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Abstract: Differentiation between benign and malignant breast cancer cases in X-ray images can
be difficult due to their similar features. In recent studies, the transfer learning technique has been
used to classify benign and malignant breast cancer by fine-tuning various pre-trained networks
such as AlexNet, visual geometry group (VGG), GoogLeNet, and residual network (ResNet) on
breast cancer datasets. However, these pre-trained networks have been trained on large benchmark
datasets such as ImageNet, which do not contain labeled images related to breast cancers which
lead to poor performance. In this research, we introduce a novel technique based on the concept of
transfer learning, called double-shot transfer learning (DSTL). DSTL is used to improve the overall
accuracy and performance of the pre-trained networks for breast cancer classification. DSTL updates
the learnable parameters (weights and biases) of any pre-trained network by fine-tuning them on
a large dataset that is similar to the target dataset. Then, the updated networks are fine-tuned
with the target dataset. Moreover, the number of X-ray images is enlarged by a combination of
augmentation methods including different variations of rotation, brightness, flipping, and contrast to
reduce overfitting and produce robust results. The proposed approach has demonstrated a significant
improvement in classification accuracy and performance of the pre-trained networks, making them
more suitable for medical imaging.

Keywords: breast cancer; classification; image augmentation; medical images; transfer learning

1. Introduction

Recently, various machine learning algorithms have been used to develop computer-aided
diagnosis (CAD) systems to enhance the diagnostic capabilities of breast cancer in medical images.
These algorithms are mainly based on traditional classifiers that rely on hand-crafted features in order
to solve a particular machine learning task. Therefore, these kinds of methods are considered to be
tedious, time-consuming, and require experts in the field, especially in the feature extraction and
selection tasks [1]. Recent studies have shown that deep learning methods can produce promising
results on tasks such as image classification, detection, and segmentation in different fields of computer
vision and image processing. Training these deep learning algorithms from scratch to produce
accurate results and avoid overfitting remain an issue due to the lack of medical images available for
experiments [2]. In recent years, some techniques such as transfer learning and image augmentation
have shown promising opportunities towards increasing the number of training data, overcoming
overfitting, and producing robust results [3]. There are some interesting studies about breast cancer
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detection and classification by using deep learning methods along with other techniques such as image
augmentation and transfer learning in different types of medical images. Lévy and Jain [4] presented
how convolutional neural networks (CNNs) and pre-trained models such as AlexNet and GoogLeNet
can be used to classify pre-segmented breast masses as benign or malignant in X-ray images, using a
combination of transfer learning and data augmentation techniques to overcome the limited training
data. Nevertheless, the authors have only tested two pre-trained networks on one dataset known as a
digital database for screening mammography (DDSM). Therefore the experiments might be insufficient
to generalize the findings of their study. Another research [5] showed that image augmentation is
a vital part of training discriminative CNNs and presented some augmentation methods such as
horizontal flips, random crops, and principal component analysis that have been used to capture
important characteristics of medical image statistics effectively resulting in high validation and training
accuracy. In addition, they demonstrated that smarter augmentation may result in fewer artifacts in
CNN visualizations. However, the augmentation methods seem to be randomly chosen and not based
on expert knowledge or experience.

One recent research [6] introduced transfer learning and image augmentation methods to construct
an automatic mammography classification using the public dataset of curated breast imaging subset
of DDSM (CBIS-DDSM). Residual network (ResNet) has been fine-tuned in order to produce good
performance, decrease training time, and automatically extract features. Although the overall accuracy
of the proposed method reached 93.15%, the result remains doubtful since authors tested the proposed
approach on the augmented dataset rather than the original dataset. Another recent research [7] has
experienced transfer learning on recent pre-trained models to evaluate their performance on benign
and malignant breast cancer classification in mammograms. The region of interest (ROI) mass images
from the public dataset of CBIS- DDSM have been used for training and testing. The best results were
obtained with ResNet-50 and MobileNet with 78.4% and 74.3%, respectively. Nevertheless, the accuracy
is considered to be very low. Huynh et al. [8] presented a breast imaging CAD system based on
transfer learning from non-medical tasks to extract lesion information from breast mammographic
images which contain 219 breast lesions. Authors demonstrated the effectiveness of the proposed
approach compared to the traditional classifier of support vector machine based on CNN as a feature
extractor. Although the proposed method has improved the classification accuracy, it might suffer
from overfitting due to the small number of training samples.

