pressure (p = 0.1 N/mm2) on
the upper flange with a width of b = 250 mm, which corresponded to a uniform load of q = 25 kN/m.
Conversely, the loading with the “corresponding” support moment of the value of Ms = 0.105 × qL2 =

42 kNm (where 0.105 is the coefficient from Winkler’s tables) was performed by means of loading the
support cross-section with a stress block. The boundary conditions in the support cross-sections were
assumed to be continuous constraints perpendicular to each of the component plate. An additional
tie securing the beam against displacement along the longitudinal axis was applied in the gravity
axis of one of the support sections. In Figure 6b, a general view of FEM model of the I-300×5×250×5
cross-section in ABAQUS software is presented. Figure 6 shows the support ties used, and Figure 6c
shows the method of loading with the support moment Ms. The critical load calculations were
performed using the “buckling” procedure.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 25 
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(b) division into finite elements, (c) method of loading with the support moment.

Figure 7 shows the local buckling mode (axonometric view and side view) corresponding to the
first (smallest) eigenvalue of the critical load multiplier (qcr,s = 3.121 × q = 78.02 kN/m). Maximum
local deflections of the cross-section occurred in the support zone.
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For numerical simulations in CUFSM v.5.04, the I-section was also simplified to centerline geometry,
and then divided into 48 finite strips (16 per flange and 16 in the web). The load was applied in the
form of a stress block, causing bending about the stronger axis of the cross-section.
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7.2.3. Comparison of Critical Stress Results

Table 2 compares the values of critical stresses for supporting σcr,s and span σcr,p sections,
determined according to: (1) ABAQUS, (2) CPM, (3) CUFSM, (4) Reference [19], (5) Reference [22], and
(6) EC3. It should be emphasised that comparison of stresses determined according to Reference [22]
was for reference only, because the formulas derived in Reference [22] apply only to hot-rolled sections,
and not to the welded ones.

Table 2. Comparison of critical stresses determined by several methods for the I-300×t×250×t section
and four wall thickness variants.

t s/p ABAQUS CPM CUFSM [19] [22] EC3

1 2 3 4 5 6 7

5
s 291.98 288.70

235.53 223.98 191.64 130.72p 247.16 243.20

6
s 418.32 415.73

339.16 322.53 275.96 188.24p 355.00 350.21

7
s 566.31 565.86

461.62 439.00 375.59 256.21p 481.86 476.67

8
s 735.48 739.08

602.92 573.38 490.58 334.64p 627.53 622.60

From the comparison of the values given in Table 2, it follows that the new calculation model
adopted in this work using the critical plate method (CPM) gave very good congruence with the
results obtained from the ABAQUS software, which were adopted as a reference. This applied to
both the support section (first eigenvalue, compliance approx. 0.99) and the span section (second
eigenvalue, congruence approx. 0.985). The calculations obtained from CUFSM also gave very good
results in the span section (congruence approx. 0.96), while in the support section, where a large
stress gradient occurred, and on which the critical resistance of the beam depends, congruence was
around 0.81. A similar situation occurred when comparing the results obtained from the formulas
according to Reference [19] (span section about 0.91, support section about 0.77). However, a worse
congruence of the results obtained according to Reference [22] (span section about 0.78, support section
about 0.66) resulted from the different, in relation to hot-rolled sections, geometrical proportions of the
sections considered in this study. The largest differences (span section about 0.53, support section about
0.45) were obtained from calculations made according to EC3. The local buckling half-wavelengths
determined in this case were: (1) according to CPM, Equation (9) lcr = 307 mm; (2) according to CUFSM,
lcr= 340 mm; and (3) according to Reference [21] lcr = 353 mm. It should be noted that in this case,
the following rule applies: for higher critical stresses, there is a shorter local buckling half-wavelength.

The ompared computational methods showed that very good congruence of results in relation
to finite element analysis (ABAQUS) was obtained by the critical plate method (CPM), which takes
into account both effects. Methods that consider the effect of mutual elastic restraint of cross-section
component plates give a good approximation of critical stresses in those beam zones where there is
no significant variation of stresses in the longitudinal direction (e.g., span cross-section). In contrast,
calculations according to EC3 are the most conservative, because they omit both effects.

