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Abstract: Natural stones have represented one of the main building materials since ancient times.
In recent decades, a worsening in degradation phenomena related mostly to environmental pollution
was observed, threatening their conservation. The present work is focused on the minero-petrographic
and geochemical characterization of black crust (BC) samples taken from the historical center of
Naples, after selecting two pilot monumental areas. The latter were chosen based on their historical
importance, type of material, state of preservation and position in the urban context (i.e., high
vehicular traffic area, limited traffic area, industrial area, etc.). The building materials used and their
interaction with environmental pollutions were studied comparing the results obtained by means of
different analytical techniques such as polarized light Optical Microscopy (OM), scanning electron
microscopy with energy dispersion system (SEM-EDS), X-ray powder diffraction (XRPD) and laser
ablation coupled with inductive plasma mass spectrometry (LA-ICP-MS).
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1. Introduction

Air pollution strongly affects the integrity of stone materials, since it promotes their degradation
over time, especially in an urban context [1–9]. The formation of black crusts, which occurs mainly on
carbonate rocks, represents one of the most dangerous degradation forms caused by air pollution [10–18].
Generally, their formation is due to calcium carbonate (CaCO3) sulphation, as a consequence of pH
value decrease caused by SO2 in the polluted atmosphere [19]. This dissolution allows gypsum
(CaSO4·2H2O) to precipitate, which because of its low water solubility of 2.4 g/L at 25 ◦C [20] remains as
a crust that becomes black (due to soot particles) on surfaces protected from intense wash-out [21–24].

The formation of gypsum on the stone surface is a rapid process and can also be accelerated by
the deposition of particulate matter rich in metals and metal oxides, which can act as a catalyst in the
sulphation reaction.
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Moreover, the black crust shows some differences in microstructure and porosity from the
substrate, leading to detachment of the black crust itself and the gradual weakening of the stone of the
monument surface. [25–27]. Additionally, carbonaceous particles emitted by combustion processes
(dark grey-black color) are the main factors responsible for the blackening of buildings [28].

Recently, the study of black crusts has made some interesting developments [12,27,29–33]; similarly,
research related to atmospheric deposit composition has made it possible to understand the major
causes of pollution, especially around monuments [34,35].

The characterization of black crusts on built heritage has a dual purpose. On one hand, there is a
chance to understand the degree of decay of stone material in terms of microstructural features and
chemical and mineralogical compositions. This can be useful for choosing appropriate restoration
procedures. On the other hand, these analyses can provide information regarding air pollution in the
nearby environment, since the black crusts themselves can act as passive samplers of pollutants, with
particular reference to metals [23,24,26–33].

In this paper, the analysis of black crusts from two monumental and historical sites located in
the city of Naples is reported. To the best of the authors’ knowledge, this is the first time that black
crusts have been studied in this city. Naples is located in southern Italy, in the Campania region, and
is the third-largest city in Italy following Rome and Milan, with high population density and the
environmental consequences related to this. High pollution rates due to intense and slowed motor
vehicle traffic characterize the urban downtown. According to the City Council, around 2,348,208
vehicles pass through the urban area every day (data ISTAT 2020). Moreover, the city center is only
roughly 10 km away from several industrial areas and is close to the port, one of the most important for
passenger traffic and docking of international cruise ships. The historical city is the largest in Europe,
and has been designated a UNESCO World Heritage Site [36].

The sites selected for investigations are within the built Heritage of the urban center, namely the
complex of San Domenico Maggiore and some sculptures of the cloister of San Marcellino e Festo, which
form part of the religious complex of the same name [37].

The choice of the two sites with different exposures in the urban context of Naples was made in
order to detect variability in the black crusts, mainly due to air pollution phenomena. In this regard,
the complex of San Domenico Maggiore is located in an area with a high degree of vehicular traffic;
conversely, the sculptures of the cloister of San Marcellino e Festo, although outdoors, are currently in
an area with restricted vehicular traffic [37].

The church of San Domenico Maggiore is one of the most important religious complexes in Naples
(Figure 1a,b). It was built between the XIII and the XIV century by Charles II of Anjou, becoming
the motherhouse of the Dominican friars of the Kingdom of Naples and the church of the Aragonese
nobility [38]. The church was erected according to the classic tenets of the Gothic style, although this
has been compromised due to the numerous interventions that have taken place over the subsequent
centuries. These have altered its structure, and the original Gothic forms, through the addition of three
naves, side chapels, a large transept and a polygonal apse. The complex has been restored several
times; the last restoration started in 2000 and concluded in 2011 [38]. The building is made mainly of
Neapolitan yellow tuff, with some other elements, such as the portal, made of marble, the buttresses in
Piperno, and part of the central space of the apse jutting out covered in red bricks [38].

