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Featured Application: High-k polymer nanocomposites are an important category of materials that
demonstrate unique design possibilities, and offer excellent advantages with tunable properties
for technological applications.

Abstract: Understanding the properties of small molecules or monomers is decidedly important. The
efforts of synthetic chemists and material engineers must be appreciated because of their knowledge
of how utilize the properties of synthetic fragments in constructing long-chain macromolecules.
Scientists active in this area of macromolecular science have shared their knowledge of catalysts,
monomers and a variety of designed nanoparticles in synthetic techniques that create all sorts of
nanocomposite polymer stuffs. Such materials are now an integral part of the contemporary world.
Polymer nanocomposites with high dielectric constant (high-k) properties are widely applicable in
the technological sectors including gate dielectrics, actuators, infrared detectors, tunable capacitors,
electro optic devices, organic field-effect transistors (OFETs), and sensors. In this short colloquy,
we provided an overview of a few remarkable high-k polymer nanocomposites of material science
interest from recent decades.
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1. Background

The discovery of polymers has given a new dimension to the present era: this relatively young
subdivision of chemistry has been the topic of great development both as a basic and applied science
over last five decades [1–6]. Generally, polymers are best known for their insulating properties because
of the covalent bonds between the saturated carbon atoms. Since the properties of polymers can be
altered by incorporating additives such as nano-fillers, many polymer frameworks were tailored and
conveniently attained polymers with conducting/semiconducting behaviors with tunable properties
opened new specialized applications in electronics [7–9]. The polymer structures with high-k dielectric
behaviors were developed to create new interfaces in technological fields. The structural tunability
of polymers in micro/nano electronics to develop miniature modules is always a challenging theme,
where the polymers can be utilized not only as insulators, but also as conductive interfaces with the
optimal tuning of electrical, mechanical and dielectric properties [10–16].

For a general understanding, the scale of the k value is fixed on the dielectric constant of silicon
dioxide (SiO2). The relative dielectric constant of silicon dioxide is 3.9, and the materials which
possess k < 3.9 are commonly termed as low-k materials and those whose k > 3.9 are categorized
as high-k materials [17–19]. Embedding high-k inorganic/organic hybrid nanomaterials into the
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dielectric polymers results in dielectric polymer nanocomposites with superior dielectric properties
and high-breakdown strengths/high-energy density for suitable electronic applications [20–27].

Silicon dioxide (SiO2) has been broadly utilized as a gate oxide material in metal–oxide–semiconductor
field-effect transistors (MOSFETs). In recent decades, the gate capacitance of the silicon dioxide gate
dielectric was improved by minimizing the size and thickness of the dielectrics in order to enhance the
device performances [28–30]. Various high-k materials are used by replacing SiO2 to diminish the leakage
current and boost the power consumption, which perceptibly increases the gate capacitance of MOSFETs.

The capacitance C of the parallel plate capacitor is given by Equation (1):

C =
κε0A

t
(1)

where κ is the relative dielectric constant of the material used (= 3.9 for SiO2), A is the area of the
capacitor and t is the thickness of the capacitor oxide insulator [31,32].

Since the dielectric polymer possesses a high electrical breakdown strength and the magnitude
of total energy storage density, it depends on both the values of κ and the applied electric field, as
polymer-based capacitors have proven their advantages over ceramic and electrolytic capacitors [33–35].

It is very important to know two main electrical parameters, the dielectric constant (ε’) and
dissipation factor (ε”), for microelectronic polymer dielectrics. The dielectric constant of a material can
be defined as the ratio of the absolute relative permittivity of the material to the electric permeability of
free space (i.e., vacuum). The magnitude of ε’ depends on the amount of mobile (polarizable) electrical
charges and the degree of mobility of these charges in the material. The ε’ is temperature dependent,
because the charge mobility depends on the temperature, the polarization of the material requires a
finite amount of time, and frequency of the applied electric field [36–38]. In addition, it influences the
measured dielectric constant.