Vesal et al. [9] investigated the effectiveness of transfer learning for breast histology images
classification and evaluated the classification performance of the pre-trained networks of Inception-V3
and ResNet50. The experimental results showed that the Inception-V3 network outperformed the
ResNet50 network achieved 97.08% and 96.66% respectively. Additionally, authors have applied some
augmentation techniques, such as rotation and flipping to increase the number of training samples
resulting in a total of 33,600 training and validation samples from the original 320 training samples.
Nevertheless, authors should have assessed the effectiveness of the the augmentation techniques
on more pre-trained models. Another interesting research [10] studied the transfer learning from a
AlexNet to enhance the accuracy of lung nodule classification. Since AlexNet has been trained on
ImageNet, there is no guarantee that deep features are suitable for the lung nodule classification. Hence,
authors utilized the fine-tuning and feature selection techniques to enhance the transferability process.
The results showed that the proposed technique can outperform the handcrafted texture descriptors.
Nevertheless, this approach seems to be applicable only to AlexNet. Unlike the aforementioned
works, we introduce the double-shot transfer learning (DSTL) technique by utilizing the most popular
pre-trained networks in the literature (AlexNet [11], VGG-16 (visual geometry group) [12], VGG-19 [12],
GoogLeNet [13], ResNet-50 [14], ResNet-101 [14], MobileNet-v2 [15], and ShuffleNet [16]). DSTL
updates the learnable parameters of the pre-trained networks by fine-tuning them on 98,967 of the
augmented X-ray images of benign and malignant breast cancers from CBIS-DDSM dataset. Then,
the updated pre-trained networks are fine-tuned for the second time on the augmented images of the
target mammographic datasets of mammographic image analysis society (MIAS) and breast cancer
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digital repository (BCDR) to differentiate benign from malignant breast cancer. The advantage of the
DSTL over the single-shot transfer learning (SSTL) technique is that DSTL can improve the overall
accuracy, sensitivity, specificity, area under the curve (AUC), training time, epoch number, and iteration
number. The contribution of this paper can be summarized as follows:

1. An effective technique based on the concept of transfer learning, called double-shot transfer
learning (DSTL), is introduced to improve the overall accuracy and performance of the pre-trained
networks for breast cancer classification. This technique will make these pre-trained networks
more suitable for medical image classification purposes. More importantly, DSTL can help speed
up convergence significantly.

2. DSTL can update the learnable parameters (weights and biases) of any pre-trained network
by fine-tuning them on a large dataset that is similar, but not identical, to the target dataset.
The proposed DSTL adds new instances (CBIS-DDSM) to the source domain (Ds) that are similar
to the target domain (Dt) to update the weights of the parameters in the pre-trained models and
form a distribution similar to the Dt (MIAS and BCDR datasets).

3. The number of X-ray images is enlarged by a combination of effective augmentation methods that
are carefully chosen based on the most common image display functions performed by doctors
and radiologists during the diagnostic image viewing. These augmentation methods include
different variations of rotation, brightness, flipping, and contrast. These methods will reduce
overfitting and produce robust results.

4. The proposed DSTL will provide a valuable solution to the difference between the source and
target domain problem in transfer learning.

2. Materials and Methods

2.1. Dataset Description

In this research, three publicly available breast cancer datasets have been used to assess the
effectiveness of the proposed method and validate the experimental results. These three datasets
include CBIS-DDSM, MIAS, and BCDR.

