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Abstract: Currently, there are various calibration methods available to reduce the errors caused by
the polarizing section of a dual-rotating-retarder polarimeter. Although these methods have high
measurement accuracy, their robustness must be improved and the influence of the imaging section
needs be discussed when they are applied in Mueller matrix microscopes. In this paper, a method
of error source analysis and element calibration for the Mueller matrix microscope is proposed by
using error transform coefficient matrices to account for the polarizing effect of the imaging section.
Using Taylor expansion, an approximate linear relationship is established between the sources of
errors and the Mueller matrix elements of the measured sample. From this relationship, error
magnification coefficient matrices are calculated to determine the specific parameter errors in both
the polarizing and imaging sections. Furthermore, elements in the fourth row or column of the error
magnification coefficient matrix are especially important for the imaging section. The measurement
and simulation results for an air sample and a quarter-wave plate sample as the standard samples, as
well as a Daphnia organism sample with complex internal structure, are investigated and discussed.
Furthermore, the comparison results reveal the effect of the imaging section on the birefringence
characteristics of the Mueller matrix. With the proposed method, the maximum error can be reduced
to be less than 0.01 for all the matrix elements and for the amplitude parameter of birefringence, even
when the two system parameters a2 and a3 of the rotating mechanical part deviate from the default.
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1. Introduction

The technique of polarized light imaging can provide microstructural information on samples, and
the Mueller matrix offers a comprehensive description of the polarization properties of samples.
Therefore, when the polarized light imaging technique is combined with the Mueller matrix
measurement technique, microstructural information can be obtained with great effectiveness [1].
A Mueller matrix microscope is usually designed by adding both the polarization state generator
and analyzer (polarizing section) to a microscope (imaging section) and has the ability to measure
the Mueller matrix of samples via imaging, which enhances the contrast ratio of the anisotropic
structures and has been reported to be extremely helpful in biomedical diagnosis, especially for cancer
detection [2,3].

The elements of the Mueller matrix contain all the polarization information necessary for
clear and physically meaningful characterization of the measured samples; these elements, either
singly or in combination, include diattenuation, retardation, and depolarization. Mueller matrix
polar decomposition [4], Mueller matrix transformation [5], and other similar techniques based on
transforming polarization parameters are useful and proven tools in biomedicine [6,7], material
testing [8], and other fields. Unfortunately, fabrication imperfections and/or assembly misalignment of
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the polarizing components in the optical path can lead to errors in the measurement of the Mueller
matrix elements. To ensure accurate measurements, the Mueller instrument must be calibrated. One
method of doing this is to establish a stabilized optical layout by using a liquid crystal wave plate
instead of rotating the mechanical parts for the rotation of the fast axis of the wave plate in the path,
thereby improving the stability of the instrument [9]. However, when using a liquid crystal wave
plate, the spectral range of the measuring equipment is restricted to the visible spectrum. Under
these considerations, the dual-rotating-retarder configuration [10] is applied owing to its relative
simplicity. By using a wave plate made of quartz, the spectral range can be expanded from ultraviolet
to near-infrared [11]; however, this requires a rotating mechanical part and thereby introduces
measurement errors, which presents the need for further calibration.

Several improvements in the mathematical model have been suggested to calibrate the systematic
error in a dual-rotating-retarder polarimeter. Hauge treated the characteristics of the wave plate to
include diattenuation [12]. Chipman introduced a system model containing not only the retardance
error of the wave plates but also the misalignment of the polarizing elements [13]. Li introduced
the characteristics of depolarization in the wave plate [14], and Broch et al. discussed the first- and
second-order differential forms of the systematic error and presented a scheme of four-zone averaging
measurement to obtain stable results [15,16]. Ambirajan and Look [17,18] developed a polarimeter
possessing the optimal initial position for a rotating wave plate. Smith [19] further optimized the
Mueller matrix polarimeter with respect to the condition number parameter and proved that an
overspecified polarimeter with more than 16 states could significantly improve the measurement
stability, thus introducing the concept of “instrument matrix” into the polarimeter design. Specifically
speaking, there are mainly two different types of methods used to calibrate the systematic error of
a Mueller matrix measurement system. The first is the eigenvalue calibration method, which uses
a variety of standard Mueller measurement samples to realize complete modeling and calibration
of the optical system without calculating the model of each specific device of the polarization state
generator and analyzer [20]. The other type of calibration method, in contrast, requires high accuracy of
calculation of the misalignments and imperfections of the polarizing elements. The former calibration
method results in a better stability without having to change the system structure because of the
numerous standard samples, and its convenience and accuracy have been demonstrated for the
dual-rotating-retarder configuration [13,21].