The signal propagation velocity is given by Equation (2):

Vp =
C
√
ε′

(2)

where Vp is the velocity of propagation and C is the speed of light.
In an alternating current (ac) field, the dielectric constant is represented as a complex quantity, ε*,

and is the combination of a real component (dielectric constant = ε′), and an imaginary component,
called the dielectric loss (ε′′ ). This complex dielectric permittivity can be defined by the following
Equation (3):

ε∗ = ε′ − jε′′ (3)

With an increase in ac frequency, the charged particle’s inertia inclines to preclude the displacement
of the particles from keeping in phase. This leads to a frictional damping mechanism [39] which creates
the power loss, because work must be performed to overcome these damping forces [40,41].

2. High-k Dielectric Polymers

Compared to conventional rigid silicon technology, the inherent desirable properties of high-k
polymer nanocomposite materials offer a new dimension to the field of flexible and stretchable
electronics [42,43]. The main benefits of polymer-based capacitor devices are unique in design with
flexibility and the ease of processing. Therefore, no critical dimensions are required to utilize the
materials to produce moderate high-voltage operating electronic devices as non-planar and flexible
substrates [44,45]. Moreover, the incorporation of high-k nanostructured hybrid materials to the
dielectric polymer matrix can regulate the mechanical stiffness and tunes the electronic properties.
Thus, we can notice flourishing research in developing inorganic/organic hybrid nanomaterials and
this contributed to the significant growth in accomplishing high-k polymer nanocomposites for
technological applications [46,47].
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Typically, enhanced dielectric breakdown strength can be achieved by loading nanoparticles
into dielectric polymers. Firstly, a compatible solvent is used to disperse the nanoparticles and later
embedding into the dielectric polymer matrix. This solution-mixing technique is the best known
method to synthesize high-k polymer nanocomposite materials with superior dielectric breakdown
strength [48–50]. Considering the breakdown strength, some of the important polymers are listed in
Table 1. Based on breakdown strength [51–53], polytetrafluoroethylene (PTFE) and polypropylene
(PP) will be the best choice [54,55]. However, the compatibility with solvents and the ease of thin film
processing are also key parameters, which will decide the final application of the polymer composites.
Because of the ease in thin film fabrication, polyvinylidene fluoride (PVDF) composites are an ideal
choice. We notice plentiful research reports on PVDF composites on mechanical and acoustic sensors,
actuators, energy harvesting and nonvolatile memory applications, because of its piezo-, pyro- and
ferro-electric properties [56–61].

Table 1. Breakdown strength (dielectric strength) of some selected polymers.

Polymers Breakdown Strength (MV/m)

Polytetrafluoroethylene (PTFE) 600–700
Polypropylene (PP) 640

Polyvinylidene fluoride (PVDF) 590
Polyethylene terephthalate (PET) 570

Polycarbonate (PC) 528
SU-8 440

Polyvinyl chloride (PVC) 140–210

Since SU-8 structure blocks can be photo-definable, photo-patternable high-k dielectrics on it
can result in embedded capacitor applications [62–64]. Furthermore, polyvinyl chloride (PVC) is a
widely used thermoplastic polymer, due to its versatile nature with plasticizers and high-k dielectrics
nanoparticles, it can be successfully used in consumer electronics [65–70]. Due to the increasing
demand for flexible and soft smart devices, our research group fabricated soft vibrotactile actuators
based on silicon dioxide nanoparticles embedded in plasticized PVC gels. The soft gels were used
as a dielectric layer in the designed vibrotactile actuators. To maximize the elastic restoring force,
a wave-shaped ePVC gel was designed. The design of the soft vibrotactile actuator is presented
in Figure 1 [70]. The proposed soft vibrotactile actuator based on plasticized PVC/silicon dioxide
nanoparticle composites showed broad amplitude variation in a wide frequency range and created a
variety of haptic sensations to the users.

To improve the robustness, processability and breakdown strength of the polymer nanocomposites,
it is also important to consider the polymerization techniques, where the grafting of polymer brushes
on inorganic nanoparticles can certainly enhance the compatibility of polymer–inorganic hybrid
nanoparticles with dielectric polymer matrix [71–73]. Ellingford et al. defined that even by the intrinsic
tuning of poly(styrene–butadiene–styrene), with polar organic groups such as methyl thioglycolate,
results in self-healing dielectric elastomers as new actuators materials. The step to achieve these
materials was via a one-step thiol–ene “click” reaction followed by low-temperature UV curing. The
reported materials exhibited improved relative dielectric permittivity to 11.4 at 103 Hz, with a low
dielectric loss [74].