The cloister of San Marcellino e Festo is part of a monastic complex dating back to the early
Middle Ages (Figure 1c,d) that has undergone several interventions throughout the centuries [39].
Important restoration work was devised and carried out in 1779 by Luigi Vanvitelli [37,40], particularly
affecting the consolidation of the dome, the majolica restoration, the extension of the southern portico
of the cloister, and the construction of an oratory. The cloister has a rectangular plan with arches
supported by columns made of Piperno, with a central monumental garden enriched with fountains and
marble sculptures [37]. Since the early twentieth century, the cloister has hosted both the Museum of
Paleontology and the Natural Sciences Department of the University of Naples “Federico II”. This latter
contracted a new restoration intervention in the cloister in 2001.
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Figure 1. Complex of San Domenico Maggiore (40◦50′55′’N; 14◦15′16′’E) and cloister of San Marcellino e
Festo (Naples, Italy) (40◦50′49′’N; 14◦15′28′’E): (a,c) Aerial view of the two monumental complexes by
Google Earth; (b) view of the San Domenico Maggiore church with the apse facing the eponymous square;
(d) General view of the Cloister and San Marcellino e Festo church with evidence of the tiled dome.

The present work focuses on the minero-petrographic and geochemical characterization of black
crust samples collected from the above-mentioned sites and investigated using optical and electron
microscopy, X-ray powder diffraction and laser ablation inductively coupled plasma-mass spectrometry.

This integrated analytical approach made it possible to obtain the main features of (1) the black
crusts and (2) the underlying stone substrate, in terms of micromorphology, mineralogical composition,
and major and trace elements. This wide-ranging characterization provided valuable information
on the formation processes of black crusts, as well as on interaction between stone substrate and the
surrounding environment. Specifically, important environmental data were obtained thanks to the
identification of heavy metals, which, as is known, can contribute to the recognition of the main sources
of pollution responsible for the deterioration of building materials over time.

2. Sampling

Eleven marble fragments were collected from different points at the two study sites; four from
the complex of San Domenico Maggiore, and seven from the cloister of San Marcellino e Festo (Figure 2).
Suitable stainless-steel tools, such as lancets and small chisels, were used to sample representative but
noninvasive portions of material affected by the presence of black crusts.

With respect to the complex of San Domenico Maggiore (Figure 2a–c), samples were retrieved from
the façade of the church, specifically from the marble portal located on the south-east side, alongside
the apse of the church, overlooking San Domenico square.

From first macroscopic observation, the black crusts (SD series) looked rather homogeneous,
compact, with a smooth surface and thin thickness. They also showed good adhesion to the underlying
stone substrate, which was rather degraded, with evidence of swelling, poor compactness, and
sometimes powdery appearance.

With respect to the cloister of San Marcellino e Festo (Figure 2d–f), the samples were taken from the
large square plan monumental cloister, enriched with a garden adorned with marble fountains, statues,
and various artifacts. The seven samples were taken from three different sculptures: one sample from
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a marble well (SM-P series) (Figure 2f), three from a marble structure with arches and pillars (SM-A
series) (Figure 2e), and three from a female marble bust (SM-S series) (Figure 2d). Additionally, in this
case, all black crusts showed a homogeneous and compact morphology, a very thin thickness and good
adhesion to the underlying stone substrate. As for the stone substrates, they looked fairly cohesive and
slightly altered.
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Figure 2. Sampling points of fragments collected at: San Domenico Maggiore (SD series) (a–c); Marble
bust of the San Marcellino e Festo Cloister (SM-S series) (d); Arch sculpture of the San Marcellino e Festo
Cloister (SM-A series) (e); Water well of San Marcellino e Festo Cloister (SM-P series) (f).

Samples with location description and heights are reported in Table 1.

Table 1. List of the examined samples with a brief description. The sampling heights refer to the
planking level. The exposition of the surfaces to washout is defined as well exposed (WELL), partially
exposed (PART), or not exposed (NOT).

Complex of San Domenico Maggiore (SD Series)

Sample ID Sampling Location Sampling Heights Exposition to Washout

SD1
Facade of the San Domenico church, main portal.

Sampling on one of the left pillars (looking towards the portal), in a
slightly curved area and on a vertical and external surface.

2.00 m WELL

SD2
Facade of the San Domenico church, main portal.

Sampling on one of the right pillars (looking towards the portal), on a
vertical and internal surface.

2.30 m WELL

SD3
Facade of the San Domenico church, main portal.

Sampling on one of the right pillars (looking towards the portal), on an
external corner.

1.60 m PART

SD4
Facade of the San Domenico church, main portal.

Sampling on one of the right pillar bases (looking towards the portal),
on a horizontal surface.

0.40 m NOT

Cloister of San Marcellino e Festo (SM-P, SM-A, SM-S Series)

Sample ID Sampling Location Sampling Heights

SM-P1 Monumental cloister, well.
Sampling on a vertical surface, under the top edge. 1.00 m NOT

SM-A1
Monumental cloister, structure with arches and pillars.