As discussed above, errors related to the polarizing section of the Mueller matrix microscope
have been addressed by previous conventional calibration methods using the Fourier coefficients
of the measured intensities [10]. In our previous study, we also derived a least-square calibration
algorithm that shows high accuracy and robustness for the fundamental dual-rotating-retarder Mueller
matrix polarimeter [22]. However, because these methods neglect the parasitic polarization induced by
imperfections in elements of the imaging section, limitations may exist, and the relative errors could
lead to large errors in the calculation of important polarization parameters, such as birefringence.
In this study, we propose to completely use the mathematical model for calibration, including both
the components in the polarizing and imaging sections, by recasting the Mueller matrices of optical
elements in terms of ellipsometric angles. We analyze these systematic errors in a Mueller matrix
microscope using the Taylor expansion. Using an optimized combination of controllable error sources,
the error magnification coefficient matrices are designed to achieve an approximately linear relationship
between the source of the errors and the Mueller matrix element of the measured sample with the
precondition of ensuring robustness of the calibration result of the polarizing section. In this way,
the specific parameter errors in both the polarizing and imaging sections can be considered, and the
robustness is consequently improved.

In Section 2, we discuss the systematic error model using the Taylor expansion of the element in
the imaging section. In Section 3, we use calculations and experimental simulation to demonstrate
the effect of the proposed calibration method on the calculation of the Mueller matrix of the sample,
specifically the birefringence characteristics, by using air, which is isotropic, and quarter-wave plates,
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which are anisotropic, as the measurement sample. We also show that these errors can be eliminated or
reduced to a proper range, and we perform comparisons of the birefringence of Daphnia to demonstrate
the general applicability of the proposed method.

2. Materials and Methods

2.1. Experimental Setup

As shown in Figure 1, we set up a polarized Mueller matrix microscope in our laboratory
by integrating a polarization state generator (PSG) and a polarization state analyzer (PSA) into a
commercial microscope structure. A light-emitting diode (LED) with a center wavelength of 633 nm
and bandwidth of 10 nm was used as the light source. A lens was placed in front of the light source
to collimate the diverging light. Both the PSG and PSA contain a fixed linear polarizer (GCL-050003,
Daheng Optics, Beijing, China) and a rotating quarter-wave plate (WPQ10ME-633, Thorlabs, Newton,
NJ, USA). An electric rotary platform (KPRM1E/M, Thorlabs, Newton, NJ, USA) with angular control
precision of 1 arc sec was used to control the angular position of the quarter-wave plate. A 14-bit
charge-coupled device (CCD) sensor (Retiga R6, QImaging, Tucson, AZ, USA) was used as the
light-intensity detector.

Figure 1. (a) Photograph and (b) schematic of the Mueller matrix microscope. Here, CCD: charge-coupled
device, LED: light-emitting diode, PSA: polarization state analyzer, and PSG: polarization state generator.

The light emitted by the light source passes through the collimating lens, PSG, measured sample,
commercial objective lenses (marked as low polarization or even nonpolarizing [23]), and PSA before
being detected by the CCD camera. One common measurement scheme consists of 30 different
intensities detected by the CCD; at each step, the wave plate in the PSG is rotated by 6

◦

, and the
wave plate in the PSA is rotated by 30

◦

[11]. This measurement scheme has a condition number of
the instrument matrix of about 20, which is a minimum value [19], and the measurement scheme
was adopted for our instrument. Finally, the Mueller matrix elements were computed from the
measured intensities.
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2.2. Mathematical Model and Calibration Algorithm