A synthetic strategy developed by Kang et al. by combining hard silicon segments in a soft dielectric
matrix was recently reported, where 1,6-bis(trichlorosilyl)hexane (C6) was used as organosilane
cross-linking agent to functionalized carboxy terminal liquid reactive rubber, dicarboxy-terminated
poly(acrylonitrile-co-butadiene) (CTBN). Figure 2 represents a sketch for the formation of elastomeric
network dielectric film from CTBN and C6. They reported self-organized C6 aggregates acting as
nanofillers in the dielectric matrix, and enhancing the dielectric strength by inhibiting electrical
treeing growth [75]. A similar strategy was reported by Lee et al., where statistical copolymer
poly(styrene-co-methyl methacrylate) was designed via a reversible addition–fragmentation chain
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transfer (RAFT) process. Since the RAFT process involves ionic liquids, they reported a superior ionic
conductivity of the resulting polymeric gel, as well as the enhanced device performance in transistor
gating experiments [76].
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Figure 1. Illustrations representing the fabrication of the soft vibrotactile actuator based on ePVC–silicon
dioxide nanoparticle (ePVC-SDN) gels. (a) Composition of the vibrotactile actuator. (b) Bottom surface
of the upper layer. (c) Assembled vibrotactile actuator. Adapted with permission from [70], IEEE, 2018.
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Figure 2. Schematic representation of the elastomeric network dielectric film formation using CTBN
and C6. Adapted with permission from [75], American Chemical Society, 2018.

The quasi-permanent dipole polarization or surface charge exhibited by polytetrafluoroethylene
(PTFE) incited the researchers to use PTFE thin films produced by radio frequency (RF) magnetron
sputtering or plasma-enhanced chemical vapor deposition [77]. Since PTFE possesses excellent chemical
stability and dielectric properties, they are ideal to use as electret materials in organic electronics [78].
Murali et al. reported nearly isotropic and dimensionally stable silica-filled PTFE flexible laminates
obtained by a hot pressing (SMECH process) technique for microwave circuit applications. The author
reports the dielectric constant of 2.9 at the X-band frequency (8.2–12.4 GHz) for the maximum loading
of fused silica (60 wt%) [78], whereas PTFE/rutile (rutile is a mineral primarily composed of titanium
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dioxide) nanocomposites, which exhibited a dielectric constant of above 7.0 at the X-band frequency
for the 50 wt% loading of nano-rutile [79].

The polypropylene carbonate (PPC) dielectric film reported by Rullyani, et al. showed excellent
compatibility with semiconducting pentacene and N,N′-Dioctyl-3,4,9,10 perylenedicarboximide
(PTCDI-C8). Furthermore, the reported PPC film showed a surface energy of 47 mN m−1 with
a dielectric constant of 3, which was utilized as a substrate material for organic thin film transistors
(OTFTs) and organic inverters [80]. A sketch was drawn and presented in Figure 3, for understanding
the basic design of OTFT and a bottom-gate top-contact OTFT on the PPC substrate. We can notice
that an ultra-thin silver (Ag) metal gate was deposited on the PPC and thick layer (970 nm) of
the biocompatible dielectric polyvinylpyrrolidone (PVPy) which was spin coated on the PPC layer.
In addition, fabric-based wearable bioelectric and biochemical sensors were designed by loading
silver nanoparticles in plastisols. These polymers can be easily screen-printed on textiles, since they
adhere well to the fabrics [81]. It is evident that dielectric properties of polymer nanocomposites can
be enhanced by the reinforcement of high-k dielectric nanoparticles, carbon allotropes, conducting
polymers and organic crystalline materials [82,83]. However, polypropylene (PP)/carbon nanotube
(CNT) nanocomposites reported by Zhang, et al. showed negative permittivity even at the low CNT
loading, because of the low-resistance behavior of CNTs [84,85].
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permission from [80], Springer Nature, 2018.