Sampling on a vertical surface, right column (looking towards the
structure).

1.20 m PART

SM-A2
Monumental cloister, structure with arches and pillars.

Sampling on a convex surface, right side (looking towards the artefact),
on a decorative element.

1.60 m PART

SM-A3 Monumental cloister, structure with arches and pillars.
Sampling on a vertical surface, on the base of the right column. 0.20 m WELL

SM-S1 Monumental cloister, female bust sculpture.
Sampling on the veil, top of the head, on the back-side. 1.50 m PART

SM-S2 Monumental cloister, female bust sculpture.
Sampling on the veil, on the head, on the front-side. 1.50 m WELL

SM-S3 Monumental cloister, female bust sculpture.
Sampling on a vertical portion of the bust, back-side. 1.50 m PART
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3. Analytical Methods

For a complete characterization of the stone materials and degradation products (i.e., black crusts),
several complementary techniques were employed to investigate the textural, morphological and
compositional features, as well as the interaction with rock substrate. Optical Microscopy (OM)
observations were carried out on polished and stratigraphic thin sections using a Zeiss Axioskop 40
microscope (Carl Zeiss Microscopy GmbH, Jena, Germany, 2007). OM made it possible to: a) determine
the textural features; and b) detect weathering rate on superficial layers by evaluating the morphology
and growth of black crusts.

Scanning Electron Microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDS)
analyses were performed on polished cross-sections previously covered by carbon coating, to obtain
information about micromorphology and chemical composition (in term of major elements) of the black
crusts. Analyses were performed with a SEM (Cambridge Instruments, version 360 Stereoscan, UK.,
Cambridge), equipped with a microanalyzer in energy dispersive spectrometry (EDS) (EDAX model)
with an ultrathin (UHT) window in order to ensure the detection of light elements. The operating
conditions were set at an accelerating voltage of 20 kV, beam current of 0.2 mA, acquisition time of
100 s, and dead time of 30–35%.

Chemical analyses were carried out according to standard mode and normalized by weight (%).
The detection limit for the EDS system is approximately 0.1% weight. The accuracy of the analysis
was periodically tested on standard USGS samples. Chemical analyses of the crust surfaces were
performed in raster mode.

X-ray powder diffraction (XRPD), performed to investigate the crusts’ mineralogical composition,
was recorded on an X-ray diffractometer (version D8 Advance, Bruker, UK) using X-ray Cu Kα

radiation. The operative conditions were 40 kV voltage, 30 mA current, 0.02◦ 2θ step size, and 3.0 sec
step time with a 2θ range of 10–80◦.

The analysis of trace elements was conducted by using laser ablation–inductively coupled
plasma–mass spectrometry (LA-ICP-MS). This method enables the detection and quantification of
several elements with spot resolutions of approximately 40–50 µm, leading to the determination of
compositional variations on a micrometric scale [41–43]. Measurements were obtained using the
LA-ICP-MS instrument (model Elan DRCe, Perkin Elmer/SCIEX, MA, USA), connected to a New Wave
UP213 solid-state Nd-YAG laser probe (213 nm). The ablation was performed with spots of 40–50 µm
with a constant laser repetition rate of 10 Hz and fluence of ∼20 J/cm2. Calibration was performed using
the NIST 612-50 ppm glass reference material as the external standard [44]. Internal standardization
to correct instrumental instability and drift was achieved using CaO concentrations from SEM-EDS
analyses [45]. The accuracy was evaluated on BCR 2G glass reference material and on an in-house
pressed-powder cylinder of the standard Argillaceous Limestone SRM1d of NIST [46]. The resulting
element concentrations were compared with reference values from the literature [47]. The accuracy, as
the relative difference among the reference values, was always better than 12%, and most elements
plotted in the range of ±8%. Investigations were performed on cross-sections 100 µm thick. Each
sample was subject to several spot analyses, depending on the thickness of the black crust, to assess
the compositional variability within the crust and the differences between the degraded portion and
the underlying unaltered substrate.