7.2.4. Design Ultimate Resistance

Table 3 shows the design values of the ultimate resistance for the reliable cross-sections: span
MCP

e f f ,p, support MCP
e f f ,s, and the design ultimate loads (qe f f ) determined from them according to CPM.

The symbol qCP
e f f ,s indicates the ultimate load value determined from the condition of reaching MCP

e f f ,s

in the support cross-section, and the symbol qCP
e f f ,p from the conditions needed to achieve MCP

e f f ,p in

the span cross-section. (Note: in Table 3, the values of the moments MCP
e f f ,s and MCP

e f f ,p are given
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as absolute values). The ultimate resistance of the beam was determined by the minimum load

qCP
e f f ,min = min

{
qCP

e f f ,p, qCP
e f f ,s

}
.

Table 3. Summary of ultimate resistance results according to CPM and EC3 for the I-300×t×250×t
section and four wall thickness variants.

Wall Thickness (mm) t= 8 7 6 5

Slenderness λ=b/t= 15.63 17.86 20.83 25.00

Design ultimate resistance (kNm)
for lp: MCP

e f f = 244.81 201.32 159.99 121.57
for ls: MCP

e f f = 245.78 210.24 167.37 127.27
MEC3

c,Rd= 208.72 170.89 135.56 103.16

Ultimate load acc. CPM (kN/m)
for lp: qCP

e f f ,p= 196.41 161.52 128.36 97.54
for ls: qCP

e f f ,s= 145.93 124.83 99.38 75.57

Ultimate load acc. EC3 (kN/m) for ls: qEC3
e f f = 123.93 101.47 80.49 61.25

Percentage increase of resistance (%) qCP
e f f /qEC3

e f f = 17.76 23.02 23.46 23.37

Furthermore, in Table 3, the symbol MEC3
c,Rd indicates the design cross-section resistance determined

according to EC3 [1,3], and the symbol qEC3
e f f ,min indicates the minimum value of ultimate load determined

on the basis of MEC3
c,Rd.

Comparison of the results displayed in Table 3 showed that for a wall thickness of t = 5, 6, and
7 mm, the resistance MCP

e f f ,s was approx. 4.5% higher than MCP
e f f ,p. This was due to different stress

distributions and different lengths of the span (lp) and support (ls) segment. Despite the fact that
MCP

e f f ,p < MCP
e f f ,s, the design ultimate resistance of the beam is determined by the support zone, because

u = 1.351 > MCP
e f f ,s/MCP

e f f ,p = 1.045. However, for wall thickness t = 8 mm, the difference between

MCP
e f f ,s and MCP

e f f ,p was only 0.4%. This resulted from the fact that the cross-section loaded in this way,
calculated according to CPM, can be classified as a Class 3 cross-section, for which the value of the
reduction factor ρ is close to one. In contrast, the same cross-section calculated according to EC3 (due
to low σcr,0) is still treated as a Class 4cross-section (in this case, ρ = 0.79). The percentage increase of
MCP

e f f ,s in relation to MEC3
c,Rd was about 23% for t = 5, 6, and 7 mm, and about 18% for t = 8 mm. The same

relationship occurred for the corresponding ultimate loads qmin
e f f .

Figure 9 shows the effective cross-sections of the I-300×5×250×5 section determined in the span
and support cross-sections according to CPM (Figure 9a,b) and EC3 (Figure 9c,d). For example, the
sum of the effective widths 2be f f of the compressed bottom flange of the support cross-section (which
determines the resistance of the beam) determined according to CPM was about 39% larger than that
determined according to EC3 (see Figure 9b,d). The shift of the neutral axis of the effective cross-section
according to CPM in relation to the gross cross-section was e = 12.2 mm and was 51% smaller than
e = 24.9 mm calculated according to EC3. This effect additionally affected the differentiation of the
effective modulus We f f of the reliable cross-sections and, consequently, the differences in the design
ultimate resistance of the beam determined according to CPM and EC3.
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Figure 9. Effective cross-sections of the I-300×5×250×5 section according to CPM and EC3 methods.
(a) span cross-section acc. CPM, (b) support cross-section acc. CPM, (c) span cross-section acc. EC3,
(d) support cross-section acc. EC3.

