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Abstract: The health condition monitoring of rotating machinery can avoid the disastrous failure and
guarantee the safe operation. The vibration-based fault diagnosis shows the most attractive character
for fault diagnosis of rotating machinery (FDRM). Recently, Lempel-Ziv complexity (LZC) has been
investigated as an effective tool for FDRM. However, the LZC only performs single-scale analysis,
which is not suitable to extract the fault features embedded in vibrational signal over multiple scales.
In this paper, a novel complexity analysis algorithm, called hierarchical Lempel-Ziv complexity
(HLZC), was developed to extract the fault characteristics of rotating machinery. The proposed
HLZC method considers the fault information hidden in both low-frequency and high-frequency
components, resulting in a more accurate fault feature extraction. The superiority of the proposed
HLZC method in detecting the periodical impulses was validated by using simulated signals.
Meanwhile, two experimental signals were utilized to prove the effectiveness of the proposed HLZC
method in extracting fault information. Results show that the proposed HLZC method had the best
diagnosing performance compared with LZC and multi-scale Lempel-Ziv complexity methods.
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1. Introduction

Rotating machinery is commonly used in modern industries, such as the aero-engine, vehicle,
ship, and railway industries [1]. In industrial applications, the strict working environment may result
in localized damage on rotating machinery. If the damage cannot be timely diagnosed, it may cause
disastrous failure and serious economic loss. Therefore, it is crucial to conduct the fault diagnosis of
rotating machinery (FDRM) so as to ensure its safety operation [2].

Until now, many advanced techniques have been developed to accomplish the FDRM, such as the
vibration-based fault diagnosis method [3,4], acoustic emission-based fault diagnosis method [5,6],
and rotary encoder-based fault diagnosis method [7]. Among these techniques, the vibration signal
method is most widely applied in industrial applications due to the its advantage of easy measurement
and high scalability [8]. Generally, three main stages are included in the vibration-based method: data
collection, fault feature extraction, and pattern identification. During the three stages, the fault feature
extraction lays a good foundation for FDRM. Some advanced fault feature approaches have been
proposed for the FDRM, such as blind source separation [9], wavelet-based method [10], and adaptive
decomposition methods [11].

Unfortunately, the complex dynamical structure and complex operating conditions of rotating
machinery often generate nonlinear and non-stationary characteristics in the measured vibration
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signals, resulting in the difficulty in extracting the weak fault characteristics from the vibration
signals [12]. Thanks to the rapid development of complexity theory, some complexity indexes are used
to extract fault features of rotating machinery, such as Lempel-Ziv complexity (LZC) [13], approximate
entropy [14], fuzzy entropy [12,15], permutation entropy [16,17], symbolic dynamic entropy [18],
and multi-scale entropy [19]. Related research have indicated that LZC is powerful in analyzing
vibration signals of mechanical systems. Yan et al. [13] used LZC to distinguish different bearing failure
severity. Hong et al. [20] calculated LZC after wavelet transformation to recognize the fault severity of
bearing. Cui et al. [21] proposed a signal decomposition and reconstruction method based on LZC and
the double-dictionary matching pursuit. Meanwhile, Cui et al. [22] proposed a fault diagnosis method
that was based on Sparsogram and LZC. Moreover, Bai et al. [23] utilized the permutation of the LZC
to quantify the complexity of the signal, whereas Yin et al. [24] proposed a novel symbolic aggregate
approximation and LZC method for fault diagnosis of rolling bearings.

However, the existing LZC methods have one common problem when analyzing the vibration
signals. Since the fault information is usually embedded in vibration signals over different scale
domains [25], the LZC-based methods only perform single-scale analysis, and thus the fault
characteristics cannot be comprehensively described. In order to match the fault characteristics
comprehensively, we proposed multi-scale Lempel-Ziv complexity (MLZC) to extract the fault features
over multiple scales by multi-scale analysis [26]. However, the coarse-grained process is actually a
linear smoothing process, which only considers the low-frequency components through the averaging
process, and thus the fault information of the high-frequency component is discarded. In actual
application, the fault information is embedded in both the low–high and high-frequency components
of measured vibration signal. For example, a real vibration signal and its corresponding frequency
spectrum are shown in Figure 1a,b, respectively. As can be seen, both the low-frequency (0–500 Hz) and
high-frequency (2500–3500 Hz) components contain the main fault information of rotating machinery.
Therefore, the fault extraction performance of MLZC still needs to be improved.
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Figure 1. (a) The waveform of measured rating machinery vibration signals, and (b) its corresponding 
frequency spectrum. 