2.1.1. CBIS-DDSM Dataset

DDSM is a public resource for providing the research community with mammographic images
to facilitate and enhance the development of computer algorithms and training aids in order to
develop an effective CAD system. It is a collaborative work between Massachusetts General Hospital,
Sandia National Laboratories, and the University of South Florida Computer Science and Engineering
Department [17]. Curated breast imaging subset of DDSM (CBIS-DDSM) is an updated version of the
DDSM. This dataset contains normal, benign, and malignant cases with verified pathology information.
The CBIS-DDSM collection contains a subset of the DDSM data organized by professional radiologists.
It also contains bounding boxes, pathological diagnosis, and ROI segmentation for training data.
After eliminating the corrupted and noisy images as shown in Figure 1, the number of images has
been reduced to 7277 images of abnormal cases [18,19]. These abnormal images include 4009 benign
and 3268 malignant cases.

2.1.2. MIAS Dataset

The mammographic image analysis society (MIAS) is an organization of UK research groups
interested in the understanding of mammograms. MIAS has created a database of digital mammograms
taken from the UK National Breast Screening Programme. The database contains 322 digitized
films and is available on 2.3 GB 8 mm (ExaByte) tape. In total, 114 images out of the total images
are abnormal images, where 63 images are benign and 51 images are malignant. It also includes
radiologists’ annotation on the locations of cancers. The abnormality is divided into six classes
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of masses namely calcification, well-defined/circumscribed, speculated, ill-defined, architectural
distortion, and asymmetry. The database images have been decreased to a 200 micron pixel edge and
padded/clipped, making all the images 1024 × 1024. Mammographic images can be accessed from the
Pilot European Image Processing Archive at the University of Essex [19,20]. The total images of benign
and malignant cases before applying the augmentation methods are 63 and 51 respectively.

(a) (b) (c)

Figure 1. Examples of noisy and corrupted images. (a,b) contain some black arrow marks made by
doctors or radiologists indicating the location of the lesion. (c) is a result of insufficient illumination or
incorrect device adjustment.

2.1.3. BCDR Dataset

The breast cancer digital repository (BCDR) project has two main objectives: (1) establishing a
reference to explore computer-aided detection and diagnosis techniques, and (2) offering teaching
opportunities to medical-related students. The BCDR has been publicly available since 2012 and it
is still under development. BCDR provides comprehensive patients cases of breast cancer including
mammography lesions outlines, prevalent anomalies, pre-computed features, and related clinical data.
Patient cases are BIRADS classified, biopsy proven, and annotated by specialized radiologists. The bit
depth is 14 bits per pixel and the images are saved in the TIFF format [21]. In this research, a total of
159 of abnormal images have been used, consisting of 80 benign and 79 malignant.

It is worth to be noted that all images have been converted into png and resized into 224 × 224
and 227 × 227 to fit every pre-trained network. Figure 2 shows some samples of the CBIS-DDSM,
MIAS, and BCDR datasets including benign and malignant findings.
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Figure 2. Datasets examples. Benign cases are shown in (a–c). Malignant cases are shown in (d–f).
(a,d) represent samples from the curated breast imaging subset of digital database screening mammography
(CBIS-DDSM) dataset, (b,e) represent samples from the mammographic image analysis society (MIAS)
dataset, and (c,f) represent samples from the breast cancer digital repository (BCDR) dataset.
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With limited training data, one of the common problems deep learning algorithms might face is
the overfitting problem [22]. Overfitting occurs when the training samples are too small which might
cause the model to be unable to generalize. In other words, the issue of overfitting might lead to a good
model at detecting or classifying features that were included in the training samples, but the same
model will not be able to detect or classify features that were not trained on [23]. Additionally, since
there is a small number of training breast X-ray images available, new images were augmented from
these available breast X-ray images using image augmentation methods and include these augmented
images in the training samples. The most common image display functions performed by doctors
and radiologists during the diagnostic image viewing have been considered as the augmentation
methods in this research. The augmentation methods are mainly inspired by the doctors’ behavior in
interpreting medical images [24]. Table 1 shows the number of every dataset before and after applying
the image augmentation techniques. Tables 2–4 show the distribution of the datasets after applying
the image augmentation techniques on every dataset.