7.3. I-Section Consisting of Two Cold-Formed Channel Sections (2C)

For compound sections (type 2C), detailed calculations were made for five-span beams with a
constant span length for variants of L = 4, 5, 6, and 7 m made of S355-grade steel. For comparison
purposes, the analyzed dimensions of 2C sections (Figure 10) with the contour of Sk250×250×t box
sections (for t = 2, 3, 4, and 5 mm) presented in Reference [6] were used. In this case, the elastic gross
section bending moduli Wel for Sk and 2C sections were equal.
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Figure 10. Compared cross-sections of continuous beams: (a) box cross-section according to
Reference [6], (b) compound cross-section type 2C.

Table 4 presents the results of the analysis of the effect of the span length on the “local” critical
moment value ML

cr and the resistance Me f f calculated according to CPM and EC3 [1,3] for the
2C-250×250×4 (2C-h×b×t) section. For the support segment decisive of the beam resistance, the
difference between the critical load value qcr obtained according to CPM method in relation to EC3
ranged from + 158% for L = 4 m up to + 141% for L = 7 m. The difference between the load ultimate
value qe f f ranged from + 22% for L = 4 m up to +20% for L = 7 m.
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Table 4. Summary of results according to CPM and EC3 for the 2C-250×250×4 section and four
span-length range variants.

Span Length (m) L = 4 5 6 7

Slenderness λ=b/t= 30.25

Euler stress (N/mm2)
flange σE,i = 207.64
web σE,i = 50.23

Length of ranges (m) lp= 1600 2000 2400 2800
ls= 843 1050 1263 1474

Buckling coefficient for lp: k*= 0.94 0.93 0.92 0.92
for ls: k*= 1.11 1.08 1.05 1.04

Critical stress acc. to CPM
(N/mm2)

for lp: σcr,s= 195.42 193.34 191.98 191.03
for ls: σcr,s= 230.47 223.70 218.80 215.20

Critical stress acc. to EC3
(N/mm2) σcr,0= 89.28

“Local” critical resistance
(kNm)

for lp: ML
cr,p= 64.13 63.45 63.00 62.69

for ls: ML
cr,s= 75.63 73.41 71.80 70.62

MEC3
cr = 29.30

Critical load acc. to CPM
(kN/m)

for lp: qCP
cr,p= 51.45 32.58 22.47 16.42

for ls: qCP
cr,s= 44.91 27.90 18.95 13.69

Critical load acc. to EC3
(kN/m) qEC3

cr = 17.40 11.13 7.73 5.68

Percentage increment of
resistance (%) qCP

cr /qEC3
cr = 158.13 150.54 145.06 141.03

Design ultimate resistance
(kNm)

for lp: MCP
e f f = 89.15 88.94 88.80 88.71

for ls: MCP
e f f = 92.43 91.82 91.38 91.04

MEC3
c,Rd = 75.77

Ultimate load acc. to CPM
(kN/m)

for lp: qCP
e f f ,p= 71.52 45.67 31.67 23.24

for ls: qCP
e f f ,s= 54.88 34.89 24.11 17.65

Ultimate load acc. to EC3
(kN/m)

for ls: qEC3
e f f = 44.99 28.79 19.99 14.69

Percentage increase of
resistance (%)

qCP
e f f /qEC3

e f f = 21.99 21.19 20.60 20.16

Note: for comparison, Table 4 also includes the values of qcr and qe f f determined according to
CPM for the case where the resistance of the beam is decided by the span section. This would be the
case, for example, in protection against local buckling of the support segment.

Table 5 compares the “local” critical resistances (ML
cr, qcr) of beams with box Sk250×250×4 sections

according to Reference [6] and 2C-250×250×4 compound I-sections depending on the span length of
the continuous beam (L = 4, 5, 6, and 7 m).