To overcome such defects, this paper developed a novel approach called hierarchical Lempel-
Ziv complexity (HLZC) to quantify the complexity from the measured time series. Compared with 
the MLZC method, HLZC utilizes both the low-frequency components generated by averaging the 
components and the high-frequency components generated by taking the difference of components 
to produce the sub time series in each layer. The merits of our proposed HLZC method in fault feature 
extraction are verified using both synthetic signals and experimental signals. Results demonstrated 

Figure 1. (a) The waveform of measured rating machinery vibration signals, and (b) its corresponding
frequency spectrum.

To overcome such defects, this paper developed a novel approach called hierarchical Lempel-Ziv
complexity (HLZC) to quantify the complexity from the measured time series. Compared with
the MLZC method, HLZC utilizes both the low-frequency components generated by averaging the
components and the high-frequency components generated by taking the difference of components to
produce the sub time series in each layer. The merits of our proposed HLZC method in fault feature
extraction are verified using both synthetic signals and experimental signals. Results demonstrated
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that our proposed HLZC method is superior to LZC and MLZC in extracting fault characteristics with
high stability. After the HLZC-based feature extraction, we combined the HLZC with support vector
machine (SVM) classifier [27] to accomplish the intelligent fault diagnosis of rotating machinery.

The remainder of this paper is organized as follows. Section 2 introduces the fundamentals
of our proposed HLZC method. Moreover, the superiority of HLZC is validated using simulated
impulsive signal through comparing with LZC and MLZC methods. Section 3 describes the framework
of HLZC-based intelligent fault diagnosis method. Section 4 provides the experimental variation using
two case studies. Finally, Section 5 draws the final conclusion of this paper.

2. Proposed Hierarchical Lempel-Ziv Complexity

2.1. Lempel-Ziv Complexity

LZC, as a nonlinear method, has been proven to be an efficient tool to measure the complexity for
a given time series. LZC consists of two basic operations: copy and insert [20]. The LZC algorithm can
be detailed as

(1) Cover the finite sequence x(t) into 0–1 sequence by comparing with the median value Td using
Equation (1). Then, we can obtain the symbol series SN = {s1s2 . . . sN}.

si =

{
0, if x(i) < Td
1, otherwise

(1)

(2) Set the initial value Sv,0 = {}, Q0 = {}, CN(0) = 0, and i = 1. Note that Sv and Q represent the
substrings of the symbol series SN, and CN represents complexity counter.

(3) Let Qi = {Qi−1si} and judge whether Qi belongs to Sv,i−1 =
{
Sv,i−2si−1

}
. If so, set

CN(i) = CN(i− 1) and i = i + 1. Otherwise, set Qi = {}, CN(i) = CN(i− 1) + 1, and update i = i + 1.
(4) Repeat Step (3) until the end of symbol series SN = {s1s2 . . . sN}, and then the CN(N) can

be obtained. CN(N) is the last complexity counter, which reflects upon the number of all different
subsequences contained in the original data sequence.

(5) Normalize the CN(N) to obtain relatively independent indicator Cn,N using Equations (2) and (3).

Cn,N =
CN(N)

CUL
(2)

CUL = lim
N→∞

CN(N) ≈
N

log2 N
(3)

2.2. Multi-Scale Lempel-Ziv Complexity

On the basis of LZC and coarse-grained procedure [26], MLZC can be summarized into two steps.
(1) Conduct the multiple series by the coarse-graining analysis; (2) calculate the LZC values of each
coarse-grained time series.

