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Abstract: Micro-computed tomography (micro-CT) is a consolidated imaging technology allowing
non-destructive three-dimensional (3D) qualitative and quantitative analysis by the observation
of microstructures with high resolution. This paper aims at delivering a structured overview of
literature about studies performed using micro-CT in dentistry and maxillofacial surgery (MFS) by
analyzing the entire set of articles to portray the state of the art of the last ten years of scientific
publications on the topic. It draws the scenario focusing on biomaterials, in vitro and in/ex vivo
applications, bone structure analysis, and tissue engineering. It confirms the relevance of the micro-CT
analysis for traditional research applications and mainly in dentistry with respect to MFS. Possible
developments are discussed in relation to the use of the micro-CT combined with other, traditional,
and not, techniques and technologies, as the elaboration of 3D models based on micro-CT images and
emerging numerical methods. Micro-CT results contribute effectively with whose ones obtained from
other techniques in an integrated multimethod approach and for multidisciplinary studies, opening
new possibilities and potential opportunities for the next decades of developments.
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1. Introduction

The first X-ray microtomography or micro-computed tomography (micro-CT) system was
conceived in the early 1980’s, and in 1994, the first commercially available bone micro-CT scanner was
presented [1,2].

Nowadays, micro-CT systems are present as lab instrumentations at main laboratories and
companies to perform different types of investigations and for various applications, including
educational purposes [3,4]. Micro-CT represents one of the main methods to perform non-destructive
analysis and one of the most common microscopy methods [5] where the very fine scale internal
structure of objects is imaged, providing high resolution volumetric data at a micron level. It allows for
the investigation of microstructures, the accuracy detection of the geometries [6–9], eventually defects
and difference in density and morphology. It does not require specimen preparation, staining and
slicing; settings and parameters were extensively studied for specific structures [10].

It has great potential for biomedical and bioengineering applications [11]. The analyses carried out
by micro-CT can be helpful also in terms of compliance to international standards, regulations, and in
forensic practice [12,13]. Microtomographic analyses can affect the validation process of materials and
the quality assessment of final devices. Recently, in the medical device sector, the growing interest in
emerging manufacturing techniques as the additive ones, allowed to recognize micro-CT as one of the
major tools for the product quality assessment and for the quality control of additive manufacturing
(AM) products and materials [6,14–16].
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Dentistry and maxillofacial surgery (MFS) represent two sectors that affect the biomedical
engineering context and in which there was an extensive use of the micro-CT due to the necessity to
acquire detailed information of small and complex objects, mineralized structures [17–19], and with
different densities. The market is characterized by innovative materials and solutions that require
advanced technology in routine-based activity of dental labs and clinics as the micro-CT scanning [20],
whose capabilities turn out to be indispensable [21–23].

The authors have extensive knowledge and experience about micro-CT and its application in
biomedical studies and in both fields addressed here [6,7,24–31]. Specifically, in this work, the first
author (I. Campioni) independently reviewed and organized the records identified from the database
searches to assess the initial eligibility and both the authors (I. Campioni and R. Pecci) fully reviewed the
search results. Disagreements were resolved by reaching a consensus or consulting the third and senior
author (R. Bedini). In the early 2000’s, R. Bedini believed in such technology and had engaged many
research funds in the purchase of equipment to perform three-dimensional (3D) microtomography and
to undertake research collaborations to study the effectiveness of this 3D methodology compared to
the traditional ones, such as histology and electron microscopy [7,8,15,24–28,30–32].

The aim of the present paper is to deliver a structured overview of the literature, highlighting
the main applications of micro-CT in dentistry and MFS, and considering the set of articles
published in English from 2010 to January 2020 in PubMed/MEDLINE and Scopus (excluding
Medline records from search results). A primary search was based on the following set of keywords:
(i) (“micro-computed tomograph” OR micro-CT) AND (dentistry OR “maxillofacial surgery”) for—Title,
Abstracts, and Keywords. A secondary search was performed in MEDLINE on this set of keywords:
(ii) (micro-computed tomography OR micro-CT) AND (dentistry OR maxillofacial) for All Fields and
applying a filter limiting to the type of study “Review”. Furthermore, the work has the goal to address
the studies involving lab-based applications of micro-CT for research and clinical purposes, thus it
does not include the synchrotron-radiation-based X-ray micro-CT [2,33–38] and related applications
of the latter with other technologies [39]. Considering time and resources, grey literature, as well as
conference proceedings and abstracts related to the topic (e.g., [40–44]) were not investigated.