As discussed above, system models of a dual-rotating-retarder polarimeter were developed. The
Mueller matrix measurement generally involves the establishment and solving of the linear equations
described in Equation (1),

→

P = W
→

M (1)

where
→

M is a 16-element column vector composed of all the Mueller matrix elements of the measured

sample,
→

P is an N-element column vector (where N is 30 times the intensity measurement in the
system, as discussed above) composed of the light intensities detected, and W is an N × 16 polarimetric
measurement matrix. In the conventional calibration method, however, the instrument matrix W is
defined by the parameters of the polarizing elements in the PSG and PSA. Orientation errors of the
polarizing elements and retardance errors of the retarders are the primary sources of error, and the
evaluation of system parameters a2, a3, a4, b2, and b3 is used to characterize the errors [13]. The system
parameters are defined in Figure 2, where a2 is the angle between the fast axis of the quarter-wave
plate and the principal axis of the polarizer in the PSG at the initial time, a3 is the angle between the
fast axis of the quarter-wave plate in the PSA and the principal axis of the polarizer in the PSG at the
initial time, a4 is the angle between the principal axes of the polarizers in the PSG and PSA, and b2

and b3 are measures of the actual retardation of the wave plates in the PSG and PSA, respectively;
using default values of 0◦, 0◦, 0◦, 90◦, and 90◦, a2, a3, and a4 were evaluated to indicate the orientation
errors of the quarter-wave plate in the PSG, the quarter-wave plate in the PSA, and the polarizer in the
PSA, respectively, while b2 and b3 were evaluated to indicate the retardance errors of the quarter-wave
plates in the PSG and PSA, respectively.

Figure 2. Five system parameters in the polarizing section.

The aforementioned system parameters are used in the polarizing section. In the proposed
calibration method, a mathematical model of the imaging section is implemented. To unify the
representation of optical elements, we describe the Mueller matrices for each optical element as a
function of the system parameters θ, ψ, and ∆. The partially polarizing effect (ψ) and the phase-shifting
effect (∆) are given by Equation (2):

M(θ,ψ, ∆) = R(−θ)


1 − cos(2ψ) 0 0

− cos(2ψ) 1 0 0
0 0 sin(2ψ) cos(∆) sin(2ψ) sin(∆)
0 0 − sin(2ψ) sin(∆) sin(2ψ) cos(∆)

R(θ) (2)
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where ψ and ∆ correspond to the usual ellipsometric angles related to the Fresnel coefficients; θ
denotes the principle axis orientation angle of different optical elements; and R(θ) is the rotation matrix
expressed as follows:

R(θ) =


1 0 0 0
0 cos(2θ) − sin(2θ) 0
0 sin(2θ) cos(2θ) 0
0 0 0 1

. (3)

The system parameters θ, ψ, and ∆ in Equation (2) and those in Figure 2 show significant
similarities, i.e., the system parameters ∆, b2, and b3 have the polarization meaning of retardance, and
θ, a2, a3, and a4 have the physical meaning of angles between the principle axes of different elements.
Furthermore, we usually set the principle axis of the first polarizing element to 0◦. To model the
imaging section in the Mueller matrix microscope, we recast the Mueller matrix of the objective lens
using Equations (2) and (3) with the polarization parameters θO, ψO, and ∆O. To make the Mueller
matrices of the objective lens and air similar, i.e., similar to the identity matrix, the default values of
θO, ψO, and ∆O are set to 0, π/4, and 0, respectively. Furthermore, if the values of θO, ψO, and ∆O
deviate from the default values, the objective lens will cause a change in the polarization characteristics
of the incident light. Therefore, the instrument matrix depends not only on the parameters of the
polarizing elements but also on those of the objective lens in the imaging section, which can change the
polarization state of the incident light.