(1) Given an arbitrary time series X
{
x(k), k = 1, 2, · · · , N

}
, construct consecutive coarse-grained

time series
{
y(τ)

}
according to Equation (4).

yτj =
1
τ

jτ∑
i=( j−1)τ+1

xi 1 ≤ j ≤
N
τ

(4)

where τ is a positive integer. The obtained coarse-grained time series
{
y(1)

}
is equal to the original time

series when τ = 1.
(2) Calculate the LZC for each coarse-grained time series according to the definition of LZC as

written in Equation (5).
MLZC(x, τ) = LZC(yτ) (5)
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The flowchart of MLZC is drawn in Figure 2. Additionally, we set the parameter scale τ = 20 in
the paper. The parameter τ = 20 has been proven to be effective using experimental tests for multi-scale
analysis in [12,15,18,28].
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However, the MLZC algorithm only uses the low-frequency components generated by the
multi-scale procedure for feature extraction, which unavoidably discards some useful fault information
hidden in the high-frequency components. To address these shortcomings of MLZC, this paper
developed a novel method called HLZC. First, the hierarchical decomposition is adopted to generate
sub time series called hierarchical series. Second, the LZC values of all hierarchical nodes are all
computed for comprehensive complexity estimation.

2.3. Hierarchical Lempel-Ziv Complexity

In this subsection, a novel method called HLZC is proposed by combining the hierarchical
decomposition and Lempel-Ziv complexity. The hierarchical decomposition can decompose an
arbitrary time series into high-frequency components and low-frequency components [29]. Figure 3
gives an example of the structure of hierarchical components decomposed by hierarchical decomposition.
The detailed calculation procedures of our proposed HLZC method can be summarized into four steps
as follows.
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(1) For an arbitrary time series X
{
x(i), i = 1, 2, · · · , N

}
, the averaging operator Q0 and differential

operator Q1 can be expressed as follows:
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Q0(x) =
x(i) + x(i + 1)

2
i = 1, 2, · · · , N − 1 (6)

Q1(x) =
x(i) − x(i + 1)

2
i = 1, 2, · · · , N − 1 (7)

where Q0(x) and Q1(x) denote the low-frequency component and high-frequency component for a
given time series, respectively.

(2) Conducting of the operators Qj matrix (j = 0 or 1) can be adaptively generated according to the
length of the time series N as follows:

Q j =



1
2

(−1)
2

j
0 0 · · · 0 0

0 0 1
2

(−1)
2

j
· · · 0 0

...
...

...
...

...
...

...

0 0 0 0 · · ·
1
2

(−1)
2

j


N/2×N

(8)

(3) Repeat step (2) to obtain the hierarchical components Xk,e as Equation (9).

Xk,e = Qk
rk
·Qk−1

rk−1
· · · · ·Q1

r1
·x (9)

where e is the number of hierarchical nodes. For hierarchical layer k, e can be obtained as follows:

e =
k∑

m=1

2k−mrm (10)

where [r1, r2 · · · , rk] represents the unique vector corresponding to the integer e, and {rm, m = 1, . . . , k} ∈
{0, 1} indicates the averaging or differential operator at the kth layer.

(4) Compute all the hierarchical components by repeatedly using steps (1)–(3). Then, calculate
LZC values of all the nodes. The HLZC is the set of all LZC values expressed as

HLZC(X, k) = LZC
(
Xk,e

)
(11)

The calculation process of HLZC is shown in Figure 4.
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2.4. Simulated Impulsive Signal

In this subsection, one impulsive signal was adopted to verify the advantage of proposed HLZC in
detecting various fault types. Three different bearing fault types were utilized in the simulated signal:
bearing with ball fault, bearing with inner race fault, and bearing with outer race fault. The number
of sample points of the synthetic signal was 24,600, which was cut out by a sliding window of 2048
points with a step length of 256 points. Three simulated faulty bearing signals in time domains are
shown in Figure 5a. For comparison purposes, LZC, MLZC, and HLZC were all utilized to process the
impulsive signals. In this paper, three commonly used distance measures—Euclidean distance (ED),
Chebychev distance (CD), and Minkowski distance (MD)—were all applied to verify the advantage of
our proposed method in tracking the impulses. Note that we averaged the first 10 samples as normal
samples. The distance value between each sample and normal samples was computed for comparisons.
Here, we set the scale τ = 1:20 for MLZC and the number of hierarchical layers k = 4 for HLZC methods.