Table 1. The number of samples before and after applying every augmentation method for each dataset.

Dataset Original Samples Rotation Flipping Brightness Contrast Total

CBIS-DDSM 7277 50,939 14,554 43,662 14,554 130,986
MIAS 114 798 228 684 228 2052
BCDR 159 1113 318 954 318 2862

Table 2. CBIS-DDSM dataset distribution after the four augmentation methods combined.

Class Benign Malignant Total

Training samples 54,523 44,444 98,967
Validation samples 13,630 11,112 24,742

Testing samples 4009 3268 7277

Total 72,162 58,824 130,986

Table 3. MIAS dataset distribution after the four augmentation methods combined.

Class Benign Malignant Total

Training samples 857 694 1551
Validation samples 214 173 387

Testing samples 63 51 114

Total 1134 918 2052

Table 4. BCDR dataset distribution after the four augmentation methods combined.

Class Benign Malignant Total

Training samples 1088 1074 2162
Validation samples 272 269 541

Testing samples 80 79 159

Total 1440 1422 2862

2.2. Pre-Trained Networks

In this research, the proposed DSTL technique has been tested on most of the pre-trained networks
that had been used in the breast cancer classification literature. Every pre-trained network that was
used in this research is briefly explained below.
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2.2.1. AlexNet

AlexNet is one of the most popular CNNs that has achieved high accuracy in various object
detection and classification tasks. AlexNet is trained on ImageNet used in the ImageNet Large-Scale
Visual Recognition Challenge 2010 (ILSVRC-2010) and ILSVRC-2012 competitions. AlexNet is an
8-layer-deep and can classify images into 1000 object classes. AlexNet contains five convolutional and
three fully-connected layers. The input image size of AlexNet is 227 × 227 × 3. AlexNet has used the
dropout technique which has reduced overfitting significantly [11].

2.2.2. GoogLeNet

GoogleNet achieved the new state of the art for classification and detection in the ImageNet
Large-Scale Visual Recognition Challenge 2014 (ILSVRC2014). It is one of the models with great
computational efficiency and can be run on a single device with the utilization of limited computing
resources while increasing both depth and width in the network. It utilizes the concept of inception
blocks which can reduce the number of parameters. The average pooling layer has also been used
before the classification layer, in addition to an extra linear layer to make it more convenient to be
fine-tuned. An average pooling layer with 5 × 5 filter size and stride 3 was applied, and 1 × 1
convolution with 128 filters was followed by a rectified linear activation function. Finally, a fully
connected layer, dropout layer, and softmax layer were added [13].

2.2.3. VGG

The Visual Geometry Group (VGG) from the University of Oxford has proposed the VGG model
in 2014. The VGG architecture and configurations are inspired by AlexNet. The size of the input image
to the Conv layer is a fixed-size of 224 × 224, RGB image. It has three fully connected layers in which
there are 4096 channels in each of the first and two fully connected layers, and the third fully connected
layer has 1000 channels. Softmax layer is the final layer of the network. VGG-16 is a 16-layer deep and
has a total of 138 million parameters. Similar to VGG-16, VGG-19 is trained on ImageNet dataset that
contains more than a million images to be classified into 1000 object classes. VGG-19 is a 19-layer deep
and contains a total of 144 million parameters [12]. In ImageNet challenge 2014, VGG team won the
first place in localization and the second place in the classification.

2.2.4. MobileNet-v2

MobileNet-v2 is a network architecture that uses depthwise separable convolutions as building
blocks. It is an efficient model for mobile applications especially in the field of image processing.
MobileNet-v2 has convolution layers in a building block which are split into two separate layers.
MobileNet-v2 uses linear bottlenecks between its layers, and shortcut connections between those
bottlenecks. The architecture of MobileNet-v2 contains a convolution layer with 32 filters, followed by
19 residual bottleneck layers and a Relu activation function. The filter size that has been used in the
network architecture is 3 × 3. Finally, the dropout and batch normalization have been utilized within
its architecture [15].

