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Featured Application: The proposed model can be employed as a useful tool in the preliminary
design and stability analysis of a tunnel reinforced by fully grouted passive bolts.

Abstract: The use of fully grouted passive bolts as a reinforcement technique has been widely applied
to improve the stability of tunnels. To analyze the behaviors of passive bolts and rock mass in a deep
circular tunnel, a new semi-analytical solution is presented in this work based on the finite difference
method. The rock mass was assumed to experience elastic–brittle–plastic behavior, and the linear
Mohr–Coulomb criterion and the nonlinear generalized Hoek–Brown criterion were employed to
govern the yielding of the rock mass. The interaction and decoupling between the rock mass and
bolts were considered by using the spring–slider model. To simplify the analysis process, a bolted
tunnel was divided into a bolted region and an unbolted region, while the contact stress at the
bolted–unbolted interface and the rigid displacement of the bolts were obtained using two boundary
conditions in combination with the bisection method. Comparisons show that the results obtained
using the proposed solution agree well with those from the commercial numerical software and the in
situ test. Finally, parametric analyses were performed to examine the effects of various reinforcement
parameters on the tunnel’s stability. The proposed solution provided a fast but accurate estimation of
the behavior of a reinforced deep circular tunnel for preliminary design purposes.

Keywords: fully grouted passive bolts; deep and circular tunnel; generalized Hoek–Brown criterion;
Mohr–Coulomb criterion

1. Introduction

Rock bolts have been used in underground engineering to stabilize rock masses for more than
100 years [1]. At present, many kinds of rock bolts have been developed, among which, fully grouted
passive bolts are the most popular type and have been widely employed due to their economical and
convenient nature. The analytical solution for a deep circular tunnel reinforced with passive bolts in a
hydrostatic field is a classical problem in underground engineering. Although the practicability of
the analytical solutions is limited by their assumptions, they can be employed to quickly assess the
mechanical behaviors of the rock mass and reinforcement and can be used for preliminary design
analyses or the pre-dimensioning of the reinforcement [2,3].
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By assuming that the rock mass and the passive bolts have the same strain—that is, no relative
displacement occurs at the bolt–rock interface—a series of analytical and semi-analytical solutions
were formulated by many authors [2,4–13] in terms of the elastic, viscoelastic, and elastoplastic rock
mass, starting in the 1980s. However, according to the in situ test results reported by Freeman [14],
the relative displacement between the bolts and rock mass is produced with the advance of the tunnel
face, which results in shear stresses at the bolt–rock interface and induces a tension force in the bolts.
In addition, Cui et al. [15] reported that this assumption causes an overestimation of the tensile force in
the bolts and leads to an overly conservative design. Therefore, it is necessary to reasonably consider
the interaction between the bolts and the rock mass.

To simplify this problem, an equivalent material method was developed by Indraratna and
Kaiser [16,17] to consider a proper interaction mechanism, and the analytical solution for a reinforced
deep circular tunnel in a Mohr–Coulomb rock mass is proposed. Osgoui and Oreste [18,19] and
Osgoui and Ünal [20] improved this solution by incorporating the Hoek–Brown failure criterion
to represent the rock mass behavior using a more rigorous assessment of the strain compatibility.
However, these solutions determine the position of the neutral point of the passive bolts using an
empirical equation [21] instead of a rigorous theoretical analysis. The empirical equation assumes
that the position of the neutral point is only related to the tunnel radius and the bolt length, which is
inconsistent with the results reported by Cai et al. [22,23] and Li and Stillborg [24], which state that the
position of the neutral point is related to the properties of the bolts and rock mass.

The aforementioned studies show that it is quite difficult to derive an analytical solution to
reasonably assess the interaction between passive bolts and the rock mass due to the complexity of this
problem. Guan et al. [25], Oreste [26], and Tan [27,28] all proposed a semi-analytical solution of great
interest; however, Guan et al. [25] mechanically defined the position of the neutral point and neglected
the effect of the end plate. Oreste [26] modeled the shear distribution at the bolt–rock interface with a
predefined interaction curve for the shear stress. Guan et al.′s and Oreste′s solutions are limited to the
Mohr–Coulomb failure criterion. Moreover, in both Guan et al.′s and Tan′s solutions, the advance
of the tunnel face is simulated using a gradually decreased support pressure from the initial stage to
the final stage. In each intermediate stage, an iterative process is required to evaluate the mechanical
behaviors of the passive bolts and rock mass; therefore, numerous stages are needed to ensure the
accuracy of the analysis, which is cumbersome and time-consuming. Recently, Cui et al. [15,29]
proposed an ingenious and improved semi-analysis solution by considering only the initial and final
stages (i.e., no intermediate states); however, this solution is limited to the Mohr–Coulomb failure
criterion and the behavior at the bolt–rock interface is assumed to be linear elastic for simplicity,
which is inconsistent with experimental results showing that the decoupling generally occurs at the
rock–bolt interface. This assumption may overestimate the reinforcement effectiveness of passive bolts
and result in an unsafe design.