The obtained results are shown in Figures 5–7. Two conclusions can be drawn from Figures 5–7 as
follows. First, it can be observed from (b) and (c) of three figures that the original LZC and MLZC
could not detect the impulses derived from three different bearing fault types, resulting in failure of
bearing feature extraction. In contrast, our proposed HLZC method not only identified three different
bearing types by tracking the impulse, but also generated less fluctuation and high accuracy, as shown
in (d) of the three figures. Second, the results using the three distance measures had a high consistency,
and thus the fault detection ability of three methods can be listed as HLZC > MLZC > LZC. This further
demonstrated that our proposed HLZC method has a significant advantage in fault feature extraction.

To explain the advantage of our proposed HLZC in detecting the impulses, we enlarged the bearing
with outer race fault signal and conducted the fast Fourier transform (FFT) analysis. The time domain
waveforms and its corresponding frequency spectra are shown in Figure 8a,b, respectively. As can
be seen, the fault information was mainly located in the high-frequency component (1000–1500 Hz).
The fault information embedded in the high-frequency component was ignored using the traditional
MLZC method, resulting in worse impulsive detection performance. Compared with the MLZC
method, HLZC utilized both averaging and differencing process to extract the fault information hidden
in both low-frequency and the high-frequency components. Therefore, the proposed HLZC method
generates the best performance in fault feature extraction.
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Note that the fault frequency (BPFO) obtained using the envelope spectrum analysis was equal
to the side band interval frequency of bearing intrinsic frequency in the conventional FFT method.
First, the frequency spectrum using FFT could not detect the bearing fault frequency (BPFO) directly.
It can be seen in Figure 8b that the bearing faults could be diagnosed by observing the intrinsic
frequency and its harmonics. Second, we also conducted the envelope spectrum analysis. The fault
frequency (BPFO) and its harmonics can be clearly observed in Figure 8c. Because the bearing
fault can generate repetitive impulses, the measured vibration signal is thus a typical amplitude-
and frequency-modulated (AM-FM) signal. The amplitude-modulated (AM) signal can be obtained
by using envelope demodulated analysis, and then the fault frequency (BPFO) can be obtained by
conducting the FFT on the AM signal.
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3. Proposed Fault Diagnosis Framework

3.1. Support Vector Machine

In this paper, support vector machine (SVM) [30] was taken as the classifier to accomplish the
pattern identification. SVM is a typical supervised learning method for recognition and regression
analysis. The kernel function plays a significant role in the SVM classifier, which is not only important
to reduce the computation cost but also useful in transforming the features into high dimension so as
to construct the hyper-plane [28,31].

Three different used kernel functions of SVM consist of linear kennel function, polynomial kernel
functions, and radial basis function (RBF) kernel function, which can be expressed as follows:

(1) Linear kernel
K(x, xi) =< x·xi > (12)

(2) Polynomial kernel
K(x, xi) = (< x·xi > +c)d (13)

(3) Radial basis function (RBF) kernel

K(x, xi) = exp
{
−γ‖x− xi‖

2
}

(14)

where γ > 0, and γ is the kernel parameter.
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Among these functions, the RBF function is most widely used due to its good performance,
in which there are two parameters—penalty parameter C and kernel parameter γ—which require
optimization. Here, the grid search method was utilized to optimize the two parameters [28]. It is
worth mentioning that the dataset was randomly split into training and testing subsets through a k-fold
cross-validation (CV). Every k subset takes turns to perform as an independent test set for the rest of
the (k − 1) training subsets. The test sets being independent provides the necessary compensation for
CV so as to enhance the consistency in the output. In this paper, the fivefold CV was adopted to adjust
the model parameters. The coarse grid points were firstly selected through the exponential growing
sequence 2−I to 2+I, where I is an integer. The optimal parameters for C and γ are assumed as ( j, k),
and the values are further optimized by using finer grid, in which the respective search area is 2 j± f and
2k± f . In this paper, we set the range of f as −0.75 ≤ f ≤ 0.75, with an interval of 0.25.