Comparison of the values presented in Table 5 shows that for 2C sections, where critical resistance
is determined by cantilever walls, “local” critical moments ML

cr determined according to CPM were
lower on average by about 25–26% in relation to corresponding box sections [6], and the reduction
MEC3

cr was as much as 54%. The same relationship occurred when comparing the respective critical
loads qcr. Meanwhile, the relation qCP

cr /qEC3
cr for 2C sections in relation to Sk sections increased by as

much as 62%. This effect resulted from a much larger reserve of the critical resistance of the elastically
restrained cantilever plate (which determines the resistance of the 2C section) in relation to the internal
plate of the compression flange, which in turn determines the resistance of the box section. In fact, this
is the difference between the critical stresses for the plates (cantilever and internal) that are simply
supported in relation to the same plates that are elastically restrained at one or two edges, respectively.
For comparison, the relation between the buckling coefficient for the compressed cantilever plate when
fully restrained (ku = 1.25 [7,19]) and simply supported (kp = 0.43 [3]) was ku/kp = 1.25/0.43 = 2.91.
For an internal plate, on the other hand, the same relation was much smaller and was ku/kp= 6.97/4 =
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1.74. Of course, this does not change the fact that the critical and ultimate resistance of an internal
plate is much higher than that of a cantilever plate with the same geometrical and material parameters.

Table 5. Comparison of “local” critical resistances of box sections (Sk) and compound I-sections (2C)
depending on the span length.

L (m) ML
cr,p ML

cr,s MEC3
cr qCP

cr,s qEC3
cr,s qCP

cr,s/q
EC3
cr

4
SK 87.09 101.27 63.85 60.13 37.91 1.59
2C 64.13 75.63 29.30 44.91 17.40 2.58
% −26.36 −25.32 −54.11 −25.32 −54.11 62.74

5
SK 86.32 98.61 63.85 37.47 24.26 1.54
2C 63.45 73.41 29.30 27.90 11.13 2.51
% −26.49 −25.55 −54.11 −25.55 −54.11 62.23

6
SK 85.81 96.74 63.85 25.53 16.85 1.52
2C 63.00 71.80 29.30 18.95 7.73 2.45
% −26.58 −25.78 −54.11 −25.78 −54.11 61.75

7
SK 85.45 95.33 63.85 18.48 12.38 1.49
2C 62.69 70.62 29.30 13.69 5.68 2.41
% −26.63 −25.92 −54.11 −25.92 −54.11 61.43

In turn, Table 6 compares the design ultimate resistances (MCP
e f f , qCP

e f f ) of the same box section
beams [6] and 2C compound I-sections, also depending on the span length. For the 2C sections, the
design ultimate resistances MCP

e f f determined according to CPM were on average 4–5% lower than the

corresponding box sections. The reduction, however, of MEC3
e f f was nearly 14%. The same relationship

occurred when comparing the respective ultimate loads qe f f . In this case, the relation qCP
e f f /qEC3

e f f for the
2C sections in relation to Sk sections increased by 11%.

Table 6. Comparison of design ultimate resistances of box sections (Sk) and I-sections (2C) depending
on the span length.

L (m) MCP
eff,p MCP

eff,s MEC3
c,Rd

qCP
eff,s qEC3

eff qCP
eff,s/q

EC3
eff

4
SK 93.62 96.59 87.79 57.35 52.13 1.10
2C 89.15 92.43 75.77 54.88 44.99 1.22
% −4.78 −4.31 −13.69 −4.31 −13.70 10.88

5
SK 93.45 96.06 87.79 36.50 33.35 1.09
2C 88.94 91.82 75.77 34.89 28.79 1.21
% −4.83 −4.41 −13.69 −4.41 −13.68 10.73

6
SK 93.33 95.68 87.79 25.25 23.17 1.09
2C 88.80 91.38 75.77 24.11 19.99 1.21
% −4.86 −4.50 −13.69 −4.50 −13.70 10.66

7
SK 93.25 95.39 87.79 18.49 17.02 1.09
2C 88.71 91.04 75.77 17.65 14.69 1.20
% −4.87 −4.56 −13.69 −4.56 −13.69 10.58

Table 7 presents the results of the analysis of the slenderness effect (bs/t) of the compressed
cantilever wall of 2C section on the value of “local” critical moment ML

cr and the design ultimate
resistance Me f f determined according to CPM and EC3. The calculations were made for a continuous
beam with a span length of L = 4 m. With the reduction of section wall thickness, the critical load qcr

decreased, whereby the difference between the results obtained according to CPM and EC3 was about
+158% regardless of the slenderness of the critical plate. The reduction in thickness also reduced the
design ultimate resistance Me f f and the ultimate load qe f f , whereby the difference between the results
according to CPM and EC3 was about +23% for t = 5 mm and about +16% for t = 2 mm.
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Table 7. Summary of results according to CPM and EC3 for the 2C-250×250×t section and four wall
thickness variants.