4. Results

4.1. Optical Microscopy (OM) and Mineralogical Analysis (XRD) of the Stone Materials and the Black Crusts

Characterization was performed by optical microscopy (OM) of the samples collected at the
complex of San Domenico Maggiore (SD series) and the cloister of San Marcellino e Festo (SM-P, SM-A,
SM-S series). Observations, performed on the most representative samples (i.e., SD2, SD3, SM-P1,
SM-A1 and SM-S1) are reported in Table 2, and the samples were classified on the basis of their textural
features along with mineralogical substrate composition.
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With respect to the stone substrate, all samples could be classified as marbles with fine grain size
(Maximum Grain Size < 1 mm) (Figure 3); the fabric could be defined as “mosaic” type, with tiny to
very tiny crystal size, often forming triple junctions at 120◦ [48]. The texture was homeoblastic (Ho)
in the SD2 and SD3 (i.e., samples from the complex of San Domenico Maggiore—portal) and SM-P1
(i.e., sample from the cloister of San Marcellino e Festo—well) samples, while it was heteroblastic (He)
in SM-A1 and SM-S1 (i.e., samples from the cloister of San Marcellino e Festo—structure with arches
and pillars and the female bust, respectively). The grain size ranged from 0.1 mm to 0.45 mm in SD2
and SD3, from 0.1 mm to 70 mm in SM-S1, from 0.1 mm to 0.47 mm in SM-A1, and from 0.1 mm
to 0.55 mm in SM-P1. All samples also showed remarkable micro-cracks just at the substrate–crust
interface; the progress of this fracturing process will most probably result in a complete detachment of
the weathered portion.
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Figure 3. Microphotograph (OM, PPL) showing textural features of some selected marble fragments,
with evidence of the black crust layer on the surface. SD2, SD3 are samples from the complex of San
Domenico Maggiore, while SM-A1, SM-P1 and SM-S1 were taken from the cloister of San Marcellino e
Festo. Notes: unaltered substrate = US; black crust = BC; scialbo = S.

As for the black crusts, samples SD2 and SD3 (i.e., samples from the complex of San Domenico
Maggiore—portal) showed three different layers (Figure 3, samples SD2, SD3). Starting from the most
external: a) a first layer of black crust with a homogeneous morphology, thickness ranging between
approximately 350 and 10 µm, and a color (PPL, plane polarized light) varying from light brown to
dark brown. Embedded iron oxides and hydroxides were observed, together with black combustion
particles (i.e., particles formed during combustion processes, containing sulphur compound and
catalysts; once wet, such particles will nucleate gypsum crystals and will remain embedded in a
gypsum crust) of spherical, sub-spherical and prismatic shape (ranging in size from 80 to 10 µm);
b) a layer of scialbo which shows a good adherence to the substrate, with relatively homogeneous
morphology, and a thickness ranging from 3 mm to 800 µm, dark brown in color, a cryptocrystalline
aspect, a very fine granulometry and a secondary porosity of about 10% related to the dissolution of
some portions. Otherwise, only rare individual and small calcite crystals could be identified in addition
to the oxides; c) another layer of crust (Figure 3) showing good adherence to the stone substrate and
a compact morphology, thin thickness varying from about 400 to 60 µm, and a light grey color. The
latter layer displays microcrystalline gypsum crystals, iron oxides and hydroxides, and spherical,
sub-spherical and prismatic black combustion particles (ranging in size from 80 to 10 µm) inside.

With respect to the samples collected from the cloister of San Marcellino e Festo, the SM-S1 and
SM-A1 crusts had an irregular morphology with a jagged outer edge, mammelonar in some portions,
with thickness ranging from 520 to 75 µm. The color varied from dark grey to brown, due to the
presence of iron oxides and hydroxides respectively. Additionally, spherical, sub-spherical and
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prismatic combustion particles (ranging in size from 85 to 10 µm) distributed evenly along the entire
investigated surface were visible (Figure 3 sample SM-S1).

Instead, SM-P1 crust (Figure 3) shows a heterogeneous morphology, mostly compact, with a
thickness ranging from 800 and 50 µm. Inside, iron oxides, hydroxides and well-distributed combustion
particles (sizes between 125 and 25 µm) were recognized, providing an overall dark grey color.

With respect to mineralogical composition, these results are reported in Table 2. XRPD analyses
were performed separately on the substrate and on the crusts, evidencing that calcite is the main
mineralogical phase in the substrate (marble), whereas gypsum, whewellite and calcite traces were
present in all of the crusts. Some differences were highlighted for samples SD3 and SM-A1 (presence of
quartz and weddellite) along with SM-S1 and SM-P1 (presence of weddellite).

According to the literature [49], the presence of calcium oxalates, i.e., whewellite and weddellite,
may be a result of the restoration work carried out on the artifacts in the past [50], or could be linked to
biological activities or other natural reactions [51].

Table 2. Main textural features (OM) and mineralogical phases (XRPD) occurring in the analyzed
samples, considering both unaltered substrate and black crusts.

Complex of San Domenico Maggiore (SD series)

Sample
ID

Grain Size
µm Texture Fabric Mineralogical Phases

in the Substrate
Mineralogical phases in the black crust

Cal Gp Qz Whw Wed

SD2 450–100 Ho Mosaic Cal +++ ++ − + −

SD3 450–100 Ho Mosaic Cal +++ ++ + ++ −

Cloister of San Marcellino e Festo (SM-P, SM-A, SM-S series)

Sample
ID

Grain Size
µm Texture Fabric Mineralogical phases

in the substrate
Mineralogical phases in the black crust

Cal Gp Qz Whw Wed

SM-P1 550–100 Ho Mosaic Cal ++++ +++ − ++ +

SM-S1 690–100 He Mosaic Cal ++++ +++ − ++ +

SM-A1 470–100 He Mosaic Cal ++++ ++ + + +

Minerals abbreviations according to [52]: Cal. calcite; Qz. quartz; Gp. Gypsum; Whw. Whewellite; Wed. Weddellite;
++++. very abundant; +++. abundant; ++. moderate; +. poor; -. not present.