It is worth noticing that the one-against-one approach is applied to solve the multi-class
classification problem in this paper [32]. To deal with the k number classes, the k(k − 1)/2 SVM
models are required for classification. For the present work, LIBSVM software package was used to
deal with the multiple-fault diagnosis of rotating machinery.

3.2. Proposed Method

With the help of the advantages of HLZC and SVM, a novel intelligent fault diagnosis scheme
called HLZC-SVM is proposed in this paper. There are two stages in the proposed intelligent fault
diagnosis framework. In the first stage, HLZC is employed to extract the fault features from the
vibration signals of rotating machinery. In the second stage, SVM is adopted to identify different fault
types. Five steps are included in the FDRM method as follows:

(1) Measure the vibration data for various conditions of rotating machinery;
(2) Partition the measured vibration data into training datasets and testing datasets;
(3) Utilize HLZC to extract fault features from the vibration signals. Note that the hierarchical

decomposition layers of HLZC is set as k = 4, and thus 31 features will be obtained;
(4) Train SVM classifier using the training features;
(5) Test the trained SVM classifier, wherein the output of SVM can be used to recognize the different

fault types of rotating machinery.

The flowchart of the proposed fault diagnosis method is shown in Figure 9.
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4. Experimental Validations

In order to validate the effectiveness of the proposed HLZC method in extracting the fault features,
we designed two experiments in this paper. The two experiments were conducted on a fault simulator
made by SpectraQuest called machinery fault simulator (MFS), which is drawn in Figure 10. The MFS
consists of rolling bearings, a driven motor, and a three-way gearbox. At the rear of the gearbox,
a magnetic clutch was used to generate the radial load. To collect the vibration data, we installed an
acceleration transducer on the top of the gearbox. The rotating speed of the motor was kept at constant
vale of 3000 rpm. Note that a 5 in-lbs of torque was added to simulate the machine load environment.
The sampling frequency was 12,800 Hz. To simulate different faults, we replaced the test bearing and
test gear by artificial damaged gear and artificial local damaged bearing, as shown in Figure 11.
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Figure 11. Faulty gears and bearings: (a) pitting in the driving tooth, (b) broken tooth in the driving
tooth, (c) missing tooth in the driving tooth, (d) ball fault, (e) inner race fault, (f) outer race fault,
(g) grooving in the inner race, (h) grooving in the outer race.

Experiment 1 aimed to show the superiority of the proposed HLZC method for single FDRM,
which only covers single fault types of rotating machinery. Experiment 2 aimed to simulate the
compound fault of rotating machinery including the bearing and gear fault, which was used to validate
the superiority of the proposed HLZC method for compound FDRM. In this experiment, 50% of
samples were randomly chosen as training samples, and the remainder of samples were used as testing
samples. For comparison purposes, LZC and MLZC were all applied to process the data collected
from the two experiments.

4.1. Experiment 1

Experiment 1 consisted of one healthy condition and five single fault conditions, including inner
race fault (IRF), ball fault (BF), grooving in the inner race (GIR), grooving in the outer race (GOR),
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and outer race fault (ORF). There were 100 samples in each class and 600 samples in total. Meanwhile,
the data length was 2048 points. The waveforms under six healthy conditions are shown in Figure 12.
Table 1 gives the detailed information of six healthy conditions, including class label, damage diameter,
and the numbers of training and testing data.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 21 
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Figure 12. The time domain waveforms of rotating machinery under six healthy conditions in
Experiment 1: (a) health condition (Normal), (b) ball fault (BF), (c) inner race fault (IRF), (d) outer race
fault (ORF), (e) grooving in the inner race (GIR), (f) grooving in the outer race (GOR).

Table 1. Detailed information of six conditions in Experiment 1.