The conventional calibration method involves derivation of the equations using the Fourier
coefficients of the measured intensities, and the calibration performance was reported in Reference [10].
However, the robustness of this method needs to be improved, and the polarization influence, i.e., the
birefringence effect of the imaging section must be discussed. In the present study, we re-establish the
relationship between the errors caused by the optical elements, including the objective lens, and the
Mueller matrix measurement result of the sample. First, it is important to note that random errors of
light intensity are also a potential source of measurement error, and as such, Equation (1) should be
modified to

→

P + ε
→

P= (W + εW)(
→

M + ε
→

M) (4)

where ε
→

P is the error of the light intensity measured by the CCD, ε
→

M is the error of the Mueller
matrix of the sample, and εW is the error caused by misalignments and imperfections of the polarizing
elements and objective lens introduced in the process of constructing the instrument matrix. Then,
according to Equations (1) and (4),

ε
→

M = pinv(W + εW)ε
→

P − pinv(W + εW)εW·
→

M (5)

where the symbol pinv indicates pseudoinverse. In the present dual-rotating-retarder configuration,
two fixed linear polarizers are placed in front of the light source and the CCD; therefore, the sensitivity
of the CCD and the error caused by the partially polarized source are not considered. Thus, the most

crucial factor determining ε
→

P is the light intensity stability of the light source, and this random error
could be reduced by performing repeated measurements. As the light intensity stability of the light
source depends on the specific light source used, we will not describe it further in this paper and will
reduce Equation (5) to

ε
→

M = −pinv(W + εW)εW·
→

M. (6)
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The instrument matrix used in the experiment is defined by Wexp = W + εW. It depends on the

various sources of error: Wexp(x1, x2, . . . , xn), where the jth error source x j has the default value x(0)j .
Then, Wexp can be expanded in a Taylor series as

Wexp(x1, x2, . . . , xn) = W(x(0)1 , x(0)2 , . . . , x(0)n ) +
n∑

j=1

∂W
∂x j

(x j − x(0)j )

+ 1
2!

n∑
j,k=1

∂2W
∂x j∂xk

(x j − x(0)j )(xk − x(0)k ) + . . .
(7)

Furthermore, when the higher-order terms in Equation (7) are small, they can be ignored. We first
substitute W + εW with Wexp, where εW is the first-order term in Equation (7) and x j − x(0)j is defined
as εx j. Then, Equation (6) approximately becomes

ε
→

M ≈ −
n∑

j=1

pinv(Wexp)
∂W
∂x j

→

Mεx j

∣∣∣∣∣∣∣∣
x j=x j

(0)

. (8)

The aforementioned expression can be written more succinctly as

ε
→

M ≈
n∑

j=1

→

H jεx j

→

H j = pinv(Wexp)
∂W
∂x j

→

M
(9)

where the 16-element error-magnifying column vector
→

H j is introduced to describe the approximately
linear mapping between the error sources and the corresponding computed errors of the Mueller
matrix. Thus, we can evaluate the errors of the Mueller matrix elements of the sample numerically by
using Equation (9).

3. Application and Discussion

We applied the proposed calibration method to a standard sample of air (under stable measuring
conditions with a temperature of 23.1 ◦C and humidity of 51%), based on the configuration illustrated
in Figure 1, to demonstrate the influence of birefringent parasitic polarization on the Mueller matrix
elements of the objective lens in the imaging section and to validate the adaptability of the proposed
calibration procedure when using the improved error-propagation model. To examine the general
performance, we visually examined and quantified the measurement results of the elements M24, M34,
M42, and M43, together with the polarization parameter t3 derived from these elements, as expressed
in Equation (10) [24] (which characterizes the amplitude value of birefringence), for an air sample and
a quarter-wave plate sample as the standard samples and a Daphnia organism sample with complex
internal structure.

t3 =

√
(M42)

2 + (M34)
2

2
=

√
(M43)

2 + (M24)
2

2
(10)

3.1. Calibration Application on a Standard Sample of Air

As mentioned in the introduction section, for the polarizing section, it is sufficient to use the
conventional calibration method based on the discrete Fourier coefficients [13,15,16] illustrated in
Appendix A. However, in the case of important polarization parameters such as birefringence, the
imaging section should be considered for accurate measurement results. We performed computer
simulations and experimental measurements on a standard sample of air to reveal the cause of the
errors arising from the polarizing section and the imaging section and their propagating effects on
the Mueller matrix measurement results. The robustness of the proposed calibration methods was
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investigated in comparison to the conventional calibration method. It can be seen from Equation (9) that,
assuming an optimized combination of controllable small errors when measuring under stable system
conditions, the errors of the measurement results caused by different error sources are independent of
each other, i.e., εx j is independent of εxi( j , i); therefore, we can separately calibrate the polarizing
section and imaging section.