Since poly(vinylidene fluoride) (PVDF) is a well known high-k polymer matrix showing the
dielectric constant of about 12 at 1 kHz, a lot of research works were found. The flexibility, high
dielectric permittivity, the piezoelectric, pyroelectric response, and the low acoustic impedance
properties of PVDF demonstrate its potential applications in various electronic fields. A novel
all-organic polyaniline–dodecylbenzenesulfonic acid (PANI–DBSA) and PVDF dielectric composites
showed high-dielectric permittivity. For 20 wt% of PANI–DBSA doping to PVDF, resulted a dielectric
permittivity of 150.0 at 25 ◦C [86], whereas PVDF and poly(vinylidene fluoride-trifluoroethylene)
(PVDF-TrFE) filled with magnesium oxide nanofillers showed dielectric permittivity within the range
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of 10–22 at 25 ◦C [87]. Thomas, et al. reported composite thick films (thickness ≈ 85 µm) composed of
PVDF/CaCu3Ti4O12 nanocrystals with a relatively high dielectric permittivity of 90.0 at 100 Hz [88].

Today, polyester films or polyethylene terephthalate (PET) substrates have received considerable
interest due to their inherent surface properties and designed engineering probabilities [89,90]. The PET
substrates can be laying down to design thin film transistor arrays and in the construction of multimodal
vibrational haptic interfaces [91]. Mi, et al. compared the properties of epoxy-coated (wood pulp)
cellulose nanofibril (CNF) thin films with PVDF and investigated the microwave dielectric properties
for potential broad applications in flexible high-speed electronics. They reported the dielectric constant
of 2.6 for epoxy-coated-CNF and dielectric loss values in the range 0.03–0.042. However, the epoxy
coated-CNF has proven to be more suitable for flexible microwave applications than for PET films [92].
Zhang, et al. reported that the coating of photoresist SU-8 on a silicon-(100) wafer substantially
improves the flexibility and can be used for high-performance flexible electronics [93], whereas
developed glass/SU8-gold electrodes by Matarèse, et al. were extremely transparent, and stable in
the biological culture medium, which exhibited biocompatibility similar to glass [94]. Flexible and
bendable (to 90◦) tactile sensor arrays were also developed by Yeo, et al., consisting of aluminum
nitride, based on micro-electro-mechanical system (MEMS) technology, where polydimethylsiloxane
(PDMS) and a SU-8 photoresist layer were used as the supporting layers [95].

By the addition of various plasticizers, the mechanical stiffness and electrical permanence of PVC
can be altered [96]. Even with the doping of modified inorganic nanoparticles, the fine-tuning of
dielectric properties can be done and used to design high-performance actuators [70,97,98]. Some reports
also demonstrate that the graphene oxide and plasticizer doping to PVC behaves as a soft actuator
for artificial muscle applications [99–101]. The controlled robustness of plasticized thermoplastic
PVC gels finds suitable applications in modular constructions of 3D-printable artificial muscles and
sometimes the mechanical actuations are so effective they behave like human muscle [102–104]. More
recently, ultra-high permittivity dielectric gels were fabricated and reported by Shi, et al. [105]. The
fabricated dielectric gels were transparent, stretchable and showed a dielectric constant in the range
of 30–50, offering great opportunities in soft robotics, sensors and optoelectronic applications [105].
The chemicals used and brief reaction conditions to obtain transparent dielectric gel reported by Shi,
et al. [105] was sketched and presented in Figure 4.
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3. High-k Dielectric Nanoparticles

Many researchers have reported works on silicon dioxide nanoparticles in combination with
other metal oxide nanoparticles and their polymer nanocomposites for sustainable energy storage
and related applications [106,107]. In the construction of thin-film transistors (TFTs), zinc oxide (ZnO)
nanoparticles are predominantly used. In the recent past, different kinds of oxide nanoparticles were
explored, whereas perovskites show unique characteristics. Since then, lots of active studies have
been done in constructing organic/inorganic structures to optimize the optical, dielectric, piezoelectric,
electronic, catalytic or magnetic properties [108,109].