4.2. Micromorphological and Elemental Analysis of the Black Crusts by SEM-EDS

Scanning Electron Microscopy observations highlighted many similarities between SD samples.
Both show a stone substrate (US unaltered) overlayed by well adherent and homogeneous crusts with
different thicknesses (Figure 4a,b). The SD2 crust has a size that varies from 175 to 10 µm (Figure 4a),
while SD3 ranges from 150 to 5 µm (Figure 4b).

Black crusts consist of gypsum, which has an acicular and lamellar crystal habit, in which
combustion particles of various sizes and morphologies were identified (Figure 4c,d). Particles have
diameters ranging from 80 to 3 µm, and they are spherical, sub-spherical, and irregular in shape,
displaying smooth, porous, or rough surface (Figure 4c). These are homogeneously distributed over
the whole examined surface.
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Figure 4. SEM microphotographs of some examined samples (i.e., SD2, SD3, SM-S1, SM-A1 and SM-P1)
with details of combustion particles and gypsum crystals (c,d,h). The holes caused by LA-ICP-MS spot
analyses (carried out on black crusts = BC and unaltered substrates = US) are also visible (a,b,e,f,g).
The red dotted line demarcates the layer of black crust from the substrate. Elemental analyses were
carried out by EDS on the black crust to evaluate the chemical composition in terms of major elements,
as well as their distribution within the sample (i.e., black crust).

Micromorphological investigations on SM-S1 (Figure 4e) showed a crust with variable thickness
(from 520 to 75µm), irregular and heterogeneous morphology. Inside, acicular-lamellar gypsum crystals
and numerous combustion particles were recognized; the latter are characterized by a morphology
ranging from sub-spherical microporous to smooth spherical. The crust appears to be well adherent to
the underlying substrate, which is degraded and characterized by many micro-fractures.

The crust in SM-A1 (Figure 4f) is well adherent to the substrate, with higher thickness than the
other samples (up to 350 µm), a jagged outer edge, and a heterogeneous morphology. Acicular and
lamellar gypsum crystals and few combustion particles were also recognized. These particles, ranging
in size from 70 to 5 µm both have partly sub-spherical morphology and porous surface and partly
irregular morphology and rough surface.
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Finally, SM-P1 (Figure 4g,h) displays a poorly degraded stone substrate, with a well adherent
crust only at some points of the analyzed surface. The crust shows a heterogeneous and irregular
morphology, with a thickness ranging from 790 to 50 µm (Figure 4g), where lamellar gypsum and calcite
crystals could be identified, probably coming from the stone substrate. Additionally, it combustion
particles with different shapes (spherical, sub-spherical and irregular), sizes (thickness between 2.5
and 125 µm) and surface morphologies (smooth, porous and wrinkled) can be recognized, distributed
variously along the entire surface investigated (Figure 4h).

Black crusts are mainly composed of SO3 and CaO, clearly attributable to the gypsum. Moreover,
SiO2, Al2O3, Fe2O3 were detected, along with smaller amounts of K2O, P2O5, Na2O, MgO and TiO2,
whose presence is ascribable to the abovementioned particles being embedded in the crust (Table 3).

Table 3. Average concentrations of major elements expressed in oxides (wt%) in the black crust of
sample SD2 as representative of the complex of San Domenico Maggiore and SM-P1 as representative of
the cloister of San Marcellino e Festo. Measurements were obtained by SEM-EDS analysis performed in
raster mode.

Complex of San Domenico Maggiore Cloister of San Marcellino e Festo

Major Elements Sample SD2
Average Analysis No. 8

Sample SM-P1
Average Analysis No. 8

Na2O <0.1 1.99
MgO <0.1 1.19
Al2O3 6.70 8.82
SiO2 7.82 13.60
P2O5 0.99 <0.1
SO3 40.90 38.60
K2O 3.49 2.50
CaO 35.50 28.40
TiO2 <0.1 0.57

Fe2O3 5.59 4.36

Since the crusts in the SD2 and SD3 samples show a similar composition, as do SM-S1, SM-P1 and
SM-A, Table 3 only reports the crust compositions of the SD2 and SM-P1 samples, as representatives.

The distributions of SO3 and CaO, detected in the analyzed window for SD2 and SM-P1 were
obtained by means of false color maps regarding S and Ca (Figure 5a–c), as well as their combination
(Figure 5d).
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Figure 5. False color maps by SEM-EDS related to SD2 sample as representative. (a) EDS analyzed
window of the SD2 sample, consisting of the crust (BC) and stone substrate (US); (b) distribution of S
(red); (c) distribution of Ca (green); (d) overlapping and distribution map of S and Ca.