When calibrated using the conventional calibration method, the maximum error for the absolute
values of the Mueller matrix elements of the measurement configuration without an objective lens
could be reduced to 0.01. With the same predefined values of the PSG and PSA (a2, a3, a4, b2, and
b3 set to 0◦, 0◦, 0◦, 90◦, and 90◦, respectively), we first analyzed the parasitic polarization effects in
the objective lenses of the imaging section using the conventional method. The Mueller matrix of the
objective lens is discussed as follows. This matrix was set to Mobj(0,π/4, 0), identical to the Mueller
matrix of air, and this indicated that there were no effects caused by the objective lens. In this case, we
obtained the error magnification coefficient matrices of the five system parameters a2, a3, a4, b2, and b3,
as expressed in Equation (11):

Ha2 =


0 0 0 0
0 0 −4 0
−2 4 0 0
0 0 0 0

, Ha3 =


0 0 −2 0
0 0 4 0
0 −4 0 0
0 0 0 0


Ha4 =


0 0 2 0
0 0 −2 0
0 2 0 0
0 0 0 0

, Hb2 =


0 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 0

, Hb3 =


0 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 0

.
(11)

Equation (11) can be used with Equation (9) to obtain the errors in the Mueller matrix for air,
which are caused by the polarizing elements. For example, the orientation error of the quarter-wave
plate in the PSG (a2) influences the Mueller matrix elements M23, M31, and M32, and the orientation
error of the quarter-wave plate in the PSA (a3) influences the Mueller matrix elements M13, M23, and
M32. However, it also follows from Equation (11) that the error magnification coefficients that may
influence the Mueller matrix elements M11, M14, M24, M34, M41, M42, M43, and M44 are zero, implying
that the current system parameters in the polarizing section have no effect on these matrix elements.

Generally, the Mueller matrix should be analyzed in normalized form, and the influence on the
matrix element M11 is therefore ignored. The error sources for the other matrix elements need to be
investigated. For the conventional calibration method, as described in Table A1, the Fourier coefficients
α3, α4, α6, α7, α9, α11, β1, β3, β5, β7, β9, and β11 are combinations of one or more terms from the fourth
row or column of the Mueller matrix. However, the system parameters in the polarizing section are
calculated in terms of α2, α6, α8, α10, β2, β6, β8, and β10, while the system parameter a3 is calculated
in terms of α6. Therefore, the fourth row and column of the Mueller matrix have been regarded as
redundant and ignored. This, however, results in information loss and calibration inaccuracy. From
Equation (11), it can be observed that the matrix elements in the fourth row and fourth column of the
error magnification coefficient matrices of the polarizing section are all zeros. To discuss whether these
results were the outcome of some particular default values, we also assigned values other than the
default values to the system parameters in the polarizing section. The results show that the calculated
error magnification coefficients are stable, and the elements in the fourth row and column are always
near zero when the five system parameters simultaneously deviate from the default; this indicates
that the errors of the measurement system that propagate to these elements cannot be calibrated using
the conventional method. One simulation result for the error transform coefficient matrix is shown
in Figure 3, where the horizontal axis of each subfigure corresponds to the five parameters in the
polarizing section, the vertical axis corresponds to the simulation times, and different colors correspond
to the values of the matrix elements. As the maximum absolute value of any element of the error
transform coefficient matrices in Equation (11) is 4, random values in the range of −0.05 to 0.05 were
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assigned to every system parameter (this range was used because it results in a maximum absolute
error of 0.2 before the calibration and is available for the visualization of the results, according to the
calculated values determined using Equation (9)). Thus, the error magnification coefficient matrix of
the imaging section is supplemented, thereby reflecting the error induced by the objective lens, and the
calculated results are presented by Equation (12):

HθO =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, HψO =


0 2 0 0
2 0 0 0
0 0 0 0
0 0 0 0

, H∆O =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

. (12)

Figure 3. Simulation results of the error transform coefficient matrix of the polarizing section of the
microscope using the conventional calibration method. In each subfigure, the horizontal axis shows the
five polarizing section system parameters, and the vertical axis shows the time. The range of colors
indicates the numerical values of the matrix elements. All the values of the fourth row or column are
approximately zero, and the element errors caused by the polarizing section are less than 0.01 on these
elements for the air sample.