To overcome the above deficiencies, a new semi-analytical method was established in this study.
Section 2 describes the behaviors of the passive bolts and the rock mass in a deep circular tunnel, as
well as the basic equations. Section 3 presents the details of the semi-analytical solution. Section 4
verifies the proposed solution via comparisons with the results from the commercial numerical software
FLAC3D (Version 5.0, Itasca Consulting Group, Inc., Minneapolis, MN, USA) and in situ tests. Section 5
discusses the model’s behavior with a series of parametric studies.

2. Definition of the Problem

2.1. Basic Assumptions

A reinforced deep circular tunnel is illustrated in Figure 1, and the following assumptions were
made to solve this problem:

(1) Under the plane strain condition, a deep circular tunnel of radius R is excavated in an infinite
isotropic, continuous, homogeneous, and elastoplastic rock mass with a hydrostatic stress field p0.
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(2) The rock mass experiences elastic–brittle–plastic behavior, and the yielding of the rock mass is
governed by the linear Mohr–Coulomb criterion or the nonlinear generalized Hoek–Brown criterion.

(3) The passive bolts with length lb are installed uniformly around the tunnel. In the transverse
section perpendicular to the axis of the tunnel, the angle between two adjacent bolts is ω. In the
longitudinal section parallel to the axis of the tunnel, the spacing between two adjacent bolts is lz.
Therefore, the tributary area of each bolt is assumed to be lzrω (r denotes the radial distance in the rock
mass to the tunnel center).
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Figure 1. A deep circular tunnel reinforced with passive bolts: (a) the cross-section and (b) the
longitudinal section.

2.2. Tunnel Face Effect during Tunneling

As shown in Figure 1, a support pressure p is applied on the tunnel periphery by the tunnel face
effect, and its value gradually decreases to 0 with the advance of the tunnel face. Therefore, due to the
tunnel face effect, the behavior of a deep tunnel during tunneling is essentially a three-dimensional
problem. The bolts are installed behind the tunnel face, where the support pressure is βp0 (β is the
coefficient of the tunnel face effect) and the corresponding rock displacement is uini

r (the initial radial
displacement of the rock mass), while the bolts are yet to work at this moment. Then, the support
pressure decreases during the advance of the tunnel, which leads to an increase of the radial displacement
of rock mass ur and the interaction between the rock mass and bolts. The tunnel face effect can be
approximated using the β-method.

The β-method consists of two steps: (1) the tunnel is excavated and a support pressure βp0 is
applied to the tunnel periphery, and (2) the bolts are installed and the stress βp0 is shared by the ground
and the bolts during the advance of the tunnel. The magnitude of β is related to the distance between
the installation position and the tunnel face, where a large distance is associated with a small β and
vice versa. The magnitude of β must be known a priori, and its value strongly depends on the ground
condition, excavation method, etc. The value of β can range from 0.2 to 0.8 [2,30].

2.3. Equation of Equilibrium

For this axisymmetric problem, the equilibrium equation of the rock mass in an unbolted deep
circular tunnel is:

dσr

dr
=

σθ − σr

r
, (1)

where σr and σθ are the radial and tangential stresses, respectively.
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As shown in Figure 2a, an infinitesimal element of the bolted rock mass is subjected to a radial
stress σr, a tangential stress σθ, and a tension force in the bolt Fn. Supposing that the tension force
can be spread uniformly around its tributary area lzrω, the equilibrium equation of an infinitesimal
element of the bolted rock mass (Figure 2b) can be expressed as:

(σr + dσr)(r + dr)dθ− rσrdθ− 2 sin
dθ
2
σθdr +

dFn

ωlz
dθ = 0. (2)

Since the angle dθ is infinitesimal, sin(dθ/2) = dθ/2. According to Figure 2a, the axial force in an
infinitesimal bolt element dFn = πdsτsdr. Therefore, Equation (2) can be simplified to:

dσr

dr
=

σθ − σr

r
+
πdsτs

lzrω
, (3)

where τs is the shear stress at the bolt–rock interface and ds is the effective diameter of the bolts;
see Section 2.7 for the determination of τs and ds.
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Figure 2. Static equilibrium condition for an infinitesimal element of the bolted rock mass: (a) stresses
in the rock mass and bolt tension and (b) equivalent stresses.

2.4. Failure Criterions

2.4.1. Mohr–Coulomb Criterion

The Mohr–Coulomb criterion is expressed as:

σθ = Nσr + Y, (4)

where N = (1 + sin ϕ)/(1 − sin ϕ) and Y = 2ccos ϕ/(1 − sin ϕ) are strength parameters; c and ϕ are the
cohesion and friction angle of the rock mass, respectively; their corresponding peak values are Np, Yp,
cp, and ϕp, respectively; and their corresponding residual values are Nr, Yr, cr, and ϕr, respectively.