Figure 5d further confirms that the BC surface is mainly composed of gypsum, with calcium and
sulfur being the main components, with a more marked yellow coloring resulting from the combination
of red and green colors (i.e., overlapping of red colors indicating 100% S and green indicating 100% Ca,
according to their greater or lesser amount). Additionally, the US surface shows a high concentration
of calcium oxide, demonstrated by the greener coloring.
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4.3. Trace Elements Analysis by LA-ICP-MS

Chemical characterization of samples in terms of trace elements was performed using the
LA-ICP-MS technique on cross-sections with polished surface.

This method made it possible to determine the trace elements in both the black crusts and the
unaltered substrate (i.e., marbles), selecting a statistically valid number of analyses as a function of the
sample thickness. Exceptionally, the assays were only carried out on the crust in SM-P1, due to the lack
of representativeness of the substrate resulting from the insufficient thickness available.

The average concentrations (in ppm) of the most representative chemical elements, both in the
unaltered substrates (US) and in the black crusts (BCs), is reported in Table 4.

Chemical elements such as Ba, Cu, Pb, Ti and Zn achieved the major concentrations in the black
crusts (Table 4).

Specifically, the BCs (SD2 and SD3) taken from the complex of San Domenico Maggiore show higher
average maximum values in Pb (3525 ppm), Zn (1580 ppm) and Cu (224 ppm) than the substrate,
where they are considerably lower (i.e., Pb is 82.09 ppm; Zn is 32 ppm; Cu is 18.18 ppm). In the same
samples of BCs, similar and sometimes lower values of Ba, As and V were detected with respect to the
unaltered substrate (Table 4).

The BCs from the cloister of San Marcellino e Festo (SM-S1, SM-A1 and SM-P1) display lower
concentrations in heavy metals compared to the previous ones (i.e., SD2 and SD3). In detail, BCs
of SM-S1, SM-A1 and SM-P1 show higher average maximum values in Ba, Ti, Zn and Cu than the
unaltered substrate (Table 4). Specifically, in SM-A1, Ba increases from 9.15 ppm in the US to 288 ppm
in the BC; in SM-S1, Ti varies from 12.38 ppm in US to 417 ppm in BC, Zn from 19.25 ppm in US to 321
ppm in BC, Cu from 4.4 ppm in US to 93.55 ppm in BC (Table 4).

The chemical compositions determined for the samples from the complex of San Domenico Maggiore
suggest a certain correlation between the concentrations of the trace elements and the position of the
samples in terms of height and exposure to washout (Figure 2 and Table 1). In particular, the trace
elements detected in SD2, taken at 2.30 m high, show greater overall concentrations than SD3, sampled
at 1.60 m high (Figure 2). In fact, this latter one is located in an area only partially exposed to washout
(i.e., on a vertical and internal surface), thus favoring a major accumulation of pollutants over time.

Conversely, the black crusts belonging to the three historical artifacts from the cloister of San
Marcellino e Festo (SM-S1, SM-A1 and SM-P1) do not show a clear correlation between the concentration
of the trace elements and their sampling position.

Overall, the samples of the cloister exhibit lower concentrations than those of San Domenico
Maggiore, which is attributable both to different sampling heights and to exposure conditions. In fact,
the artifacts in San Marcellino e Festo are located in a more protected micro-environment with respect to
the samples of San Domenico Maggiore, which are directly exposed in a higher vehicular traffic area.
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Table 4. The average concentration resulted from five point-analysis (expressed in ppm) of the most representative chemical elements, both in the unaltered substrate
(US) and in the black crusts (BC).

BC-SD2 BC-SD3 US-SD BC-SMS1 US-SMS1 BC-SMA1 US-SMA1 BC-SMP1 US-SMP1

Element Amount
(ppm)

Std
Dev

Amount
(ppm)

Std
Dev

Amount
(ppm)

Std
Dev

Amount
(ppm)

Std
Dev

Amount
(ppm)

Std
Dev

Amount
(ppm)

Std
Dev

Amount
(ppm)

Std
Dev

Amount
(ppm)

Std
Dev

Amount
(ppm)