Nowadays, most studies have focused their attention on designing multi-metal–oxide hybrid
nanoparticles because of their remarkable dielectric properties. Karmaoui, et al. prepared ultrafine
strontium hafnium oxide (SrHfO3) nanoparticles of 2.5 nm in size and demonstrated its potential
as high-k gate dielectrics [110]. These perovskite-types, strontium-doped or mixed hafnium oxides
with other metal oxides recently gained much interest because of exhibiting ferroelectric behavior and
ultimately utilized in optoelectronic device applications [111–114]. The dielectric constant reported
by Karmaoui, et al. was 17.0 and a relatively large capacitance value of 9.5 nF cm−2 [110]. Thus,
these ultra-fine nanoparticles are readily useful in gate dielectrics for capacitors and in MOSFET
technology [115,116]. However, hybrid CNTs decorated by ultrafine silver nanoparticles demonstrate
the conducting behavior and show negative permittivity [116].

Dhaouadi, et al. studied the temperature-dependent dielectric behavior of nanostructured
ferrite material, tetramanganese oxides (Mn3O4). The authors presented a convincing theory that
the nano-dipole behavior of Mn3O4 under an applied electric field resulted in obtaining a high
dielectric constant. This is due to the increasing dipole moment of nano-sized Mn3O4 particles per
unit volume [117]. In addition, similar dielectric responses were observed in ZnO nanotubes and ZnO
nanoparticles synthesized on a bio-template [118,119].

Some of the selected nanoparticles and its relative dielectric constants at ambient conditions are
listed in Table 2.

Table 2. Dielectric constant of some of the selected nanoparticles.

Nanoparticles Dielectric Constant References

Cerium oxide (CeO2) 4.1 [120]
ZnMn2O4 16.5 [121]

a Strontium hafnium oxide (SrHfO3) 17.0 [110]
b Iron oxide (Fe3O4) 130.0 [122]

Cadmium sulfide (CdS) 163.0 [123]
CoFe1.6Al0.4O4 200.0 [124]
Ba0.9Sr0.1ZrO3 290.0 [125]

Carbon coated silver (Ag@C) 320.0 [126]
Cerium oxide (CeO2) 370.0 d [127]

NiCr2FeO4 900.0 [128]
Pb(Zr0.97Ti0.03)O3 coated silver 1700.0 c [129]

CaCu3Ti4O12 9000.0 e [130]
a nanoparticle size = 2.5 nm, b stabilized by glucose, c measured at 200 kHz, d measured at 1 kHz, e measured at
100 Hz.

Currently, core–shell nanoparticle structures are gaining prominent attention due to their versatile
architectures and wide applicability in electronic and optoelectronic devices [131]. Various materials
have been synthesized with numerous nano architectures to understand the properties of organic
polymers and its hybrid structures on loading inorganic nanoparticles [132]. Mahadevegowda, et al.
investigated the aluminum (core)–aluminum oxide (shell) nanoparticles by coating nylon-6 polymer
by a vacuum deposition technique. The fabricated core–shell nanostructures showed varied dielectric
constants which were directly proportional to the thickness of the aluminum (Al) layer, with a relative
permittivity of 28.0 reported for the 20 nm thickness of the Al layer [133]. By adopting a surface-coating
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approach in a solution followed by heat treatment, Hu, et al. synthesized a high dielectric constant
titanium oxide-coated barium titanate (TiO2@BaTiO3) core–shell nanoparticle structures and embedded
in the PVDF matrix [134]. The authors reported that the dielectric constant value obtained for neat
PVDF was 9.2 and it was enhanced to 19.6 for 10-vol% of TiO2@BaTiO3/PVDF nanocomposites [134].
The amine functionalized carbon-coated Fe3O4/polyimide composite films showed a permittivity of
58.6 at 1 kHz, which for the Fe3O4@C–NH2 composition was 1.13 vol% [135]. As reported by Ling,
et al. we can notice exceptionally high permittivity values for the PVDF nanocomposites by loading
novel titanium carbide@boehmite (TiC@AlOOH), and it was as high as 1.8 × 107 at 100 Hz when the
content of the TiC@AlOOH nanoparticles was 41 wt% [136].