Therefore, the literature overview aims to answer to the following main questions:

• Which have been the main dentistry and MFS applications of micro-CT during the last 10 years?
• What are the main literature reviews in 10 years?
• What will be the possible future scenario for the micro-CT development?

The graphical representation of Figure 1 summarizes the main aspects assessed, organized for
topics, including future orientations, and discussed in the following sections.
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2. Evidence and Effectiveness by Literature Reviews

In the last ten years, some literature reviews were published with the aim to assess, directly and
indirectly, micro-CT traditional and not applications. Regarding dentistry and MFS fields, the main
topics investigated were related to biomaterials, bone evaluation, specific aspects in dentistry, as the
root canal preparation, the correlation with other techniques and, not excluding the less common
applications of the technology as anthropological research.

In dentistry, it resulted that micro-CT allows biomaterials assessment, a precise analysis of materials
used and the main parameters, as surface area, surface structure, internal structure, porosity, and the
nature of the connection among them and the living tissue [21]. It represents a highly accurate method
for the assessment of the polymerization shrinkage in composite restorations [45]. Furthermore, it is
also cited in a systematic review, as a measurement method for ceramic crowns evaluation, providing
sections of the marginal area and recognition of the critical distances [46].

Root canal filling materials, as endodontic treatments, have, as their objective, the appropriate
sealing of the space caused by the root canal [47]. The analysis of the literature systematic
reviews and overviews recorded by the database search evidenced an amount of studies
focused on the application of micro-CT for the evaluation of the root canal and periapical
lesions [48]. The morphology [49], the porosity of the endodontic materials [47], the assessment
of different techniques of cavity preparation [21,50] or of a specific shaper [51], the shaping effects
of instruments and instrumentation comparing the root canal morphology before and after the
preparation [52] and the effectiveness of different instrumentation procedures in removing feeling
materials [53], are the main aspects investigated.

It is considered as a methodology for the determination of mineral density [54,55], complex
structures of the bone, trabecular bone microstructure [56], not excluding teeth and in general
mineralized tissues.

The assessment of the density of minerals in enamel and dentin, the detection of demineralization
in caries, the measurement of the depth of cavities in dentin, the evaluation of microleakage around
fillings and fissure sealants [21], are some of the main applications. Compared with cone beam
computed tomography (CBCT) images, micro-CT is likely to have better diagnostic accuracy for carious
lesions, tooth resorption, periodontal disease, and intra-operative imaging [57].

The traditional use of micro-CT for the bone evaluation in dentistry and bone tissue regeneration
applications is the main topic discussed by literature reviews [32]. The possibility to obtain information
about bone tissue microarchitecture and composition is in relation to the importance to perform
accurate analysis starting from the sample preparation, the quantitative assessment to the final 3D
reconstruction, with special attention to the settings of the appropriate parameters during the acquisition
step [58]. The design and the characterization of scaffolds benefit from the advantages offered by
microtomographic analysis for the morphometric structural investigation [59]. The evaluation of bone
remodeling is a main topic not only in dentistry but also in the MFS sector. Reviews on new regenerative
strategies [60] and rodent jawbone micro-architecture [61] evaluated by micro-CT, were performed,
underlining the need for a standardized methodology [61].

Lastly, other applications discussed in MFS and dentistry reviews are related to anthropological
and evolutionary research improving the assessing of dental tissues and elucidating the roles of genetic,
epigenetic, and environmental factors on phenotypic variations in craniofacial features [57].

3. Micro-CT Studies: In Vitro and In/Ex Vivo Applications

The cost of in vivo animal studies and the loss of animal lives continue to motivate the development
of in vitro screening assays [59]. Despite this, in vivo protocols in bone tissue engineering remain
a common investigation to study specific issues and which use micro-CT as the main tool for the
analysis. Both types of studies, in vivo and in vitro, are also carried out together considering various
analyses and techniques [62]. Moreover, ex vivo studies are reported for the assessment of bone and
specific treatments.