Wall Thickness (mm) t = 5 4 3 2

Slenderness λ=b/t= 24.00 30.25 40.67 61.50

Euler stress (N/mm2)
plate σE,i= 329.86 207.64 114.89 50.23
web σE,i= 79.13 50.23 28.03 12.36

Buckling coefficient for lp: k*= 0.94 0.94 0.94 0.94
for ls: k*= 1.11 1.11 1.11 1.11

Critical stress acc. to CPM (N/mm2)
for lp: σcr,s= 310.46 195.42 108.13 47.28
for ls: σcr,s= 366.13 230.47 127.52 55.76

Critical stress acc. to EC3 (N/mm2) σcr,0= 141.84 89.28 49.40 21.60

“Local” critical resistance (kNm)
for lp: ML

cr,p= 126.49 64.13 26.80 7.86
for ls: ML

cr,s= 149.17 75.63 31.60 9.28
MEC3

cr = 57.79 29.30 12.24 3.59

Critical load acc. to CPM (kN/m) for lp: qCP
cr,p= 101.49 51.45 21.50 6.31

for ls: qCP
cr,s= 88.57 44.91 18.76 5.51

Critical load acc. to EC3 (kN/m) qEC3
cr = 34.31 17.40 7.27 2.13

Percentage increment of resistance (%) qCP
cr /qEC3

cr = 158.13

Design ultimate resistance (kNm)
for lp: MCP

e f f = 122.56 89.15 59.47 34.28
for ls: MCP

e f f = 127.15 92.43 61.51 35.26
MEC3

c,Rd = 103.28 75.77 51.38 30.43

Ultimate load acc. to CPM (kN/m)
for lp: qCP

e f f ,p= 98.33 71.52 47.72 27.50
for ls: qCP

e f f ,s= 75.50 54.88 36.52 20.94

Ultimate load acc. to EC3 (kN/m) for ls: qEC3
e f f = 61.32 44.99 30.51 18.07

Percentage increment of resistance (%) qCP
e f f /qEC3

e f f = 23.12 21.99 19.71 15.87

Note: for comparison, Table 7 also includes the values of qcr and qe f f determined according to
CPM for the case where the resistance of the beam is decided by the span section. This would be the
case, for example, in protection against local buckling of the support segment.

Table 8 compares the “local” critical resistances (ML
cr, qcr) of beams with box sections [6] and

compound I-sections (2C) depending on the wall thickness (t = 5, 4, 3, and 2 mm).

Table 8. Comparison of “local” critical resistances of box sections (Sk) and compound I-sections (2C)
depending on the wall thickness.

t (mm) ML
cr,p ML

cr,s MEC3
cr qCP

cr,s qEC3
cr,s qCP

cr,s/q
EC3
cr

5
SK 169.45 197.05 124.23 117.00 73.76 1.59
2C 126.49 149.17 57.79 88.57 34.31 2.58
% −25.35 −24.29 −53.48 −24.29 −53.48 62.74

4
SK 87.09 101.27 63.85 60.13 37.91 1.59
2C 64.13 75.63 29.30 44.91 17.40 2.58
% −26.36 −25.32 −54.11 −25.32 −54.11 62.74

3
SK 36.88 42.89 27.04 25.46 16.05 1.59
2C 26.80 31.60 12.24 18.76 7.27 2.58
% −27.34 −26.32 −54.72 −26.32 −54.72 62.74

2
SK 10.97 12.76 8.04 7.57 4.78 1.59
2C 7.86 9.28 3.59 5.51 2.13 2.58
% −28.31 −27.29 −55.32 −27.29 −55.32 62.74

Comparison of the values presented in Table 8 shows that for 2C sections, where critical resistance
is determined by cantilever walls, “local” critical moments ML

cr,s determined according to CPM were
lower in relation to corresponding box sections by approx. 24.3% for t = 5 mm, up to 27.3% for t =