4. High-k Dielectric Nanocomposites

The dispersed conducting nanoparticles inside the insulating dielectric matrix phase can be
explained by the percolation theory. The theory very well explains the variation of dielectric constant
in the heterogeneous systems (see Figure 5). The dielectric constant values slowly increase and reach
the maximum value at the percolation threshold (Pt). Where the conducting phase was separated
by the optimal distance from the insulating dielectric phase, at the Pt point, the capacitive behavior
of the nanocomposites can be noticed with excellent charge storage capability. The inhomogeneous
distribution of the electric field inside the heterogeneous nanocomposites can dramatically increase the
dielectric constant values [137]. Francis, et al. recently explored the high-k percolative nanocomposites
based on multi-walled carbon nanotubes (MWCNT) and PVC [138]. The authors noticed a sharp
change in the dielectric constant of the PVC nanocomposites, even with a small loading of MWCNT
(4-wt%) to PVC. The heterogeneous MWCNT/PVC nanocomposite with 4% MWCNT concentration
exhibited the dielectric constant of 13,066.
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Typically, homogenously dispersed ZnO nanoparticles in high-k resin (styrene-butadiene block
copolymer, commercially known as K-Resin® KR20) were used for gate dielectric, with the aim
of enhancing the dielectric permittivity [139]. Iacob, et al. testified the dielectric performances of
raspberry-shaped iron oxide (Fe3O4) nanoparticles incorporated in PDMS, magnetite-rich PDMS
nanocomposites showing a dielectric constant of 9.0 for a maximum loading of 60 wt% [140]. The
authors specified the enhanced piezoelectric properties after embedding the iron oxide nanoparticles
in the dielectric silicone matrix [140].

The dielectric constant values of some selected high-k nanocomposites are listed in Table 3.
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Table 3. Dielectric constant of some selected nanocomposites.

Nano-Fillers Dielectric Matrix Weight % of
Nano-Fillers

Dielectric
Constant References

Iron oxide (Fe3O4) Polydimethylsiloxane 60.0 9.0 [140]
Copper/copper oxide

(Cu/CuO) Polypropylene 3.0 9.0 [141]
a Silicon dioxide DGE-BA † 3.0 11.4 [142]

Aluminum oxide (Al2O3) Polyvinyl alcohol 70.0 12.0 [143]
b Ba0.2Sr0.8TiO3 Polyvinylidene fluoride 7.5 18.0 [144]

Silver and Nickel (Ag/Ni) Polydimethylsiloxane 30.0 35.0 c [145]
d BaTiO3 Polyvinylidene fluoride 50.0 80.4 [146]
b BaTiO3 P(VDF-TrFE-CFE) † 50.0 108.0 [147]

MWCNT/AgNP Polyvinyl alcohol 1.0 620.0 e [148]
Ni/BaTiO3 Polyvinylidene fluoride 0.22 f 800.0 [149]
MWCNT Polyvinyl chloride 4.0 13066.0 [138]

a nanoparticle size = 20 nm, b nanowires, c measured at 1 kHz, d modified by polyvinyl pyrrolidone (PVP), e measured
at 100 Hz, f 0.22 volume fraction of Ni to BaTiO3, † P(VDF-TrFE-CFE) = poly(vinylidene fluoride-trifluoroethylene
chlorofluoroethylene), † DGE-BA = Diglycidyl ether Bisphenol-A.

Barium titanate (BaTiO3), a well studied ferroelectric ceramic material exhibiting piezoelectric
properties has broadly been used in energy storage and capacitor applications. From Table 3, we can
determine that a high dielectric constant of 108.0 was achieved by loading nanowires of BaTiO3 in
P(VDF-TrFE-CFE). A loading of 50-wt% of surface modified BaTiO3 by PVP to PVDF matrix can result
in a > 80.0 dielectric constant. The strontium-doped BaTiO3 shows comparably less dielectric constant
(18.0) but with minimal (7.5-wt%) loading to PVDF. However, a very small volume fraction of Nickel
to BaTiO3 has drastically improved the dielectric constant of PVDF composites to a maximum of 800.0.
We can also notice that with a minimum loading (3-wt%) of silicon dioxide to the DGE-BA polymer
improved the dielectric constant to 11.4. Consequently, one should note the salient features of high-k
nanoparticles, compositions of high-k dielectric polymeric matrix and other synthetic parameters,
which open up a plethora of applications in organic electronics by tuning the dielectric properties.