2.2.5. ResNet

Microsoft research introduced ResNet (Residual Network) and won the first place in ILSVRC
2015. ResNet uses a new technique called skip connections. This has allowed to train a deeper network
with more than 150 layers. ResNet model could reduce the effect of the vanishing gradient problem
significantly. ResNet has reduced the error rate from 6.7% obtained by GoogLeNet to 3.57% on the
ImageNet dataset. In this work, we have focussed on ResNet-50 and ResNet-101. The depth of the
ResNet-50 is 50 layers and has 25.6 million parameters. The architecture of ResNet-50 consists of
5 stages with a residual block in each stage. These residual blocks work with a shortcut identity function



Appl. Sci. 2020, 10, 3999 7 of 18

that helps to skip one or more layers. On the other hand, ResNet-101 is a 101-layer deep network and
consists of 44.6 million parameters. The size of the input image in ResNet is 224× 224× 3 [14].

2.2.6. ShuffleNet

Megvii Inc group introduced the ShuffleNet model in 2017, which uses two new operations,
pointwise group convolution and channel shuffle to reduce the computation cost while maintaining
high accuracy. In the latest trend of constructing deeper networks, CNNs utilize billions of floating
point operations per second to attain better accuracy. ShuffleNet utilizes about 10–150 of mega floating
point operations per second which makes ShuffleNet more suitable for mobile devices with limited
computing power. ShuffleNet has 50 layers and 1.4 million parameters. ShuffleNet model helps to
overcome the consequences obtained by the group convolutions with its special operation called
channel shuffle [16].

Table 5 represents the proprieties of every pre-trained model including the model depth, size,
number of parameters, and the image input size. In addition, the validation accuracy monitoring
algorithm was implemented in order to obtain the optimal hyper-parameters for every pre-trained
model. The hyper-parameters values that give the highest accuracy on the validation dataset have
been considered for the pre-trained models. The steps of the algorithm are shown in Algorithm 1.
Table 6 presents the training options and the hyper-parameters values for all pre-trained models that
were used in the training process.

Table 5. Pre-trained networks properties.

Model Depth Size Parameters (Millions) Image Input Size

AlexNet 8 227 MB 61 227 × 227
GoogLeNet 22 27 MB 7 224 × 224

VGG-16 16 515 MB 138 224 × 224
VGG-19 19 535 MB 144 224 × 224

MobileNet-v2 53 13 MB 3.5 224 × 224
ResNet-50 50 96 MB 25.6 224 × 224
ResNet-101 101 167 MB 44.6 224 × 224
ShuffleNet 50 6.3 MB 1.4 224 × 224

Table 6. Training options for all pre-trained models.

Training Options Configuration

Optimizer SGDM a

Mini Batch Size 40
Momentum Value 0.9
Maximum Epochs 100

Initial Learning Rate 0.001
Execution Environment GPU
Learning Rate Schedule Constant

a SGDM: Stochastic Gradient Descent with Momentum.

2.3. Double-Shot Transfer Learning

Transfer learning is a powerful technique that allows knowledge to be transferred across various
tasks of neural networks. In transfer learning, a pre-trained network that has already learned
informative features from a certain image classification task can be used as a starting point to
learn a new task using a smaller number of training samples. Knowledge transferring can be done
by fine-tuning some layers in the pre-trained network, such as input layer, fully-connected layer,
classification layer, and train the pre-trained network on a new dataset. Fine-tuning a pre-trained
network usually produces better accuracy, and it is faster than training a new network from scratch [25].
It has been shown in a previous work that transfer learning is very effective when the source and
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target domains/tasks are similar. In the previous studies, instead of learning from scratch, SSTL takes
advantage of knowledge that comes from previously learned datasets, especially when the training
samples in the target domain are scarce. Unfortunately, SSTL has been applied without taking into
account that these pre-trained models had been trained on ImageNet, which has different feature
space and distribution from our target datasets. In other words, the previous works did not take into
account the relationship between source and target domain when SSTL is applied. A domain can
be represented as D = {X , P(X)}, where X is the feature space, P(X) is the probability distribution
function, and X = {x1, . . . , xn} ∈ X . A task can be represented by T = {Y , f (.)}, where Y is the label
space and f (.) is the objective predictive function. T can be learned from the training data, which
consists of pairs {xi, . . . , yi}, where xi ∈ X and yi ∈ Y . The function f (.) can be used to predict the
corresponding label, f (x), of a new instance x. f (x) can also be considered as a conditional probability
function P(y|x) [26]. In SSTL, given a domain source Ds for a learned task Ts can help to learn a
target task Tt of the domain Dt. In most of the cases, Ds 6= Dt and/or Ts 6= Tt. However, the DSTL
aims to bring the marginal probability distributions of both domains Ds and Dt similar to each other,
Ds ' Dt, by providing Ds with a large number of instances that are similar to Dt, especially when Dt