Appl. Sci. 2020, 10, 4328 4 of 18

3.1. Dental Treatments and Mineral Tissues

Restorative treatments in dentistry to ensure the integrity of the teeth and of their supporting
tissues benefit of micro-CT imaging.

In particular, benefits are reported for: the analysis of molars morphology and tooth structure [63];
the positional relationship of the crown contour and the pulp chamber of first molars [64]; and the
efficacy of polishing and glass infiltration on the wear behavior of monolithic zirconia crowns [65].

Dental caries is characterized by demineralization and the degeneration of organic matrix [66].
Micro-CT analysis resulted helpful to evaluate the validation of temporary and innovative restoration
solutions [67]. The mineralization of carious enamel for the identification of a regenerative treatment
solution for dental caries [68], as well as the demineralization of tissues, as the enamel adjacent to
restoration margins in cavities filled with experimental composites, from extracted bovine incisors [69],
are some of the aspects that were investigated.

Furthermore, there were assessed:

• the marginal integrity and quality of composite fillings [70].
• the effects, in adhesive dentistry, of different drying methods for post space dentin bonding in a

direct resin composite core build-up method [71].
• the effectiveness of two resins [72].

The analysis of the accuracy of enamel and dentin thickness [73] as well as of teeth dimensions [74]
benefits of micro-CT 3D measurements. It was applied to observe human molars characteristics before
performing the micro tensile test [75]. A case study reports that the analysis of extracted teeth in
children allowed the early correct diagnosis [76]. The capability of micro-CT to acquire morphometric
information of structures resulted in being relevant for the detection of significant differences in
mandibular volumes and dental morphology in relation to a specific syndrome [77]. Moreover, clinical
consequences of genetic disorders that affect ossification, and consequently dental anomalies, resulted
in being diagnosable by microtomographic assessment [78,79].

One of the main limitations of current dental practice is to preserve in time the effect of treatments.
The treatment of root canal characterized by the loss of apical root material is a clinical issue, extensively
investigated in the literature. The effects of treatments are commonly assessed by micro-CT to
quantitatively evaluate the root surface resorption after the extraction of the teeth. It was used in a
study aimed to design and realize a method for analyzing the geometrical characteristics of human
root canals, calculated by a self-implemented image evaluation algorithm [80]. It was applied to
evaluate morphology [81–83], microcrack formations [84,85], root fractures [86], the presence of voids
in oval root canals filled with different root canal sealers [87]. It was considered to assess the efficacy of
methods for removing root filling materials or for cleaning the canal [88,89], the influence of endodontic
cavities on the preservation of the original root canal anatomy after shaping with nickel-titanium rotary
instruments [90], and the correlation between geometric parameters of root filled teeth and the fracture
resistance [91]. Multiple scansions were elaborated preoperatively, after preparation and obturation
of the canal with gutta-percha, on extracted mandibular first molar teeth, to compare the quality of
obturation in the apical third of the root [92]. Furthermore, photobiomodulation applications on root
resorption are reported, considering a study on 30 patients [93].

The various applications of the current dental practice including the use of the micro-CT, let emerge
the importance to define procedures for performing microtomographic analysis at least for specific
treatments. The various methodologies applied as well as the reconstruction techniques also based
on self-made algorithms and the timing to carry out the analyses, created a scenario in which it was
difficult sometimes for scientists and, particularly for clinicians, to have clinical evidence comparable
and referable. Specific procedures, in terms of guidelines and technical standards, could improve the
efficacy and effectiveness in the application of the micro-CT and could allow clinicians in performing a
more efficient analysis for a useful and routine implementation.



Appl. Sci. 2020, 10, 4328 5 of 18

Finally, micro-CT had a relevant role in multidisciplinary approaches. It contributed to reveal
the method used for the realization of the dental prosthesis, a golden dental appliance [94], and to
characterize osseous lesions in the analysis of burials discovered during archeological excavations [95].

3.2. Biomaterials and Bone Tissue Regeneration

3D micro-CT scans were usually conducted to evaluate bone reformation, bone mineral density,
remodeling, the scaffold morphology, and the biomaterial structure performing in vitro and in/ex
vivo studies.