Fault Class Class Label Damage Diameter (mm) Number of
Training Samples

Number of
Testing Samples

Normal 1 0 50 50
Ball fault 2 0.01 50 50

Inner race fault 3 0.01 50 50
Outer race fault 4 0.01 50 50

Grooving in the inner race 5 0.2 50 50
Grooving in the outer race 6 0.2 50 50

Following the steps in Section 3, we firstly utilized the proposed HLZC method to extract the
fault features. Then, the obtained features were fed into SVM for classification. The obtained results
are shown in Figure 13. It can be seen from 0 that 16 samples were misclassified and the final accuracy
was 94.67%. For comparison, the MLZC and LZC were also tested. To avoid randomness, we carried
out 20 trials. Figure 14 and Table 2 illustrate the detailed recognition results using three methods. First,
the proposed HLZC method achieved the highest average classification accuracy of 94.3% (ranging
from 91.33% to 95.67%). This can be attributed to the high frequency components considered in the
HLZC method, which can contribute more information in the high frequency to generate a more
accurate estimation of complexity. Second, the MLZC method obtained the second-highest average
classification accuracy of 91.72% (ranging from 89.33% to 93.67%). Third, the LZC method had the
lowest classification accuracy of 63.47% (ranging from 61.67% to 66.33%) due to the ineffectiveness of
single analysis. It is indicated that HLZC had the best performance in extracting fault features among
the three methods.
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Table 2. Detailed classification accuracy of the experimental datasets in Experiment 1 and Experiment 2.

Experiments

HLZC MLZC LZC

Accuracy (%) Accuracy (%) Accuracy (%)

Max Min Mean Max Min Mean Max Min Mean

1 95.67 91.33 94.30 93.67 89.33 91.72 66.33 61.67 63.47
2 97.20 92 94.72 90 84.80 87.82 45.20 36 41.22

4.2. Experiment 2

Experiment 2 aimed to investigate the performance of HLZC in compound fault diagnosis of
rotating machinery. Experiment 2 was composed of five compound fault types: health condition
(Normal), broken tooth in the driving tooth with inner race fault (BI), missing tooth in the driving
tooth with inner race fault (MI), health tooth in the driving tooth with inner race fault (NI), and pitting
in the driving tooth with inner race fault (PI). There were 100 samples in each class and 500 samples
in total. In addition, the data length was 2048 points. The waveforms under five working types are
shown in Figure 15. The detailed information of five compound fault conditions is shown in Table 3.
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Figure 15. The time domain waveforms of rotating machinery in Experiment 2: (a) health condition
(Normal), (b) broken tooth in the driving tooth with inner race fault (BI), (c) missing tooth in the
driving tooth with inner race fault (MI), (d) health tooth in the driving tooth with inner race fault (NI),
(e) pitting in the driving tooth with inner race fault (PI).

Table 3. Detailed information of five conditions in Experiment 2.

Fault Class Class Label Damage Diameter (mm) Number of
Training Samples

Number of
Testing Samples

Normal 1 0 50 50
BI 2 0.01 50 50
MI 3 0.01 50 50
NI 4 0.01 50 50
PI 5 0.01 50 50

Like Experiment 1, the proposed HLZC-SVM method was also utilized for fault type identification
of rotating machinery. Figure 16 shows the classification results. From Figure 16, we can see that there
were a total of 10 samples misclassified with an accuracy of 96%. For comparison, the LZC and MLZC
methods were also tested. The testing accuracies of the four methods are listed in Table 2 and Figure 17.
As can be seen, the LZC-SVM was not effective, with an average classification accuracy of 41.22%.
Second, combined with multi-scale analysis, the diagnosing performance of the MLZC-SVM method
was enhanced with the average classification accuracy of 87.82%. Lastly, the proposed HLZC-SVM
method had the highest average classification accuracy of 94.72%.
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To better evaluate the classifier performance, we calculated the receiver operating characteristic
(ROC) curves of HLZC-SVM, MLZC-SVM, and LZC-SVM methods using the experimental data. Here,
we ran each method 20 times. The average ROC curve chart and AUC mean value of five health
conditions of rotating machinery using three methods are shown in Figure 18. It can be observed from
Figure 18a that our proposed HLZC-SVM method had the best performance with the highest AUC
value for five health conditions (Normal with 1, BI with 1, MI with 0.99, NI with 0.99, and PI with
0.99). In contrast, the AUC values of MLZC-SVM and LZC-SVM for five health conditions showed a
decreasing trend, as shown in Figure 18b,c, respectively. Among the three methods, the LZC-SVM
method performed worst, in which the AUC values of five health conditions were only 0.5, 0.93, 0.53,
0.50, and 0.86. The comparison results further demonstrate that our proposed HLZC-SVM method
had the best classification ability compared with the other two methods.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 21 