2 mm. For ML
cr,p, the differences ranged from 25.4% for t = 5 mm to 28.3% for t = 2 mm. For MEC3

cr ,
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the reduction was 53.5% for t = 5 mm to 55.3% for t = 2 mm. The same relationship occurred when
comparing the respective critical loads qcr. In this case, the relation qCP

cr /qEC3
cr for 2C sections in relation

to Sk box sections increased by 62.7%.
In turn, Table 9 compares the design ultimate resistances (MCP

e f f , qCP
e f f ) of the same beams with

box sections Sk according to Reference [6] and compound I-sections (2C), also depending on the wall
thickness. For 2C sections, the design ultimate resistances MCP

e f f ,s determined according to CPM, in
relation to the corresponding box sections Sk, were reduced by 3.1% for t = 5 mm to 5% for t = 2
mm. For MCP

e f f ,p the differences ranged from 3.8% for t = 5 mm to 5.1% for t = 2 mm. In contrast,

the reduction in MEC3
e f f ranged from 13.6% for t = 5 mm to 11% for t = 2 mm. The same relationship

occurred when comparing the respective ultimate loads qe f f . In this case, the relation qCP
cr /qEC3

cr for 2C
sections in relation to Sk box sections increased from 6.9% for t = 2 mm to 12.2% for t = 5 mm

Table 9. Comparison of design ultimate resistances of box sections (Sk) and I-sections (2C) depending
on wall thickness.

t (mm) MCP
eff,p MCP

eff,s MEC3
c,Rd

qCP
eff,s qEC3

eff qCP
eff,s/q

EC3
eff

5
SK 127.41 131.27 119.58 77.94 71.00 1.10
2C 122.56 127.15 103.28 75.50 61.32 1.23
% −3.80 −3.14 −13.64 −3.14 −13.64 12.16

4
SK 93.62 96.59 87.79 57.35 52.12 1.10
2C 89.15 92.43 75.77 54.88 44.99 1.22
% −4.78 −4.31 −13.69 −4.31 −13.69 10.87

3
SK 62.80 64.75 59.05 38.45 35.06 1.10
2C 59.47 61.51 51.38 36.52 30.51 1.20
% −5.29 −5.01 −12.98 −5.01 −12.98 9.16

2
SK 36.12 37.11 34.24 22.04 20.33 1.08
2C 34.28 35.26 30.43 20.94 18.07 1.16
% −5.10 −4.99 −11.12 −4.99 −11.13 6.91

Figure 11 shows the relation between the “local” critical moment Mcr,s (Figure 11a) and the design
ultimate resistance Me f f (Figure 11b) as a function of slenderness λCP = bs/t of the critical cantilever
plate of a compound I-section (2C).

Comparison of the graphs shown in Figure 11a showed that the “local” critical resistance and the
design ultimate resistance decreased non-linearly with increasing slenderness of the cross-section wall.
The difference between the value Mcr,s determined by the CPM method and the standard approach
according to EC3 was constant in each case of wall thickness and was +158.1%. In contrast, the decrease
of Me f f (Figure 11b) was mildly non-linear. The percentage increase of the ultimate resistance according
to CPM in relation to EC3 was basically directly proportional to the increase of the cross-section wall
thickness from about 16% for t = 2 mm (λCP = 61.5) to about 23% for t = 5 mm (λCP = 24).

The relation between the critical load qcr (Figure 12a) and the ultimate load qe f f (Figure 12b) as a
function of the span length is shown in Figure 12.
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Figure 11. Graphs of (a) Mcr,s and (b) Me f f as a function of slenderness λCP.

Comparison of the graphs shown in Figure 12 showed that an increase in the span length caused a
non-linear decrease both in qcr,s and qe f f . Moreover, it can be stated that the shorter the span, the greater
the percentage increase of the critical resistance determined according to CPM in relation to EC3 (from
158% for short beams L = 4 m, to 141% for long beams L = 7 m). For ultimate resistance (Figure 12b),
the differences in results ranged from 22% for L = 4 m to about 20% for L = 7 m, respectively).
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8. Summary and Conclusions

The new calculation model presented in this paper for the local stability loss of the first continuous
beam span, consisting of separate local buckling analysis for the span segment (loaded with a
non-linear “convex” bending moment distribution) and the support segment (in which the “concave”
moment distribution was approximated by a linear distribution) was successfully verified by numerical
simulations using the finite element method.