has insufficient training samples. Hence, the performance of the prediction function fT(x) for learning
task Tt can be improved. In most cases, Ds data are larger than Dt data. Unlike TrAdaBoost [27] that
filters out instances which are dissimilar to the target domain in source domains, the proposed DSTL
adds new instances to the source domain Ds that are similar to the Dt to update the weights of the
parameters in the pre-trained models in the Ds and form a distribution similar to the target domain.
Figures 3 and 4 show a sketch of the instances transferring in SSTL and DSTL respectively.

Algorithm 1 Validation Accuracy Monitoring

Input: Info, EpochsNumber
Output: BestValAccuracy

1: Stop← f alse
2: BestValAccuracy← Null
3: if in f oState == start then

4: BestValAccuracy← Null
5: ValidationLagging← Null
6: else if infoValLoss then

7: if In f oValAccuracy > BestValAccuracy then

8: ValidationLagging← Null
9: BestValAccuracy← In f oValAccuracy

10: else

11: ValidationLagging← ValidationLagging + 1;
12: end if
13: if ValidationLagging >= N then

14: stop = true;
15: end if
16: end if
17: return(BestValAccuracy)

Definition 1 (Standard Transfer Learning). Given a source domain Ds and learning task Ts, a target domain
Dt and learning task Tt , transfer learning aims to help improve the learning of the target predictive function
f (.) in Dt using the knowledge in Ds and Ts, where Ds 6= Dt and/or Ts 6= Tt. Ds 6= Dt implies that either
Xs 6= Xt or Ps(X) 6= Pt(X). Ts 6= Tt implies that either Ys 6= Yt or P(Ys|Xs) 6= P(Yt|Xt).
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Definition 2 (DSTL). Given a source domain Ds and learning task Ts, a target domain Dt and learning task
Tt , transfer learning aims to help improve the learning of the target predictive function f (.) in Dt using the
knowledge in Ds and Ts, where Ds ' Dt and Ts ' Tt. Ds ' Dt implies that Xs ' Xt and Ps(X) ' Pt(X).
Ts ' Tt implies that Ys ' Yt and P(Ys|Xs) ' P(Yt|Xt).

Target DomainSource Domain

ImageNet

CBIS-DDSM

Figure 3. Sketching the instances transferring in single-shot transfer learning (SSTL), where some
instances from similar Dt (CBIS-DDSM) are included in the Ds (ImageNet) to update the weights in
the pre-trained models.

Target DomainSource Domain

ImageNet&CBIS-DDSM

MIAS/BCDR

Figure 4. Sketching the instances transferring in double-shot transfer learning (DSTL), where some
instances from the Dt (MIAS or BCDR) are included in the Ds (ImageNet and CBIS-DDSM). Note that
SSTL has made the CBIS-DDSM instances part of the Ds.