 

Figure 17. Diagnosis results of 20 trials using three methods in Experiment 2. 

To better evaluate the classifier performance, we calculated the receiver operating characteristic 
(ROC) curves of HLZC-SVM, MLZC-SVM, and LZC-SVM methods using the experimental data. 
Here, we ran each method 20 times. The average ROC curve chart and AUC mean value of five health 
conditions of rotating machinery using three methods are shown in Figure 18. It can be observed 
from Figure 18a that our proposed HLZC-SVM method had the best performance with the highest 
AUC value for five health conditions (Normal with 1, BI with 1, MI with 0.99, NI with 0.99, and PI 
with 0.99). In contrast, the AUC values of MLZC-SVM and LZC-SVM for five health conditions 
showed a decreasing trend, as shown in Figure 18b,c, respectively. Among the three methods, the 
LZC-SVM method performed worst, in which the AUC values of five health conditions were only 
0.5, 0.93, 0.53, 0.50, and 0.86. The comparison results further demonstrate that our proposed HLZC-
SVM method had the best classification ability compared with the other two methods. 

 
Figure 18. Performance comparison between three methods: (a) HLZC-support vector machine 

(SVM), (b) MLZC-SVM, and (c) LZC-SVM. 

Moreover, random forest (RF) classifier was also applied for pattern identification for 
comparison. The ROC curve chart and AUC value were used to evaluate classification performance. 
Figure 19 shows average ROC curve chart and AUC mean value after running 20 times. As can be 
seen, the SVM classifier obtained a larger AUC value of 0.99 compared with RF classifier (AUC with 
0.97), which meant the SVM had a better classification performance in recognizing various fault types 
of rotating machinery. 

Figure 18. Performance comparison between three methods: (a) HLZC-support vector machine (SVM),
(b) MLZC-SVM, and (c) LZC-SVM.

Moreover, random forest (RF) classifier was also applied for pattern identification for comparison.
The ROC curve chart and AUC value were used to evaluate classification performance. Figure 19
shows average ROC curve chart and AUC mean value after running 20 times. As can be seen, the
SVM classifier obtained a larger AUC value of 0.99 compared with RF classifier (AUC with 0.97),
which meant the SVM had a better classification performance in recognizing various fault types of
rotating machinery.

To gain a clear sense of the cluster ability of the extracted features using HLZC and MLZC
methods, we used two-dimensional projection for visualization with PCA, as drawn in Figure 20.
In 0a, it can be observed that the HLZC features of the five health conditions had a clear boundary and
each cluster was individually separate. However, for the MLZC method, a few features were mixed,



Appl. Sci. 2020, 10, 4221 15 of 20

resulting in difficulty for classification. This phenomenon indicated that the fault features extracted
using HLZC had more cluster ability than the MLZC method.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 21 
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We also tested the performance of our proposed HLZC method using different percentages of
samples for training (the remaining samples will be considered as testing samples). Eight percentages
were tested: 10% to 80%. To reduce randomness, 20 trials were conducted for each percentage.
The averaging of training and testing accuracies were calculated and their corresponding standard
deviations are illustrated in Figure 21. When the percentage increased to 50%, it achieved the highest
classification accuracy at 94.72%. Therefore, we selected 50% of samples for training to demonstrate
the advantage of our proposed HLZC method.