2.4.2. Generalized Hoek–Brown Criterion

The generalized Hoek–Brown criterion [31] is expressed as:

σθ = σr + σci

(
mb

σr

σci
+ s

)a

, (5)
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where σci is the unconfined compressive strength of the intact rock, and mb, s, and a are semi-empirical
parameters that characterize the rock mass. Their corresponding peak values are σci,p, mb,p, sp, and ap,
respectively, and their corresponding residual values are σci,r, mb,r, sr, and ar, respectively.

2.5. Plastic Potential Equation

The Mohr–Coulomb criterion is chosen to be the plastic potential function, as follows:

g(σr, σθ) = σθ −Kψσr, (6)

whereψ is the dilatancy angle of the rock mass and Kψ = (1 + sinψ)/(1− sinψ) is the dilatancy coefficient.

2.6. Equations of Strains and Displacements

For this axisymmetric problem, the radial strain εr and tangential strain εθ can be expressed in
terms of the radial displacement ur:

εr =
dur

dr
, (7)

εθ =
ur

r
. (8)

2.6.1. In an Elastic Region

According to Hooke’s law, the elastic radial and tangential strains can be obtained using:

εe
r =

1
2G

[(1− ν)(σr − p0) − ν(σθ − p0)], (9)

εe
θ =

1
2G

[(1− ν)(σθ − p0) − ν(σr − p0)], (10)

where G = E/2/(1 + ν), E and ν are the shear modulus, Young′s modulus, and Poisson ratio of the rock
mass, respectively.

Considering Equations (8) and (10) and the relation between the radial and tangential stresses in
an elastic region—i.e., σθ + σr = 2p0—the radial displacement ur can be expressed as:

ur =
1

2G
(p0 − σr)r. (11)

2.6.2. In a Plastic Region

The radial and tangential strains are composed of the plastic strain components (εp
r and εp

θ
) and

the elastic strain components (εe
r and εe

θ
), as follows:

εr = εe
r + ε

p
r , (12)

εθ = εe
θ + ε

p
θ

. (13)

Based on the plastic potential equation Equation (6), the plastic tangential strain and radial strain
are formulated using the plastic multiplier λ:

ε
p
r = λ

∂g(σr, σθ)
∂σr

, (14)

ε
p
θ

= λ
∂g(σr, σθ)
∂σθ

. (15)
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According to Equations (6), (14), and (15), the relation between the plastic tangential strain and
the radial strain is:

ε
p
r = −Kψε

p
θ

. (16)

By incorporating Equations (7)–(10) and Equations (12)–(16), the differential equation for the
radial displacement ur is:

dur

dr
+ Kψ

ur

r
=

1
2G

(C1σr + C2σθ −C3p0), (17)

where:
C1= 1− ν−Kψν, C2 = Kψ −Kψν− ν, C3 = C1 + C2.

2.7. Interaction between the Rock Mass and the Passive Bolts

The pull-out tests show that the load–displacement curve is non-linear because of the decoupling
at the bolt–rock interface and the confining pressure influences the shear strength of the interface
greatly [32,33]. The spring–slider model [25] was employed here to characterize the relationship
between the relative displacement ∆us and shear stress τs at the bolt–rock interface, as shown in
Figure 3.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 22 

( ),p r
r

r

g θσ σ
ε λ

σ
∂

=
∂ , 

(14) 

( ),p rg θ
θ

θ

σ σ
ε λ

σ
∂

=
∂ . 

(15) 

According to Equations (6), (14), and (15), the relation between the plastic tangential strain and 
the radial strain is: 

=p p
r Kψ θε ε−

. (16) 

By incorporating Equations (7)–(10) and Equations (12)–(16), the differential equation for the 
radial displacement ur is: 

( )1 2 3 0
1

2
r r

r
du uK C C C p
dr r Gψ θσ σ+ = + −

, 
(17) 

where: 

1=1C Kψν ν− − , 2C K Kψ ψν ν= − − , 3 1 2+C C C= .  

2.7. Interaction between the Rock Mass and the Passive Bolts 

The pull-out tests show that the load–displacement curve is non-linear because of the decoupling 
at the bolt–rock interface and the confining pressure influences the shear strength of the interface 
greatly [32,33]. The spring–slider model [25] was employed here to characterize the relationship 
between the relative displacement Δus and shear stress τs at the bolt–rock interface, as shown in 
Figure 3.  

 
Figure 3. The spring–slider model of the bolt–rock interface. 

The shear stress τs and tension force Fn of the bolt can be expressed as: 

tan ,

tantan ,

,

,

s

s

s
s

s s s s

s
s

s
s

s
s s

K u K u
c

c

d d
K u

dθ

θ

θ

π π
τ

σ

σ ϕ

ϕ

σ ϕ
π

Δ Δ ≤=  Δ >


+

+
 (18) 

Δus

1

cs

σθ tanφs

sτ

s

s

K
dπ

before 
decoupling decoupling 

Figure 3. The spring–slider model of the bolt–rock interface.