The calculated results for rotation angle θO and ellipsometric angles ψO and ∆O are shown in
Equation (12). Because all the elements in HθO are zero, Equation (12) indicates that the rotation angle
θO has no effect at any point in time. To test whether the zero results were caused by particular
default values, deviating values were once again assigned to the parameters, and the Mueller matrix of
the objective lens was reset to Mobj(0.01,π/4 + 0.01, 0.01), although 0.01 is the recommended value
according to our experimental results. The error magnification coefficients of the polarizing section
were recalculated to ensure accurate calibration. The results, as presented in Table 1(a), Table 1(b), and
Figure 4a, show that the maximum error could usually be reduced to 0.01 or less. Elements M24, M34,
M42, and M43, even after the polarizing section was calibrated, constitute an exception; therefore, these
elements must have been mainly influenced by the imaging section, instead of the polarizing one.
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Table 1. Average values for the measured Mueller matrix of air (a) before calibration, (b) after calibrating
the polarizing section, and (c) after calibrating both the polarizing and imaging sections.

(a)

1 −0.0724 0.0191 −0.0027
−0.1078 1.1662 −0.1303 −0.0497
−0.0251 1.1151 1.1505 0.0820
0.0054 0.0554 −0.0785 0.9956

(b)

1 −0.0036 −0.0027 0.0005
−0.0030 1.0095 0.0060 −0.0534
−0.0024 0.0048 0.9969 0.0730
0.0007 0.0476 −0.0725 1.0001

(c)

1 −0.0036 0.0053 −0.0002
−0.0039 1.0013 −0.0098 0.0070
0.0030 −0.0001 0.9996 0.0087
−0.0008 −0.0025 −0.0084 1.0033

Figure 4. Measured Mueller matrix elements of air, presented on a colormap, (a) after calibrating the
polarizing section and (b) after calibrating both the polarizing and imaging sections. The M24, M34,
M42, and M43 elements are closer to zero in (b) as compared to (a), indicating that the imaging section
mainly influences the calibration results of these four elements.

Next, the proposed calibration method was applied. Considering the imaging section as well
as the polarizing section, the Mueller matrix of air was recalculated; the results are presented in
Table 1(c) and Figure 4b, which show that the maximum errors were reduced to less than 0.01 for all the
elements. The calibrated system parameters were a2 = −0.0093, a3 = 0.0290, a4 = 0.0263, b2 = 0.0992,
b3 = 0.0631, θO = 0.2769, ψO = 0.7844, and ∆O = −0.0905.

To test the robustness of the proposed method, the system parameters a2 and a3 were also set
to several different values around their default values. These two system parameters were singled
out because they can be precisely controlled and constrained in a particular range to avoid a large
condition number of the instrument matrix. Thus, the values of the system parameters a2 and a3 were
set to −15◦, −10◦, −5◦, 0◦, 5◦, 10◦, and 15◦.

Figures 5 and 6 show the calibration results for the air sample when a2 and a3 deviate from their
default values; Figures 5a and 6a correspond to a2, while Figures 5b and 6b correspond to a3. The
vertical axis shows the difference between the calibration and assumed values. The experimental results
clearly show that the calibration result of b3 determined using the conventional calibration method is
unstable (Figure 5b), but the calibration result with the proposed method (Figure 6b) fluctuates only
slightly, and the standard deviations of b3 for the conventional and proposed methods are 1.6772 and
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0.0971, respectively. In addition, the calibration results for all the other parameters in the polarizing
section have good consistency, indicating that the proposed method is highly robust.

Figure 5. Calibration results of the polarizing section using the conventional method when (a) a2 or
(b) a3 deviates from the default value.