Std
Dev

As 48.46 2.10 36.52 2.17 51.63 12.23 5.59 0.60 1.72 0.51 7.89 1.36 2.33 - 9.09 1.46 2.70 0.73
Ba 938 91.18 1106 73.74 1104 232 139 32.44 6.93 1.68 288 26.09 9.15 0.30 190 67.82 16.27 7.71
Cd 1.19 0.07 0.86 0.07 0.54 0.10 0.59 0.07 0.77 0.16 0.58 0.17 0.44 - 1.44 0.15 0.63 0.22
Cr 22.75 1.14 17.80 0.69 26.94 6.24 12.00 1.97 5.22 0.71 20.89 0.91 15.31 - 8.71 1.17 2.89 0.61
Cu 224 24.61 60.08 4.02 18.18 3.69 93.54 21.10 4.44 2.69 26.17 6.23 1.23 0.28 45.06 8.40 52.32 5.97
Ni 10.31 0.61 8.02 0.77 7.68 1.45 11.54 2.73 1.06 0.29 3.56 0.65 0.68 0.20 6.06 1.18 10.44 0.90
Pb 3525 262 3134 292 82.09 23.49 85.55 7.87 17.37 8.04 109 6.67 37.02 5.20 122 11.69 147 6.36
Sb 25.59 1.75 12.71 1.21 6.73 1.15 5.84 1.07 0.19 0.01 1.65 0.41 0.11 0.04 2.01 0.94 0.48 0.24
Ti 1377 75.12 1023 63.80 1842 281 417 62.09 12.38 2.96 110 35.41 20.96 12.52 492 134 53.15 26.08
V 37.29 2.13 31.75 4.16 37.11 4.95 16.67 1.68 0.96 0.16 10.65 0.96 0.78 0.27 18.23 3.81 5.66 3.18

Zn 1580 197 589 52.97 32.00 2.07 321 26.73 19.25 7.05 169 53.64 26.62 1.74 481 62.21 904 24.13
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5. Discussion

The enrichment factors (EFs) of chemical elements were calculated as the ratios of crust/substrate
metals’ concentration in order to discriminate the origin of the elements respectively attributable to the
deposition process, or to the substrate. The results are reported in Table 5.

Table 5. Enrichment factors (EFs) of the chemical elements detected in the black crusts: EFs > 1 (values
in green cells); EFs = 1 (values in white cells); EFs < 1 (values in red cells).

Complex of San Domenico Maggiore Cloister of San Marcellino e Festo

Chemical Elements Sample SD2 Sample SD3 Sample SM-S1 Sample SM-A1 Sample SM-P1

As 0.9 0.7 3.3 4.6 5.2
Ba 0.8 1 20.1 41.6 38.4
Cd 2.2 1.6 0.8 0.8 5.5
Co 2 0.9 12.4 3.9 11.4
Cr 0.8 0.7 2.3 4 1.2
Cu 12.3 3.3 21.1 5.9 9.5
Ni 1.3 1 10.8 3.4 6.4
Pb 42.9 38.2 4.9 6.3 5.6
Sb 3.8 1.9 30.7 8.7 10.6
Ti 0.7 0.6 33.6 8.9 22.5
V 1 0.9 17.4 11.1 9.6
Zn 49.4 18.4 16.6 8.8 16.8

Generally, an enrichment factor lower than or equal to 1 suggests that the source of the element
comes from the substrate, while an enrichment factor greater than 1 may be imputable to an external
“provenance”, meaning that elements are linked to a deposition process. This secondary provenance is
more accentuated as the enrichment factor increases. Considering Table 5, it is possible to observe
these differences; specifically, cells in green show EFs values greater than 1, while red ones refer to
values lower than 1.

The high amount of Ba in the samples (Table 5) from the cloister of San Marcellino e Festo (SM-P,
SM-A, SM-S series) is probably a result of restoration interventions [53] carried out in the past, as
barium hydroxide was widely used for the conservative treatment of marbles in the past [54].

This thesis is supported by the investigations carried out using OM. Thin section observations
made it possible to highlight the presence of a layer of scialbo between the marble substrate and the
black crust (i.e., Figure 3, sample SD3). This could be attributed to a restoration intervention, since this
practice is rather common in restoration of marble. The enrichment in barium is further provided by
EF values (Table 5).

In particular, different EFs can be ascribable to various factors such as the type of stone material, the
particle deposit morphology (vertical surfaces), the different exposure to emission sources (mobile or
fixed) and the wash-out phenomenon. In this way, specimens SD2 and SD3 showed a high enrichment
factor for some elements such as Pb, Zn and Cu, because they were sampled from the church portal,
which has been affected by mobile polluting sources—specifically, vehicles—in the past [55].

Figure 6, with respect to the complex of San Domenico Maggiore (Figure 6a–c), shows good
correlations among the different heavy metals, such as Zn vs. Pb, Cu vs. Zn and Sb vs. Cu. In detail,
the high correlation between Zn vs. Pb (R2 = 0.8022) is in agreement with the use of leaded gasoline as
fuel for auto-motion [4], used up until a few decades ago. Moreover, the correlation between Cu vs.
Zn (R2 = 0.8406) suggests an enrichment of the samples with tire wear particles and other artefacts
of friction and machine wear [56–59]. Additionally, the latter could indicate soil contamination from
lubricating oil and exhaust emissions from vehicles [60,61]. Finally, the good correlation between Sb vs.
Cu (R2 = 0.884) indicates a contribution from the brake wear [62,63].
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On the contrary, the samples from the cloister of San Marcellino e Festo (SM-S1, SM-A1 and SM-P1)
show a low correlation between the heavy metals (Figure 6d–f), suggesting differences in the source.