The use of animal models seems to be a required step in testing new bone regeneration materials [96].
The in vivo applicability of bioengineered 3D constructs [97] and bone graft substitutes is usually
evaluated in animals models as rats, rabbits, mini pigs bone defects, and applications are recorded in
dentistry [98–102] as in MFS [103–105]. Mainly, the biomaterials and bone grafts investigated for tissue
engineering applications are:

• Uncalcined and unsintered hydroxyapatite/poly-D/L-lactide with beta-tricalcium phosphate
(b-TCP) [104] or with human mesenchymal stem cell [103].

• Granular deproteinized bovine bone and b-TCP alone or with dental pulp stem cells [62].
• Polycaprolactone-tricalcium phosphate (PCL-TCP) [102].
• Nano-hydroxyapatite/collagen composite [106].
• Nanofibrous bone graft coupled with osteoinductive proteins/peptides—poly(D,L-lactide-co

-glycolide)/collagen/gelatin [99].
• Bioresorbable collagen membranes [96,107].
• Silk fibroin scaffolds [108].
• Injectable scaffold based on oxidized alginate microbeads encapsulating periodontal ligament

stem cells and gingival mesenchymal stem cells [109].

The in vitro applicability of bone graft substitutes is usually evaluated on extracted teeth in
dentistry as in the studies conducted on polylactic acid (PLA)-based mineral-doped scaffolds [110] and
in MFS [105]. Turco et al. performed a comparison of the biological, chemical, and structural features
of four different commercially available bone substitutes derived from an animal or a synthetic source,
analyzing the biomaterials structures by micro-CT [111].

A common problem in clinical dentistry is the significant and rapid bone loss that occurs after
tooth extraction, traumatic events, and surgery. The possibility to have a fast repair of bone defects is
a challenge [112] and research has been conducted to investigate the various treatments. Micro-CT
quantification of histomorphometric data was applied in animal studies to evaluate the effect of injected
protein on alveolar bone [113], high-frequency acceleration, and the rate of bone formation after tooth
extraction [114].

The osseointegration is another main aspect investigated performing a microtomographic analysis.
Structural parameters of bone as, volume, trabecular thickness, trabecular number, trabecular separation,
and total porosity, are the more significant parameters usually assessed and evaluable by micro-CT
for the bone characterization, under various conditions, in studies conducted on patients [115].
In vitro experiments were carried out on coatings and correlated to micro-CT information about bone
morphology to examine osseointegration [116]. Micro-CT allowed to demonstrate that a bisphosphonate
treatment for osteoporosis, can invert the negative effect of osteoporosis on osseointegration, promote
osseointegration itself and, the fixation of dental implants in autologous bone grafts under osteoporotic
condition [117]. Furthermore, bone tissue response and osseointegration were investigated in
experimental animal protocols, in relation to a bioactive silicate coating [118], lightweight implants [119],
and poly-ε-caprolactone-coated and previtalized magnesium implants, manufactured by selective laser
melting technology [120], alternative to traditional implants in MFS and new implants with modified
surfaces, in comparison with commercially available dental implants [121]. Titanium implants were
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microtomographic observed and induced osteolysis was addressed [122], as well as newly formed
bone in bioactive coated implants [118].

Finally, about bone tissue applications in MFS, micro-CT measurements of trabecular porosity
allowed to provide quantitative evidence that laser-mediated cutting preserves the trabecular
architecture and reduces thermal and mechanical damage at the margins of the cut [123].

4. Micro-CT Analysis Combined with Other Techniques or Technologies

In the last years, the microtomographic investigation has been often combined with other
techniques and technologies, for example, it is applied as a preliminary step before destructive testing,
to obtain data and models to be used for volumetric measurements in reverse engineering [65],
computational and numerical applications. The analysis of the selected records allows detecting some
studies, in which a multimethod approach was considered, incrementing the investigation power of
micro-CT and its potential applications.

Figure 2 summarizes the techniques and technologies that emerged in studies about combined
and integrated applications with micro-CT.
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in the collected studies.