Figure 6. Calibration results of the polarizing section using the proposed method when (a) a2 or (b) a3

deviates from the default value.

3.2. General Applicability

Measured samples often have highly variable content and quality in consideration of the
polarization properties. To examine the general applicability of the proposed calibration method,
the measurement results of samples of air were first examined; then, a quarter-wave plate with a
distinct birefringence effect was selected; and finally, Daphnia, a kind of plankton that demonstrates
hierarchical structure details in its dying process, was investigated. The polarization parameter t3,
which characterizes the amplitude value of birefringence and is derived from elements M24, M34, M42,
and M43, was considered to discuss the calibration results of the measurement. In addition, the values
of the system parameters a2 and a3 were set to −15◦, −10◦, −5◦, 0◦, 5◦, 10◦, and 15◦ in the measurement
of the air and the quarter-wave plate samples, while a2 and a3 were both set to 0◦ for the daphnia
sample to identify the improvement on its hierarchical structure details.

For the air sample, the measurement results of t3 (with a theoretical value of 0) shown in Figure 7a
are stable when a2 or a3 deviates from the default and when the average values are 0.0461 and 0.0455,
respectively, meaning that t3 is independent of a2 and a3 and that the errors caused by the imaging
section are constant. Thus, after calibrating the imaging section, the order of magnitude of the error
of t3 is reduced to 0.001, as depicted in Figure 7b. Figure 7 depicts not only the difference in the
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measurement results of t3 for the conventional and proposed calibration methods but also the stability
of the errors caused by the imaging section. In addition, the measurement results for the quarter-wave
plate sample (Figure 8b) are closer to the theoretical value of t3 (with an average error less than 0.001)
and have a stable trend, indicating more stable and accurate test results than those illustrated in
Figure 8a.

Figure 7. Measurement results of t3 for the air sample (a) after calibrating the polarizing section with
the conventional method and (b) after calibrating both the polarizing and imaging sections with the
proposed method.

Figure 8. Measurement results of t3 for the quarter-wave plate sample (a) after calibrating the polarizing
section with the conventional method and (b) after calibrating both the polarizing and imaging sections
with the proposed method.

The calibration result of parameter b3 in the polarizing section fluctuates considerably (shown in
Figure 5b), while the results in Figure 7a are constantly stable, which suggests that the birefringence
of air is mainly influenced by the imaging section. For a measurement sample that itself exhibits
birefringence, such as the quarter-wave plate (with a theoretical value of 0.5 for t3), the measurement
tendencies of t3 as shown in Figure 8a,b are similar to those of b3 in Figures 5 and 6, respectively. In
other words, the calibration results of parameter b3 affect the calculation of the birefringence parameter,
t3, of materials with strong birefringence.

Finally, we compared the calculation accuracy and the clarity of the hierarchical details of the
conventional method and the proposed method when imaging plankton samples for the t3 parameter.
A micrograph of the Daphnia sample is shown in Figure 9, and the measurement results of this sample
are shown in Figure 10.
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Figure 9. Micrograph of the Daphnia sample.

Figure 10. Measurement results of t3 for the Daphnia sample: (a,c,e) after calibrating the polarizing
section with the conventional method; (b,d,f) after calibrating both the polarizing and imaging sections
with the proposed method. (c,e) correspond to enlarged views of the red and orange dotted boxes in (a),
respectively; (d,f) correspond to enlarged views of the red and orange dotted boxes in (b), respectively.