The shear stress τs and tension force Fn of the bolt can be expressed as:

τs =

Ks∆us
πds

, Ks∆us
πds
≤ cs + σθ tanϕs,

σθ tanϕs,
Ks∆us
πds

> cs + σθ tanϕs,
(18)

Fn =

0 r = R + lb,∫ r
R+lb

πdsτsdr r < R + lb,
(19)

where:

∆us = ur − uini
r − urig

b − uelo
b , uelo

b =

∫ r

R+lb

Fn

EbAb
dr.

Ks, cs, and ϕs are the shear stiffness, cohesion, and friction angle at the rock–bolt interface,
respectively; Ab is the cross-sectional area of the bolt; urig

b and uelo
b are the rigid displacement and

the elongation of the bolt, respectively; ds is the effective diameter of the bolt, as shown in Figure 4,
which may equal the diameter of the bolt, grout hole, or inside the grout because these interfaces are
relatively weak in pull-out tests; and rb = R + lb is the radial distance from the far end of the bolt to the
tunnel center. Note that Ks, ds, cs, and ϕs can be easily obtained from conventional pull-out tests [25].
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As shown in Figure 5, the compression between the end plate and rock mass produces a tension
force Fn(R) (Equation (20)) at the near end of the bolt and support pressure pep (Equation (21)) on the
tunnel periphery. These two equations were used as boundary conditions in the calculation procedure
(Appendix B):

Fn(R) = Kep∆us(R), (20)

pep =
Fn(R)

lzRω
, (21)

where Kep is the stiffness of the end plate, where Kep = 0 in the absence of the end plate.
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Figure 5. Schematic representation of the interaction between the rock mass and the end plate:
(a) undeformed rock mass and (b) deformed rock mass.

Note that, compared with the original spring–slider model [25], the effects of the bolt elongation
and the end plate were considered in this work.

3. Stress–Strain Analysis of the Rock Mass and Passive Bolts Using the Finite Difference Method

As shown in Figure 6, to simplify the analysis process, a bolted circular tunnel was divided into
two parts: a bolted region and an unbolted region. The radial stress, tangential stress, and displacement
at the bolted–unbolted interface are σr(R+lb), σθ(R+lb), and ur(R+lb), respectively.
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3.1. Stress–Strain Analysis in an Unbolted Region

Notice that an unbolted region can be treated as an unbolted circular tunnel; therefore, stresses
and displacements in an unbolted region can be obtained by replacing p and R in the equations in
Appendix A with σr(R+lb) and R+lb, respectively.

3.2. Stress–Strain Analysis in a Bolted Region

In Figure 6, a bolted region is discretized into n annuluses with a uniform thickness ∆r, starting
from the bolted–unbolted interface. The ith annulus is bounded by two circles of r = ri−1 and r = ri.
The radial stress σr(0), tangential stress σθ(0), and radial displacement ur(0) at the outer boundary of the
bolted region (r = r(0) = R+lb) equal σr(R+lb), σθ(R+lb), and ur(R+lb), respectively. The number of the rock
mass annuluses n and inner radius rj of each annulus can be respectively expressed as:

n = lb/∆r, (22)

r(i) = r(i−1) − ∆r. (23)

For the mechanical analysis of a bolted region, first, the elastoplastic state of the rock mass in
the ith annulus is verified using Equation (4) (Mohr–Coulomb (M–C) rock mass) or Equation (5)
(Hoek–Brown (H–B) rock mass); then, the stresses and displacements in an elastic annulus can be
analyzed using the equations in Section 3.2.1; the stresses and displacements in a plastic annulus can
be analyzed using the equations in Section 3.2.2; the behaviors of the passive bolts can be analyzed
using the equations in Section 3.2.3; and the radius of the plastic region can be obtained in this process.

3.2.1. Stress–Strain Analysis in an Elastic Region

Considering Equation (3) and the relation between the radial and tangential stresses in an elastic
region—i.e., σθ + σr = 2p0—the stresses at r = r(i) can be expressed in an incremental form by using the
finite difference method, as follows:

σr(i) =
r(i)σr(i−1)+2∆rp0 + πds∆rτs(i−1)/(lzω)

r(i) + 2∆r
, (24)

σθ(i) = 2p0 − σr(i). (25)

According to Equation (11), the radial displacement at r = r(i) is:

ur(i) =
1

2G

(
p0 − σr(i)

)
r(i). (26)

3.2.2. Stress–Strain Analysis in a Plastic Region

By incorporating Equations (4) and (5) into Equation (3), the stresses at r = r(i) can be obtained.
For the M–C rock mass, the stresses at r = r(i) are:

σr(i) =
r(i)σr(i−1) + ∆rYr + πds∆rτs(i−1)/(lzω)

r(i) − (Nr − 1)∆r
, (27)

σθ(i) = Nrσr(i) + Yr. (28)

For the H–B rock mass, the stresses at r = r(i) are:

r(i)
(
σr(i) − σr(i−1)

)
= ∆r

[
σci,r

(
mb,r

σr(i)

σci,r
+ sr

)ar

+ πdsτs(i−1)/(lzω)
]
, (29)
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σθ(i) = σr(i) + σci,r

(
mb
σr(i)

σci,r
+ sr

)ar

. (30)