Firstly, it should be noted that micro-CT is not the only one tomography system applied in
dentistry and MFS. As previously evidenced, some MFS devices and anatomical districts required to
be acquired with systems allowing the scansion of objects with larger dimensions. Moreover, in clinical
labs, some technologies are more common and routinely used.

The cone beam volume CT or CBCT is another kind of tomography system, X-ray based, commonly
employed to assess the quality and quantity of bone. Despite that, micro-CT is combined with it due
to the higher accuracy for small dimensions, for example, to obtain gold standard measurements of
graft volumes in maxillary sinus augmentation procedure [124] or to determine how microarchitecture
influences the morphology [125]. In recent years, the power of the available commercial systems is
continuously growing in terms of range of dimensions and resolutions.
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Table 1 reports, as an example, the datasheets of the laboratory micro-CT and CBCT systems
considered in the previous cited study [124] and of recent frequently used micro-CT models [67,93,99],
also for larger object sizes [95], allowing the comparison of the technical specifications.

Table 1. Technical specifications of some commercial laboratory micro-CT and cone beam computed
tomography (CBCT) systems.

Specifications Micro-CT Model: µ40 * CBCT Model:
Accuitomo 170 **

Micro-CT Model:
SkyScan 1172 ***

Micro-CT Model:
Phoenix Nanotom M ****

X-ray Source 30–70 kV 60–90 kV, 8 mA 20–100 kV, 10 W 180 kV, 20 W

X-ray Detector/Focal
Spot Size

2048 × 256 elements,
24 µm pitch Spot Size 0.5 mm

11 MP, 12-Bit Cooled
CCD Fiber-Optically

Coupled to Scintillator

GE DXR, 14 Bit, 3072 ×
2400 Pixels

Max. Object
Size/Field of View

36.9 × 80 mm
(Ø x L)

Min. Ø 40 × 40
mmMax. Ø 170 ×

120 mm

Ø 27 mm Single Scan
Ø 50 mm Offset Scan

240 mm Ø × 250 mm in
Height

Detail Detectability 3–72 µm 80–250 µm voxel
size

0.5 µm at Highest
Magnification Down to 0.2 µm

“* (Scanco Medical AG, Zurich, Switzerland)”, “** (J Morita, Kyoto, Japan)”, “*** (Bruker microCT, Kontich,
Belgium)”; “**** (GE Sensing & Inspection technologies Gmbh, Wunstorf, Germany)”.

Another volumetric imaging technology is the positron emission tomography (PET). It is a
different technology, even if it is a tomography as well, which uses small amounts of radiotracers
or radiopharmaceuticals to evaluate organ and tissue functions. It was applied with micro-CT to
investigate bone regeneration induced by scaffolds [62].

The importance to establish standard protocols for marginal and internal fit assessment of fixed
prosthesis was investigated considering the association of micro-CT with various other imaging
techniques. The optical coherence tomography (OCT), the triple scan and cross-sectional method are
some of the techniques combined with microtomographic data to measure the marginal and internal
fit by superimposing the 3D scan data of the prosthesis and the abutment tooth [126]. Modified
commercially available spectral domain OCT measurements were also compared with micro-CT for
assessing the abrasion of the orthodontic surface sealants [127].

Traditional methods applied in tissue engineering studies are based on techniques such as
histology, scanning electron, and fluorescence microscopy imaging [32]. Microscopy technologies
required to be mentioned, as they are usually associated with micro-CT in various applications.

Microstructural investigations made by both optical and scanning electron microscopy (SEM) are
recorded in studies using transmission electron microscopy (TEM) to analyze adhesive/root dentin
interface [71] and SEM for the quality assessment of composite fillings [70], porosity and size of
silk scaffold [108], alginate samples with stem cells [109], and bone substitutes characterization in
MFS [111]. SEM analysis with micro-CT was performed to characterize barrier membrane for bone
augmentation in dentistry [128] and to study alloy composition of the metallic fixing lamina and
microstructure of the deposits on the dental surface [94]. Comparison between backscattering SEM
(bSEM) and microtomographic images, showed high correlations for bone volume per total volume
(BV/TV) measurements in areas not affected by metal-induced artefacts [129].