In our context, the learning task is image classification (Benign or Malignant), and each pixel
or weight is taken as a feature, hence X is the space of all pixel vectors, xi is the ith pixel vector
corresponding to some images and X is a specific learning sample. Additionally, Y is the set of all
labels, which is Benign, Malignant for the classification task, and yi is “Benign” or “Malignant”. In our
context, Ds can be a set of weights vectors together with their associated Benign or Malignant class
labels. Based on the above DSTL definition, a domain is a pair D = {X , P(X)}, hence, the condition
Ds ' Dt implies that Xs ' Xt and Ps(X) ' Pt(X). This indicates that the images features or
their marginal distributions in both Ds and Dt are related. Similarly, a task is defined as a pair
T = {Y , P(Y|X)}, hence, the condition Ts ' Tt implies that Ys ' Yt and P(Ys|Xs) ' P(Yt|Xt). When
theDt =Ds and Tt = Ts, the learning task becomes a traditional machine learning task. Moreover, when
Dt 6= Ds, then either (1) Xt 6= Xs or (2) Xt = Xs but P(Xs) 6= P(Xt), where Xsi ∈ Xs and Xti ∈ Xt.
In our case, situation (1) refers to when one set of images is medical images and the other set is natural
images. Situation (2) can correspond to when the Ds and the Dt images come from different patients
or sources. Eventually, since medical images share many features in common compared to natural
images, DSTL technique creates an implicit relationship between Ds and Dt and extracts better feature
maps than the pr-trained models that have been only trained on natural images.

DSTL can be considered as a new strategy for adjusting the weights of the pre-trained models
by mapping the instances from Ds and Dt to a new domain space. The new space will contain
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instances from Ds and Dt, making it domain invariant. In this research, various pr-trained models
were fine-tuned on 98,967 of the augmented CBIS-DDSM dataset, and saved as the name of the original
pre-trained network followed by the symbol (+) to distinguish them from the original pre-trained
networks that were only trained on ImageNet dataset. Next, the updated pre-trained models (+) were
fine-tuned for the second time on the augmented images of the target datasets of MIAS and BCDR.
Figure 5 illustrates the process of DSTL. All the pre-trained networks that have been used in this
research share three common layers namely input layer, FC layer, and classification layer. By fine-tuning
these 3 layers using the CBIS-DDSM dataset first, we can update all the learnable parameters, and then
augment them on the target datasets of MIAS and BCDR datasets. Figure 6 shows the fine-tuned layers
where the input layer size is kept the same as the original one 224× 224 except for Alexnet where
the input size was set to 227× 227. FC and classification layers were fine-tuned in every pre-trained
model. Every pre-trained model has been fine-tuned by replacing the output size parameter of FC
and classification layers from classifying images of 1,000 object categories to 2 classes of benign and
malignant. The classification layer computes the cross entropy loss with mutually exclusive classes.
The classification layer takes the output from the Softmax layer and allocates each input to one of the
K mutually exclusive classes using the cross entropy function. In Figure 6, we only mention the layers
which have been fine-tuned respectively.

CBIS-DDSM 

Input Dataset

Update and transfer the pre-trained parameters

.GoogLeNet

.ShuffleNet

.MobileNet-v2

.AlexNet

.ResNet-50

.VGG-16

.VGG-19

.ResNet-101

Source Domain

Benign

Malignant

SSTL 

Classification

.GoogLeNet+

.ShuffleNet+

.MobileNet-v2+

.AlexNet+

.ResNet-50+

.VGG-16+

.VGG-19+

.ResNet-101+

Trained 

Parameters 

Transferring

Benign

Malignant

DSTL 

Classification

Similar Input 

Dataset

Target Domain

Figure 5. The process of DSTL, where various pre-trained models were first fine-tuned on a large
number of the augmented CBIS-DDSM dataset to update their weights and biases parameters. Second,
the updated pre-trained models were fine-tuned on a new and similar dataset to classify between
benign and malignant.

It is worth mentioning that although the CBIS-DDSM, MIAS, and BCDR datasets are similar,
they come from different sources. Thus, these medical datasets have not been combined as a single
dataset for this research experiment. This will shed light on the use of the DSTL technique in various
medical image classification tasks such as liver cancer, lung cancer, kidney cancer, and other types of
cancers, where the collection of high-quality annotated images is very expensive. However, due to the
availability of the breast cancer datasets, the DSTL has been applied to the breast cancer classification.
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Before Fine-Tuning After Fine-Tuning

Fully Connected Layer

Output Size= 1,000 Output Size= 2

Classification Layer

Output Size= 1,000 Output Size= 2

Input Layer

Figure 6. The three fine-tuned layers for every pre-trained model.