According to Equation (17), the radial displacement at r = r(j) is:

ur(i) =
∆rr(i)

(
C1σr(i) + C2σθ(i) −C3p0

)
+ 2Gr(i)ur(i−1)

2G
(
r(i) + Kψ∆r

) . (31)

3.2.3. Behaviors of the Passive Bolts

The shear stress at the bolt–rock interface (Equation (18)) and tension force in the bolts
(Equation (19)) at r = r(i) can be respectively expressed as:

τs( j) =


Ks∆us(i)
πds

,
Ks∆us(i)
πds

≤ cs + σθ(i) tanϕs,

σθ(i) tanϕs,
Ks∆us(i)
πds

> cs + σθ(i) tanϕs,
(32)

Fn(i) =


0 i = 0,
i∑
0
πdsτs(i)∆r i > 0,

(33)

where:

∆us(i) = ur(i) − uini
r(i) − urig

r − uelo
b(i−1)

, uelo
b(i−1)

=
i−1∑
0

Fn(i−1)

EbAb
.

The initial radial displacement uini
r(i) can be obtained by replacing p in the equations in Appendix A

with βp0. Notice that, in Equations (20)–(31), once the contact radial stress σr(R+lb) and rigid
displacement of the bolt urig

b are inputted, the behavior of a bolted tunnel can be analyzed by
repeating Equations (22)–(33) until i = n. Therefore, the key point of this solution is to determine the
reasonable values of σr(R+lb) and urig

b , where the details are listed in Appendix B.

4. Verification

The proposed solution was programmed using the MATLAB language (R2016a, MathWorks,
Natick, MA, USA), and the verification is detailed in this section.

4.1. Comparison with the Results from the Commercial Numerical Software

4.1.1. Establishment of the Numerical Model

The commercial numerical simulation software FLAC3D [34] was employed here to verify the
accuracy of the proposed model. As shown in Figure 7, only a quarter of the circular tunnel was
considered due to the symmetry of the problem. To simulate a deep tunnel under the hydrostatic
and plane-strain condition, the outer boundary was 15R from the tunnel center, and its thickness
was 1 m. Roller boundaries were set at the left and bottom boundaries, and the displacements in the
tunnel axes directions were fixed. The hydrostatic stress field p0 was applied to the outer boundary.
The passive bolts were installed uniformly around the tunnel, which was simulated using the cable
element in FLAC3D.
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4.1.2. Mohr–Coulomb Criterion

The properties employed in this section are listed in Table 1, and the parameters of the rock mass
and passive bolts were adopted from the works conducted by Bobet and Einstein [2] and Cui et al. [29],
respectively. As shown in Figure 8, the results calculated using the proposed model and the numerical
model were in excellent agreement in both the bolted and unbolted cases. Figure 8a,b indicates that
the passive bolts displayed a significant reinforcement effectiveness on the rock mass.

Table 1. The parameters of rock mass and passive bolts [2,29].

Rock Mass Passive Bolts

Symbol (Unit) Value Symbol (Unit) Value

R (m) 3 Eb (GPa) 210
p0 (MPa) 1 lb (m) 3
E (GPa) 0.5 ds (mm) 25
µ 0.2 Ab (mm2) 491

cp (MPa) 0.1 lz (m) 1
cr (MPa) 0.1 ω (◦) 10
ϕp (◦) 30 Ks (MPa) 10
ϕr (◦) 30 Kep (MN/m) 0
ψ (◦) 0 β 0.3

p (MPa) 0
cs (kPa) ∞

ϕs (◦) 0
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Figure 8. Comparison of the results calculated using the proposed model and numerical model
(Mohr–Coulomb (M–C) rock mass): (a) σr and σθ, (b) ur, (c) Fn, and (d) τs.

4.1.3. Generalized Hoek–Brown Criterion

The calculation parameters of the rock mass in Table 2 were taken from the work of Lee and
Pietruszczak [35]. Except for Ks = 20 MPa, the properties of the passive bolts employed in this section
were the same as in Table 1. The stresses and displacements of the rock mass, as well as the shear stress
and tension force of the passive bolts obtained using the two methods, are plotted in Figure 9. It can be
seen that the results of the proposed solution show good agreement with those from FLAC3D, and the
reinforcement effectiveness of the passive bolts was significant.

Table 2. The parameters of rock mass [35].

Symbol (Unit) Value Symbol (Unit) Value

R (m) 3 mb,r 2
p0 (MPa) 15 sp 4 × 10−3

E (GPa) 5.7 sr 4 × 10−3

µ 0.25 ap 0.55
σci,p (MPa) 30 ar 0.55
σci,r (MPa) 30 ψ (◦) 15

mb,p 2
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Figure 9. Comparison of the results calculated using the proposed model and numerical model
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4.2. Comparison with the In Situ Test Results from the Kielder Experimental Tunnel

The results calculated using the proposed solution were compared with the measurements carried
out in the Kielder experimental tunnel. The data were mainly from Oreste and Peila [8]. The rock mass
in which the tests were carried out was a mudstone (RMR (Rock Mass Rating) = 32 and Q (Quantitative
Classification of Rock Mass) = 0.33) with a strata thickness of 8 m. The main properties of the rock
mass and passive bolts are listed in Table 3. The values of Ks and Kep were assumed to be 70 MPa and
30 MN/m, respectively. The tension force and radial displacement after 10 days from the initial bolt are
potted in Figure 10. It can be observed that the calculation results agree well with the measured data.
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Table 3. The parameters of rock mass and passive bolts [8].