Raman spectroscopic imaging, a laser-based microscopic device, was applied with micro-CT
to examine bone samples and Charwat-Pessler et al. [98] reported that the two different imaging
techniques provide complementary and mutually supportive information.

Finally, fluorescence lifetime imaging microscopy was used to image the complex morphologic
features of dental sections without denaturing samples. Lin P. et al. [66] reported that the carious
dental tissue exhibits a greatly reduced autofluorescence lifetime, which is consistent with the degree
of demineralization, determined by micro-CT.

Histomorphological analysis were carried out for in vivo studies about the effects of bioactive
coatings [118], bone graft substitutes [104,105], as well as confocal analysis, to examine the presence
of live and dead cells after seeding on the experimental scaffolds at various days of culture [110].
Histology, as a traditional destructive analysis, was also reported combined with micro-CT for various
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applications, to assess: root fractures [86]; alveolar bone loss [114]; bone morphological changes [115];
new bone formation [96,102]; osseointegration in osteoporosis [117]; inflammatory response and
vascularization using modified silk fibroin scaffolds [108]; bone tissue response of new zirconia
implants with modified surfaces [121]; titanium [119]; and magnesium [120] implants for MFS and,
maxillofacial trabecular bone microarchitecture and damage [123]. Moreover, immunohistochemical
(IHC) analysis was performed with histology [109] and with immunofluorescent (IF), in studies related
to tissue engineering applications [97].

One of the main potentials of micro-CT in recent years is associated to the emerging use of new
manufacturing technologies for medical applications and, to the necessity of having high-resolution
models as starting point for further analyses. Beyond that, the growing demand for personalized
solutions in medicine implies for clinicians operating in dentistry and MFS, the possibility to elaborate
specific devices and prototypes, and to directly experiment with new solutions.

Traditional manufacturing methodologies, as computer aided design (CAD), that had started to
be used in association with computer-aided manufacturing (CAM), are nowadays more associated
with new techniques as 3D printing and AM.

In this scenario, micro-CT analysis is defining a new role, also considering that conventional
intra-oral scanner could be limited in terms of accuracy [9] for the acquisition of specific geometries
and sizes. CAD/CAM, 3D printing, and AM benefit from microtomographic analysis to develop and
validate solutions in dentistry, and MFS [120]. Rimawi et al. presented an integrated approach applying
intra-oral scanner, CBCT, micro-CT, 3D printing, and stereomicroscopy for temporary restoration of
auto-transplanted teeth [67].

Micro-CT represents also a methodology for automatic segmentations [130,131] and elaborations
of accurate 3D models [132], even if some limitations in spatial resolutions and missing information
have to be considered [133,134]. The possibility to create 3D micro-CT models based on reconstructed
images has relevance in implementing numerical studies aimed to determine the more realistic
operative conditions. CAD models can be easily elaborated, and after imported for post evaluations by
other techniques. It allows obtaining information of the structure of the materials usable as input in
computational studies, such as finite element analysis (FEA), simulating realistic different conditions.

FEA, a well-known computational numerical method was applied in dentistry and supported by
microtomographic analysis to assess new models [135] or based on micro-CT reconstructed models
and 3D images [131,136]. The main objectives detected of the numerical simulations implemented in
literature are related to the evaluation of mechanical properties, the prediction of forces necessary to drill
the cortical and trabecular bone [137], the biomechanical properties of the periodontal ligament [138],
and the stress distribution in premolar under various occlusal loadings scenarios [139] or in root
dentin [140].