To improve the accuracy of the calculation of the critical resistance of a continuous beam with a
Class 4 cross-section (in which large stress gradients in the longitudinal direction are found), it was
necessary to take into account both the effect of the mutual elastic restraint of the cross-section
component plates, and the longitudinal stress variation.

The use of the critical plate method (CPM) according to Reference [10] to determine the “local”
critical resistance and the design ultimate resistance of a thin-walled I-section led to a more optimal
design of such elements. In this method, a more accurate calculation model is used, which takes into
account both the effect of mutual elastic restraint of the cross-section component plates and the effect
of longitudinal stress variation. The increase in the resistance that occurs in this case, compared to
the EC3 calculation, results from a more faithful representation of the behavior of the thin-walled
structural member in the engineering calculation model.

At the same time, it should be noted that taking into account the above effects has only a minor
impact on the complexity of calculations, which can be easily algorithmized and presented as relatively
simple spreadsheets. This is due, among other things, to the simplified identification of the so-called
critical plate and the definition of the so-called “zero” cross-sections [10]. Such assumptions allow for
a slightly conservative assessment of the cross-section resistance. In this sense, the CPM can be used
both for preliminary design or verification of FEM calculations and, in many technically important
cases, for basic design.

The “local” critical resistance defines the range of pre-critical behavior of a section and constitutes
the limit of validity of the thin-walled bar theory with a rigid cross-section contour (the Vlasov theory),
assuming unlimited elasticity of the material.

To determine the design ultimate resistance of a thin-walled cross-section, the effective width
method applied to the individual plates can be used along with the additional assumptions formulated
in Section 5, Step 12. The relative slenderness of the component plates is determined from the respective
critical stresses. For CP, these are stresses determined by taking into account the restraint coefficient
and longitudinal stress variation. For the RP, simple support and a constant stress distribution along
the length can be assumed on the same edge. Such assumptions allow for a technically precise and
sufficient calculation of the resistance of a thin-walled cross-section.
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In the case of a continuous beam under uniform load, the segment that determines the resistance
of the structure is the support segment (Ms) of the first span, where the “local” critical resistance is first
achieved, followed by the design ultimate resistance.

For the analyzed continuous beam made of a welded section I-300×5×250×5 and calculated
according to CPM (Section 7.2), a 121% increase in the critical resistance qcr was determined, which
translated into a 23% increase in the design ultimate resistance qe f f in relation to the calculations done
according to EC3.

In the case of the same continuous beam but made of a compound section 2C-250×250×4 and
calculated according to CPM, there was a 158% increase in the critical resistance qcr, which translated
into a 22% increase in the design ultimate resistance qe f f in relation to the calculations done according
to EC3.

The comparison of the resistance parameters of continuous beams with box sections Sk according
to Reference [6] and the compound sections 2C compatible with them showed that in the calculation
according to CPM, the percentage differences (to the disadvantage of open sections 2C) were as follows:
(1) for critical resistance qcr from about 24% to 27% (more than 53% according to EC3), (2) for design
ultimate resistance qe f f only from 3 to 5%, but according to EC3, more than 13%. In this case, the use of
CPM gave greater possibility to use the resistance reserve of the so-called “non-zero” cross-sections, in
which the effect of mutual elastic restraint of cross-section component plates can be applied.

The advantage of 2C sections over box sections (assuming that the beam is protected against
lateral buckling) is the greater ease of constructing joints and assembly nodes due to free and two-sided
access to mechanical connectors (e.g., bolts). In the case of beams sensitive to lateral buckling, on the
other hand, the use of closed cross-sections is more optimal due to their much higher torsional stiffness
compared to open cross-sections.

If there are significant residual stresses (compressive) in a thin-walled cross-section, the critical
stress of local buckling is reduced. This applies especially to axially compressed welded sections [34,35].
Therefore, further testing of welded components with a high proportion of residual stresses must take
into account their adverse effects on local buckling of the cross-sections.

In open cold-formed sections (produced without welding), however, the adverse effect of residual
stresses caused by bending is usually insignificant [36] and can be omitted in most cases (this effect is
further reduced by the beneficial effect of increasing the strength of steel in cold-formed corners).

Beams with thin-walled I-sections, for which the ultimate resistance is determined by local
buckling of the bent and shear web, and continuous beams with reinforced end spans will be subject to
further study by the authors.
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