Rock Mass Passive Bolts

Symbol (Unit) Value Symbol (Unit) Value

R (m) 1.6 Eb (GPa) 210
p0 (MPa) 2.6 lb (m) 1.8
E (GPa) 5 ds (mm) 25
µ 0.25 Ab (mm2) 491

σci,p (MPa) 37 lz (m) 0.9
σci,r (MPa) 37 ω (◦) 32

mb,p 0.1 Ks (MPa) 70
mb,r 0.05 Kep (MN/m) 30
sp 8 × 10−5 β 0.3
sr 1 × 10−5 p (MPa) 0
ap 0.5 cs (kPa) ∞

ar 0.5 ϕs (◦) 0
ψ (◦) 0
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5. Discussion

The following examples are given to explain the reinforcement effectiveness and mechanical
behaviors of passive bolts. The generalized Hoek–Brown criterion was employed and the properties for
a poor rock mass were adopted from the study conducted by Osgoui and Oreste [19], as shown in Table 4.
The normalized displacement ur(R)/uub

r(R) was employed to quantitatively evaluate the reinforcement

effectiveness of the bolts, where ur(R) and uub
r(R) are the displacement at the tunnel periphery in the

bolted and unbolted cases, respectively. Note that the smaller the normalized displacement, the better
the reinforcement effectiveness.

Table 4. The parameters of the rock mass [19].

Symbol (Unit) Value Symbol (Unit) Value

R (m) 3 mb,r 0.615
p0 (MPa) 5 sp 7.3 × 10−4

E (GPa) 2.57 sr 1.7 × 10−4

µ 0.25 ap 0.516
σci,p (MPa) 30 ar 0.538
σci,r (MPa) 24 ψ (◦) 0

mb,p 0.981
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5.1. Comparison of the Solutions That Considered or Neglected Decoupling at the Bolt–Rock Interface

It was interesting to compare the results obtained from the models that considered and neglected
the decoupling at the bolt–rock interface. Note that for the model that neglected the decoupling,
the cohesion at the bolt–rock interface was fixed at ∞. The results plotted in Figure 11 show that
the calculation results of the two models were identical before decoupling, and then the model that
neglected the decoupling significantly overestimated the reinforcement effectiveness of the passive
bolts, which may result in an unsafe design. Therefore, the decoupling at the bolt–rock interface should
be considered in passive bolt designs.
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Figure 11. The results obtained from the models that considered or neglected decoupling: (a) ur(R)/uub
r(R)

,

(b) τs, and (c) Fn (Eb = 210 GPa, ds = 25 mm, Ab = 491 mm2, lz = 1 m, lb = 3 m, ω = 10◦, Kep = 0 MN/m,
β = 0.3, p = 0, cg = 1 MPa, ϕg = 40◦).

5.2. Effect of the End Plate and Shear Stiffness at the Bolt–Rock Interface

The results with different shear stiffnesses and with or without end plates are plotted in Figure 12.
In the case without an end plate, Kep = 0 MN/m, while in the case with an end plate, Kep = 20 MN/m.
As shown by the black solid line in Figure 12a, the normalized displacement decreased with the
increasing shear stiffness before a critical value (about 20 MPa in this case), beyond which, the normalized
displacement was almost constant because the shear stress at the bolt–rock interface increased with the
increasing shear stiffness (see Figure 12b), while the decoupling at the bolt–rock interface occurred
when the shear stress exceeds its capability. Moreover, Figure 12b shows that the maximum shear
stress was generated at the end of bolts; therefore, the failure of the bolt–rock interface was more likely
to start from the tunnel perimeter.

The red dashed line in Figure 12a illustrates that the end plate could effectively improve the
reinforcement effectiveness of passive bolts by about 20% and avoids decoupling at the bolt–rock
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interface, which was due to the interaction between the end plate and rock mass exerting a support
pressure on the tunnel periphery (see Figure 12c) and decreasing the shear stress (see Figure 12b).
Figure 12c shows that the maximum tensile force in the case with an end plate was significantly larger
than that in the other case, which implies that the tension failure of the bolts was more likely to occur
in the case with an end plate.
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Figure 12. The calculation results with different shear stiffnesses and with or without an end plate:
(a) ur(R)/uub

r(R)
, (b) τs, and (c) Fn (Eb = 210 GPa, ds = 25 mm, Ab = 491 mm2, lz = 1 m, lb = 3 m, ω = 10◦,

β = 0.3, p = 0, cg = 1 MPa, ϕg = 40◦).