With the advent of flexible electronics and advanced organic electronic power systems, practical
applications for fabricating flexible polymeric dielectric nanocomposites became a more serious goal.
The inclusion of multi-dimensional nano-fillers into dielectric polymers makes them desirable to
use exclusively in the energy-storage applications [150–152]. Besides ceramic-based composites,
the recent studies on polymer-based nanocomposites provide more advantage options for tuning
desirable dielectric properties, low-temperature processability, mechanical flexibility with economically
low-cost benefits. The acquired high-k material candidates find their active use in embedded capacitor
applications [153,154]. Since the high dielectric constant and high-breakdown strengths of high-k
polymer nanocomposites are the key factors to consider in designing various sensors and actuators,
the incorporation of two-dimensional (2D) dielectric fillers such as boron nitride nano-sheets (BNNs)
significantly tune the dielectric properties by improving the breakdown strength of high-k dielectric
polymers [155–157]. The successful approach in this direction may emphasize its utilization in
high-temperature-operating electronic vehicle applications [158].

5. Future Perspectives and Challenges

There is now an increasing tendency towards integrating technology and coherent classical routes to
achieve high-k polymer nanocomposite materials. With this conditioned stimulus, the enhancement of
the dielectric responses of high-k polymer nanocomposites with physiochemical and electromechanical
stability is always a challenging motif. Since the stoichiometric aspect ratio and surface properties of
nanoparticles to dielectric matrix also decides the ultimate properties for specialized applications, the
development of functional organic moieties to alter the inorganic nano-architectures will need to be
customized to acquire optimized high-k nanoparticles. A great deal of synthetic knowledge is also
necessary, and this can bring more reliable high-k materials for organic electronics applications. Recent
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advances in designing soft actuators and electro-mechano responsive 3D-printable artificial muscles
need engineering expertise and skills, which facilitate the comprehensive dynamic structures. Due to
their outstanding capability of recoverable deformation, dielectric elastomeric materials have been
explored to design sensitive smart materials for external stimuli. Whilst the properties of the dielectric
elastomers were less researched, by embedding functionalized high-k dielectric nanoparticles.

The growing popularity of flexible electronics, also termed as flex circuits, is a technology to
assemble electronic circuits on flexible/stretchable surface. This offers new solicitations in designing
flexible and stretchable displays, flexible photovoltaic cell array panels, electronic circuits on fabrics,
flexible wearable battery gadgets, etc. [159–162]. The incorporation of high-k dielectric nanomaterials
into a variety of flexible polymeric materials can be seen as exactly the right strategy in designing
new functional materials. Considering the key issue of low dielectric constant behavior of polymer
dielectric materials, an effective fabrication approach is also a prerequisite to improve the dielectric
properties and it has been an essential research topic in the development of high-performance high-k
polymer dielectric materials.
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Abbreviations

BNNs Boron nitride nano-sheets
CNF Cellulose nanofibrils
CNTs Carbon nanotubes
DGE-BA Diglycidyl ether - Bisphenol-A
MOSFETs Metal–oxide–semiconductor field-effect transistors
MWCNTs Multi-walled carbon nanotubes
OFETs Organic field-effect transistors
PC Polycarbonate
PDMS Polydimethylsiloxane
PET Polyethylene terephthalate
PP Polypropylene
PPC Polypropylene carbonate
PTFE Polytetrafluoroethylene
PVC Polyvinyl chloride
PVA Polyvinyl alcohol
P(VDF-TrFE-CFE) Poly(vinylidene fluoride-trifluoroethylene chlorofluoroethylene)
PVDF Polyvinylidene fluoride
PVPy Polyvinylpyrrolidone
RAFT Reversible addition–fragmentation chain transfer
RF Radio frequency
SMECH Sigma mixing, extrusion, calendering, followed by hot pressing
TFTs Thin-film transistors
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