The Daphnia occupies the middle area, so the pixels at the edge correspond to the air. The t3 values
of the pixels at the edge in Figure 10a are larger than those in Figure 10b; on the other hand, the pixels
corresponding to the Daphnia also have large errors, and the birefringence features at these pixels are
smaller than the errors caused by the imaging section, thereby leading to an erroneous judgment of
the birefringence of the sample. For instance, the values in the red dotted box approximately range
from 0.15 to 0.23 in Figure 10c and from 0.29 to 0.47 in Figure 10d, and the values of the orange dotted
box area approximately range from 0.15 to 0.36 in Figure 10e but from 0.03 to 0.21 in Figure 10f. The
comparison results shown in Figure 10 are similar to those obtained for the air and quarter-wave plates,
i.e., when the birefringence of the sample is weak, the calculated value of t3 is larger than its theoretical
value, but t3 is smaller than its theoretical value for the sample with strong birefringence. Then, the
polarization features of Daphnia were recovered, as shown in Figure 10b; this is unlike the results
presented in Figure 10a, where the experimental results were severely distorted by the birefringence
of the imaging section. Thus, the proposed method possesses considerable advantages in terms of
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improving the estimation accuracy of the birefringence caused by the internal structures of the Daphnia
and retaining more details of the hierarchical structure of the tissue.

4. Conclusions

We reviewed the configuration for the Mueller microscope (including the imaging section),
modeled it mathematically, and presented an intuitive and quantitative scheme for error analysis and
calibration. Using the Taylor expansion together with an optimized combination of controllable error
sources, we established a relationship between the source of the errors and the calculated Mueller matrix
elements. The resulting error magnification coefficient matrices can not only be used to investigate the
influence of individual elements in the Mueller matrix but are also helpful for calibrating the imaging
section in the Mueller matrix microscope. A comparison of the experimental results confirms that
the imaging section introduces measurement error in the Mueller matrix elements, specifically in the
fourth row and column. The parasitic polarization of the objective lens can be characterized by the
polarization parameter, which describes the birefringence. The maximum error can be reduced to 0.01
after calibrating both the polarizing and imaging sections. Thus, the proposed method is expected
to be more advantageous than the conventional methods when using the Mueller microscope in the
fields of biomedicine, material testing, and other applications that require accurate knowledge of the
elements of the fourth row or column of the Mueller matrix. This method should also be helpful for
calibrating particular error sources with large error magnification coefficients. This method is limited
by the assumption that the systematic errors are small and that the calculation results for different
error sources are mutually independent.
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Appendix A

For the conventional method [10], the Fourier coefficients of the light intensities contain all
the polarization information of the measurement sample, and the relationship between the Fourier
coefficients and the Mueller matrix elements of the sample is presented in Table A1.

Table A1. Correspondence between the elements of the Mueller matrix and discrete Fourier coefficients
of index n.

n αn βn

0 1
4 M11 +

1
8 M12 +

1
8 M21 +

1
16 M22

1 0 1
4 M14 +

1
8 M24

2 1
8 M12 +

1
16 M22

1
8 M13 +

1
16 M23

3 −
1

16 M43 −
1
16 M42

4 −
1
8 M44 0

5 0 −
1
4 M41 −

1
8 M42

6 1
8 M44 0

7 1
16 M43 −

1
16 M42

8 1
32 M22 +

1
32 M33 −

1
32 M23 −

1
32 M32

9 1
16 M34 −

1
16 M24

10 1
8 M21 +

1
16 M22

1
8 M31 +

1
16 M32

11 −
1

16 M34
1

16 M24

12 1
32 M22 −

1
32 M33

1
32 M23 +

1
32 M32



Appl. Sci. 2020, 10, 4422 14 of 15

Table A1 presents the discrete Fourier coefficients in terms of Mueller matrix elements.
Equation (A1) below expresses the five system parameters of the polarizing section in terms of
the discrete Fourier coefficients.

a2 = 1
4 arctan(α8

α8
) − 1

4 arctan( β10
β10

),

a3 = 1
2 arctan( β2

α2
) − 1

2 arctan( β6
α6
) + 1

4 arctan( β8
α8
) − 1

4 arctan( β10
α10

),

a4 = 1
2 arctan( β2

α2
) + 1

2 arctan( β8
α8
) − 1

2 arctan( β10
α10

),

b2 = arccos[ α10 cos(4a3−4a2−2a4)−α8 cos(4a3−2a4)
α10 cos(4a3−4a2−2a4)+α8 cos(4a3−2a4)

],

b3 = arccos[ α2 cos(4a3−4a2−2a4)−α8 cos(4a2−2a4)
α2 cos(4a3−4a2−2a4)+α8 cos(4a2−2a4)

].

(A1)
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