5.3. Effect of Bolt Length and Density

The normalized displacements with different bolt lengths and densities are plotted in Figure 13a,
and the normalized bolt length lbn = lb/(rub

p − R) [27] was taken as the abscissa, where rub
p is the

plastic radius in the unbolted case. Note that if 0 ≤ lbn ≤ 1, the bolts were entirely embedded in
the plastic region; when lbn > 1.0, the bolts penetrated the elastic region. Figure 13a shows that the
normalized displacement decreased with the increasing normalized bolt length until lbn = 1.3, whereas
the longer bolts could barely take more effective reinforcement. This phenomenon can be explained as
follows: once the bolt section within the elastic region provided effective anchorage, the reinforcement
effectiveness could not be further improved by increasing the bolt length. Therefore, the far end of the
bolts should penetrate the elastic region to fully mobilize their effectiveness, while it was not necessary
to over-extend the bolts beyond the range of the plastic region [25]. Furthermore, increasing the bolt
density can result in better effectiveness (as shown by the red dashed line in Figure 13b).
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Figure 13b,c plots the tension force and shear stress with different bolt lengths and densities.
The figures show that the tension force and shear stress both increased with increasing bolt length and
decreasing bolt density, while a large length or small density could cause the tension failure of the
bolt and decoupling at the bolt–rock interface. Therefore, a reasonable length and density should be
considered in passive bolt designs.
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Figure 13. The calculation results with different bolt lengths and densities: (a) lbn, (b) τs, and (c) Fn

(Eb = 210 GPa, ds = 25 mm, Ab = 491 mm2, lz = 1 m, lb = 3 m, ω = 10◦, Ks = 50 MPa, Kep = 20 MN/m,
β = 0.3, p = 0, cg = 1 MPa, ϕg = 40◦).

6. Conclusions

A new semi-analytical solution was established in this study for the mechanical analysis of
fully grouted passive bolts and rock masses in tunnels. Comparisons and parameter analyses were
conducted to assess the behavior of the proposed solution. The main conclusions are as follows:

(1) Comparisons with numerical results and in situ results indicate that the proposed solution
could give a good estimation of the behaviors of passive bolts and rock masses in a deep circular tunnel.

(2) Compared with the model that considered the decoupling at the rock–bolt interface, a model
that neglected the decoupling may significantly overestimate the reinforcement effectiveness of passive
bolts, which may result in an unsafe design.

(3) The displacement of the rock mass decreased with increasing shear stiffness before a critical
value, beyond which, decoupling at the bolt–rock interface occurred, resulting in the reduction of the
reinforcement effectiveness.

(4) The interaction between the end plate and rock mass exerted a support pressure on the tunnel
periphery and decreased the shear stress at the rock–bolt interface, thus effectively improving the



Appl. Sci. 2020, 10, 4402 17 of 22

reinforcement effectiveness and avoiding decoupling. The maximum tensile force in the bolts in the
case with an end plate was significantly larger than that in the case without an end plate.

(5) To ensure the effectiveness and economy of passive bolts, the far end of the bolts should
penetrate the elastic region, while it is not necessary to over-extend the bolts beyond the range of the
plastic region. Increasing the bolt density can result in better effectiveness.

(6) The tension force and shear stress both increased with the increasing bolt length and decreasing
bolt density, while a large length or small density may cause the tension failure of the bolt and
decoupling at the bolt–rock interface.
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Appendix A. Stress–Strain Analysis in an Unbolted Tunnel

As shown in Figure A1, when p < pcr, the rock mass behaves in an elastic–plastic manner, and a
plastic region with radius rp and an elastic region are formed. When the support pressure is lower than
a critical value pcr, a plastic region with radius rp will be formed.
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For the M–C rock mass, pcr and rp can be obtained using [36]:

pcr =
2p0 −Yp

Np + 1
, (A1)

rp = R
[

pcr + Yr/(Nr − 1)
p + Yr/(Nr − 1)

]1/(Nr−1)

. (A2)

For the H–B rock mass, pcr and rp can be obtained using [37]:

2(p0 − pcr) = σci,p
(
mb,ppcr/σci,p + sp

)ap
, (A3)
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rp = R exp


(
mb,rpcr/σci,r + sr

)1−ar
−

(
mb,rp/σci,r + sr

)1−ar

(1− ar)mb,r

. (A4)

Equation (A3) can be solved numerically using the Newton–Raphson method.

Appendix A.1. Stress–Strain Analysis in an Unbolted Elastic Region

Resolving the differential equations composed using Equations (1) and (7)–(10) with the boundary
condition σr = pcr at r = rp and σr = p0 at r = ∞, the stresses and displacements in an elastic region
(r > rp) can be calculated using Equations (A5)–(A7):

σr = p0 − (p0 − pcr)
r2

p

r2 , (A5)

σθ = p0 + (p0 − pcr)
r2

p

r2 , (A6)

ur =
1

2G
(p0 − pcr)

r2
p

r
. (A7)

Note that when p ≥ pcr, the rock mass behaves elastically and its stresses and displacements can
be calculated by replacing pcr and rp in Equations (A5)–(A7) with p and R, respectively.