As, Cr, Cu, Ni, Pb, Sb, Ti, V and Zn registered a moderate enrichment in all black crust samples
(3 < EF < 33.6), which could be associated with different anthropogenic sources such as industrial
activities [64–66], pavement wear [67], or vehicular traffic.

Previous studies carried out on atmospheric particulate matter and dust sampled from the soil in
the Naples area [68,69] highlighted the presence of two different pollutant sources: mobile and fixed.
In particular, the latter one is related to the ILVA steel mill (working until 1993) located in the industrial
area of Bagnoli-Coroglio and to the oil refineries (i.e., Q8, Esso, Tamoil) in the Eastern area of Naples.
These industrial emissions have certainly affected enrichment in some elements such as Ti, Zn, Pb,
Cu, Ni and V. Furthermore, the presence of high Sb values in these samples could be attributed to the
incinerator plants [70] located 30 km north of the city [71,72].

Additionally, by comparing the lower contents of As, Ni and V determined in this study with
respect to previous research [23,26,27,30,32,33,73], it is possible to assert that these values may be
dependent on the moderate degree of use of domestic heating resulting from the more temperate
climate of Naples compared to that of other Italian and European cities.

In fact, the above-mentioned elements may be generally associated with the different fuels used
in heating, such as coal (in the past) or fuel oils [74,75].

Considering the data obtained, it is possible to assert that the greatest enrichment in heavy metals
of the black crusts from the church of San Domenico Maggiore (samples SD2 and SD3) is certainly due to
the use of Pb-based gasoline, as well as tire and brake wear and other artefacts of machine wear. This
aspect is also evident in Figure 7, which shows the location of the two case studies in the center of
Naples. In fact, although the church of San Domenico Maggiore is nowadays located in a pedestrian
area (i.e., Piazza San Domenico Maggiore and Vico San Domenico Maggiore), it was surrounded by a high
volume of vehicular traffic until a few decades ago.

With respect to the samples from the cloister of San Marcellino e Festo (SM-S1, SM-A1 and SM-P1),
data show an enrichment in various heavy metals (As, Cr, Cu, Ni, Pb, Sb, Ti, V and Zn) that can be
traced to different polluting sources (industrial activities and vehicular traffic). The sampled artifacts
are located inside a closed cloister and not exposed to direct sources of emissions, but they still showed
weathering phenomena related to stone decay and air pollution.

The results obtained indicate that all monuments, even those not directly exposed to sources
of direct emissions, can undergo decay processes. This demonstrates how the conservation of built
cultural heritage is strictly connected to environmental protection issues and how it is necessary to
intensify the related intervention policies.
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6. Final Remarks

Black crusts collected from two historical sites with different exposure located in the center of
Naples were analyzed in order to detect the variability in the degradation forms, mainly due to
atmospheric pollutants.

The minero-petrographic and geochemical investigations made it possible to:

• determine that the concentration of specific elements (such as As, Sb, Pb, Zn, Cu, Sn, etc.) was
noticeably higher in the samples coming from the complex of San Domenico Maggiore, evidencing
the fingerprint of air pollution due to vehicular emissions.

• show that the As amount detected in Naples city center was lower than in other Italian and
European cities studied in previous research, highlighting the importance of the impact of the
local pollution sources on the cultural heritage.

• consider the evolution of the conservation state of the rock substrate. Some elements such as
Zn, Cu, Ni, etc. were more abundant in the substrate, evidencing the presence of a network
of microcracks favoring the migration of chemical elements from the crusts to the substrate.
This mobility can also lead to the formation of new crusts, contributing to the acceleration of
weathering damage.

The results obtained represent a further milestone for better managing future restoration
interventions, especially in terms of the choice of the best cleaning procedures for historical and
monumental complexes. Additionally, suitable consolidation procedures will make it possible to
increase the resistance of stone materials against the degradation phenomena mainly related to the
geochemical mobility from the black crusts to the substrate.
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22. Kramar, S.; Mirtič, B.; Knöller, K.; Rogan-Šmuc, N. Weathering of the black limestone of historical monuments

(Ljubljana, Slovenia): Oxygen and sulfur isotope composition of sulfate salts. Appl Geochem 2011, 26,
1632–1638. [CrossRef]

23. La Russa, M.F.; Belfiore, C.M.; Comite, V.; Barca, D.; Bonazza, A.; Ruffolo, S.A.; Pezzino, A. Geochemical
study of black crusts as a diagnostic tool in cultural heritage. Appl. Phys. A Mater. 2013, 113, 1151–1162.
[CrossRef]

24. Ausset, P.; Del Monte, M.; Lefévre, R.A. Embryonic sulphated black crusts on carbonate rocks in atmospheric
simulation chamber and in the field: role of carbonaceous fly-ash. Atmos. Environ. 1999, 33, 1525–1534.
[CrossRef]
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