In order to discuss the influence of layer k, we applied the data of Experiment 2 for validation.
Figure 22 shows the obtained classification accuracies using different layer k. As can be seen, when the
layer k < 4, the classification accuracy will be significantly enhanced as the layer k rises. However,
a larger layer k will greatly enhance the central processing unit (CPU) time. We observed that when
the layer k = 4 increased to 5, the obtained classification accuracy was only improved by 0.08% from
94.72% (layer k = 4) to 94.80% (layer k = 5). However, the CPU time for layer k = 5 was 2116 s, which
was almost double that of layer k = 4 at 1095 s.

Moreover, there was one extremely useful byproduct of RF—variable importance
measures [33]—which was calculated to show the contribution of different components for the
final classification accuracy, as shown in Figure 23. Note that a lager importance value indicated that
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the component had a greater influence on final predictions. It can be seen that X50 generated by layer
k = 5 had a lower feature importance compared with that of component X40 generated by layer k = 4.
This phenomenon further indicated that the additional features generated by HLZC with k = 5 had a
small contribution on the final classification accuracy, which was well consistent with the classification
results in Figure 22. Considering both the classification accuracy and CPU time, we selected the layer
k = 4 for HLZC in this study.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 21 
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For the MLZC method, we calculated the importance of each scale to show the contribution of
different scales using data collected from Experiment 2. The obtained results are shown in Figure 24.
It is worth mentioning that a lager importance value indicates that the component has a greater
influence on final predictions. It can be seen that when the scale factor τ > 20, the feature importance
values of components showed a decreasing trend. This phenomenon indicated that the larger scale
components (τ > 20) had a small contribution on the final classification accuracy.
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Additionally, the data of Experiment 2 were applied for validation to discuss the influence of scale
factor τ. To reduce randomness, we conducted 20 trials conducted for each percentage. The testing
accuracies were calculated and their corresponding CPU time is illustrated in Figure 25 and Table 4.
As can be seen, when τ < 21, the classification accuracy will be significantly enhanced as τ rises. When
scale factor τ = 20, it achieves the highest classification accuracy with 87.82%. Moreover, the larger
scale means low calculation efficiency; thereby, we set scale factor τ = 1:20 in this paper.
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5. Conclusions

A novel complexity analysis algorithm called HLZC was proposed for fault diagnosis of rotating
machinery. The proposed HLZC can extract the fault information hidden in both low and high
frequency components through the hierarchical decomposition. After the fault extraction, we utilized
the SVM classifier to recognize different fault types of rotating machinery. To evaluate the performance
of the proposed HLZC-SVM method, we used one simulated signal and two experimental signals with
different fault types to verify the effectiveness of the HLZC-SVM method in FDRM. The comparison
results demonstrated that the proposed HLZC-SVM method yielded the highest average classification
accuracy of 94.3% and 94.72% for two cases, which was significantly higher than that of the LZ-SVM
method (63.47% and 41.22%) and the MLZC-SVM method (91.72% and 87.82%). This further reinforces
the fact that HLZC has certain advantages in fault feature extraction of rotating machinery. The main
contributions of this paper include:

(1) LZC was extended to hierarchical decomposition analysis, namely, HLZC;
(2) HLZC considered the fault information hidden in both low-frequency and high-frequency

components through conducting the averaging and differencing operations;
(3) A novel fault diagnosis scheme was proposed by combining HLZC and SVM;
(4) The proposed method was verified using both simulated and experimental signals.

There were some limitations for the proposed HLZC in fault diagnosis applications. First, although
the proposed HLZC was demonstrated to be effective for the fault diagnosis of rotating machinery,
it requires a large amount of labeled data for feature extraction and training the intelligent model for
classification, which is difficult to meet sufficient labeled requirement in real industrial application
scenarios. This limitation can be overcome by combing the feature knowledge transfer strategy with
HLZC in future work. Second, the proposed HLZC lacks the denoising process to remove strong
background noises so that it is difficult to extract the weak fault features from the strong noisy signal,
especially at the early fault stage. This issue can hopefully be solved by applying the symbolic
dynamic filtering to remove the noise-related fluctuations and reverse the fault-related information in
future work.
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