Appendix A.2. Stress–Strain Analysis in an Unbolted Elastic Region

As shown in Figure A1, a plastic region is discretized into m annuluses with a uniform thickness
∆r starting from the elastic–plastic interface. The jth annulus is bounded by two circles of r = rj−1 and
r = rj. According to Equations (A5)–(A7), the stresses and displacement on the outer boundary of the
plastic region (r = r(0) = rp) are:

σr(0) = pcr, (A8)

σθ(0) = 2p0 − pcr, (A9)

ur(0) =
1

2G
(p0 − pcr)rp. (A10)

The number of the rock mass annuluses m and inner radius r(j) of each annulus can be expressed as:

m =
(
rp −R

)
/∆r, (A11)

r( j) = r( j−1) − ∆r. (A12)

Incorporating Equations (4) and (5) into Equation (1), the stresses at r = r(j) can be obtained. For the
M–C rock mass, the stresses at r = r(j) can be expressed in an incremental form by using the finite
difference method, as follows:

σr( j) =
r( j)σr( j−1) + ∆rYr

r( j) − (Nr − 1)∆r
, (A13)

σθ( j) = Nrσr( j) + Yr. (A14)

For the H–B rock mass, the stresses at r = r(j) are:

r( j)

(
σr( j) − σr( j−1)

)
= ∆rσci,r

(
mb,r

σr( j)

σci,r
+ sr

)ar

, (A15)

σθ( j) = σr( j) + σci,r

(
mb
σr( j)

σci,r
+ sr

)ar

. (A16)
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Incorporating Equations (4) and (5) into Equation (17), the radial displacement at r = r(i) is:

ur(i) =
∆rr( j)

(
C1σr( j) + C2σθ( j) −C3p0

)
+ 2Gr( j)ur( j−1)

2G
(
r( j) + Kψ∆r

) . (A17)

Equation (A15) can be solved numerically using the Newton–Raphson method. By repeating
Equations (A8)–(A17) until j = m, the stresses and displacements in a plastic region can be obtained.

Appendix B. Calculation Procedure

It is obvious that the contact radial stress is greater than zero and smaller than p0; i.e., 0 < σr(R+lb)
< p0. The rigid displacement along the whole bolt is greater than zero and smaller than a large value
(such as 10 m), i.e., 0 < urig

b < 10. The reasonable values of σr(R+lb) and urig
b can be obtained using two

boundary conditions in combination with the bisection method, and the details are described below
and plotted in Figure A2.

Step 1. Preliminary calculations

(1) Input parameters: R, p0, β, p, E, µ, ψ, Eb, lb, ds, Ab, lz, ω, Ks, Kep, cs, ϕs, ∆r, cp, cr, ϕp, ϕr, σci,p, σci,r,
mb,p, mb,r, sp, sr, ap, and ar.

(2) Calculate uini
r by replacing p in the equations in Appendix A with βp0.

(3) Assume an initial value of σr(R+lb) = (σr1(R+lb)+σr2(R+lb))/2, where σr1(R+lb) = 0 and σr2(R+lb) = p0.
(4) Calculate ur(R+lb) and σθ(R+lb) by replacing p and R in the equations in Appendix A with σr(R+lb)

and R+lb, respectively.

(5) Assume an initial value of urig
b = (urig

b1 +urig
b2 )/2, where urig

b1 = 0 andurig
b2 = 10.

(6) Calculate τs(0) and Fn(0) using Equations (32) and (33), respectively.

Step 2. The sequence of calculation for each annulus in a bolted region

(1) Verify the elastoplastic state of the rock mass in the ith annulus using Equation (4) (M–C rock
mass) or Equation (5) (H–B rock mass).

(2) Calculate σr(i) using Equation (24) (elastic state), or Equation (27) (plastic state, M–C rock mass)
or Equation (29) (plastic state, H–B rock mass).

(3) Calculate σθ(i) using Equation (25) (elastic state), or Equation (28) (plastic state, M–C rock mass)
or Equation (30) (plastic state, H–B rock mass).

(4) Calculate ur(i) using Equation (26) (elastic state) or Equation (31) (plastic state).
(5) Calculate τb(i) and Fn(i) using Equations (32) and (33), respectively.

Repeat (1)–(5) until i = n.

Step 3. Verify the boundary conditions

(1) Verify the boundary condition at the near end of the bolt (Equation (A18)). If this condition is
satisfied, verify the next boundary condition; otherwise, the bisection method is employed to determine
another urig

b until Equation (A18) is satisfied:

Fn(n) = Kep∆us(n). (A18)

(2) Verify the boundary condition at the tunnel periphery (Equation (A19)). If this condition is
satisfied, the values of urig

b and σr(R+lb) are reasonable; otherwise, the bisection method is employed to
determine another σr(R+lb) until Equation (A19) is satisfied:

σr(n) = pep + p =
Kep∆us(n)

lzRω
+ p. (A19)
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