Numerical analyses can be associated with the traditional destructive techniques for the mechanical
characterization of structures and for the validation of the simulated data. Experimental mechanical
testing techniques, performed respecting international standards or experimental protocols, continue to
contribute and to corroborate with microtomographic, histomorphometric, and numerical data [91,116].
Finally, even if the information was collected in a record that is a review study not focused on micro-CT
and, as it was not discussed previously [141], it is covered in this section for underlining the role
of micro-CT in relation to the numerical method fractal analysis (FA). The FA is a mathematical
method by which irregular, complex, and similar forms on various scales can be evaluated. The fractal
dimension (FD) is the quantitative outcome [141]. In dentistry, the FA was employed in several studies.
Kato et al., in their recent work about the use of FA in dental images, showed that FD was used on
micro-CT images of porous titanium granules, bone graft materials, to assess the bone mineral density
and, it was observed positive and negative correlations of FD values and other parameters such as
histomorphometric analysis and radiographic bone density. Furthermore, they evidenced that few
studies using this exam were carried out despite the high quality of micro-CT images and the importance
of this aspect for a high-quality FA. The main causes are correlated to the high cost and the necessity of a
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bone sample that seems to preclude the use of micro-CT with FA. The power of the previously identified
new role of the micro-CT in reference to the other technologies is particularly evident, not only in
supporting clinical practice for acquiring the best evidence but also, for the regulatory purposes that are
essential for medical applications. As already recognized for AM in a recent guideline [16], the micro-CT
could represent a useful tool for the quality control of products and workflow. This last aspect has
relevance for companies, but particularly for clinicians that often become themselves manufacturers in
routine use of manufacturing techniques for custom applications in lab environments. The variability
of the processes often requires keeping more parameters under control. In this framework, as suggested
in the paragraph 3.1 for the more general topic, the elaboration of specific standards could represent
the challenge and it could include all the steps from the segmentation, elaboration of 3D models,
and adaptation for the numerical analysis to the checking of the final manufactured medical device,
pre-surgery models or prototypes, and their traceability.

5. Conclusions

Micro-CT is an established technique that has demonstrated various advantages for many
applications. In the last ten years, the improvement in image analysis allowed to highlight some
opportunities offered by microtomographic technology, which until a decade ago, were considered
only as potential benefits.

This overview aimed to collect and discuss the main topics investigated in studies carried out
using laboratory micro-CT in dentistry and MFS, published in the last ten years and its potential in
developing new studies, answering the main proposed research questions.

The discussed studies were rigorously collected by searching the main literature databases. After a
full-text review, 105 articles were investigated from an initial total amount of 160 records obtained
from the databases search. The graphic of Figure 3 allows visualizing the distribution in percentage of
the total number of articles in relation to the topics and types of studies discussed in this work.
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Starting from the literature evidence acquired by the reviews recorded (19% of total records),
the greater amount of studies, about 70%, are focused on dentistry applications. MFS studies are
limited, about 13% and some are associated with the analysis of treatments also applicable in dentistry
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(about 3%). Micro-CT enables the scanning of objects with small dimensions and this aspect may
have limited the adoption of the methodology, which is not suitable for some maxillofacial anatomical
districts with respect to other tomography systems. From the point of view of the study typology,
the percentages are similar for in vitro and in/ex vivo studies. It should be noted that some studies,
about 12%, use both approaches for defining a complete assessment.

The main detected records confirmed that an established range of micro-CT applications are
related to studies performed to investigate new biomaterials and their effects on osseointegration,
bone structure, bone grafts, and tissue response in dentistry. Furthermore, mineral tissues analyses,
as well as evidence of specific treatments in orthodontia, represent the micro-CT core business. Most
of the applications are effectuated in research settings and for scientific purposes.

Some limitations observed and that limited the spreading in clinical settings, were related to the
operating costs and data processing time. Safety, cost-effectiveness, and efficiency still relieved to be
some of the required challenges. Despite that, health care systems and private clinicians could benefit
from it for various applications, traditional and emerging, as the assessment of patient-matched devices
realized in point of care and based on 3D reconstructed models, eventually also for regulatory purposes.

This overview dedicated a section to the challenges of microtomographic evaluations combined
with other technologies and techniques, highlighting the growing possibilities and the potential
extension of the field of applications. Almost 49% of the discussed studies were carried out considering
a multimethod approach using micro-CT with other techniques (Figure 3). Traditional methodologies
as microscopy, histology, and mechanical characterization are confirmed conventionally associated
with micro-CT. Numerical-based methods are the main emerging ones with a high potential growing
and impact. The integrated approach is interesting and promising for the future developments.

The adoption of micro-CT in the daily clinical routine continues to represent the true goal.
The definition of procedures or guidelines could allow a better comparison of the results for its use also
integrated with other technologies and in relation to specific treatments. This last aspect associated
with the developments of specific standards, and new quality control requirements for medical devices,
could change the actual role of microtomographic analysis for a new prominent decade.
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