3. Execution Environment

All the experiments were performed using a PC with Intel R©CoreTM i5-8400, CPU @ 2.80GHz x 6,
and 23 GB of RAM. NVIDIA R©TITAN Xp GPU with 12 GB of memory. MATLAB R2019b with CUDA
V10.2 and cuDNN 7.6.5. The operating system is 64-bit Ubuntu 18.04.3.

4. Results

The most common performance evaluation metrics in the field of computer vision and image
process were used for evaluating the performance of the pre-trained models with SSTL and DSTL
for classifying between benign and malignant breast X-ray images. The evaluation methods include
Sensitivity, Specificity, Classification Accuracy, and Receiver Operating Characteristic curve [28–31].
Finally, the performance analysis of different pre-trained network is demonstrated, including the
training time, epoch number, and iteration number.

4.1. Sensitivity

It is also called the true positive (TP) rate. TP corresponds to Malignant cases in this research.
It calculates the number of true positive predictions over the number of actual positive plus false
negative (FN) cases, defined as:

Sensitivity =
TP

TP + FN
(1)

4.2. Specificity

It can be called the true negative (TN) rate. In this paper, TN corresponds to Benign cases.
It computes the proportion of actual negative cases that are predicted as negative cases. The specificity
formula is defined as:

Speci f icity =
TN

TN + FP
(2)
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4.3. Accuracy

Accuracy or overall accuracy represents the number of correctly predicted cases over the all cases.
It can be formulated as:

Accuracy =
TN + TP

TN + TP + FP + FN
(3)

4.4. Receiver Operating Characteristic (ROC)

In this paper, the ROC curve is used to evaluate the performance quality of the pre-trained
models and present the Area Under the Curve (AUC) by applying threshold values across the interval
[0,1]. For each threshold, two values are calculated, the probability of detection power PD or the TP
ratio and the probability of false alarm or the false positive (FP) ratio. Figures 7–10 show the ROC
curve which was used to plot TP versus FP with the threshold as a parameter for AlexNet, VGG-16,
VGG-19, GoogLeNet, ResNet-50, ResNet-101, MobileNet-v2, and ShuffleNet on MIAS, and BCDR
datasets, respectively.
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Pre-trained Models on MIAS Dataset with SSTL
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ResNet101, AUC=0.97603
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AlexNet, AUC=0.96141

ResNet50, AUC=0.98413

VGG16, AUC=0.98226
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Figure 7. The receiver operating characteristic (ROC) curve of various pre-trained models with SSTL
for breast cancer classification using the MIAS dataset.

Table 7 demonstrates the results summary of the pre-trained models using single-shot transfer
learning using the CBIS-DDSM dataset. It can be noted from Table 7 that most of the pre-trained
models have produced resealable results due to the large number of training samples they were trained
on. Table 8 shows the comparison summary of the pre-trained models with SSTL and DSTL technique.
Table 9 illustrates the comparison summary of the performance evaluation of different pre-trained
models in terms of the training time, number of epochs, and number of iterations. As can be seen from
Tables 8 and 9, the DSTL technique has improved the accuracy and performance of the pre-trained
networks significantly. In this research, instead of reinventing the wheel, the existing pre-trained
models have been used to evaluate the method of transfer learning from ImageNet (SSTL) against
our proposed technique (DSTL). We did not consider training from random initialization as the case
in [32]. By observing the results in Table 8, it is obvious that DSTL can enhance the performance of the
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lightweight and non-lightweight models alike and provide faster convergence as shown in Table 9.
However, training from random initialization can be analyzed in the future.
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Figure 8. The ROC curve of various pre-trained models with DSTL for breast cancer classification
using the MIAS dataset, where the AUC of each pre-trained model has been improved.
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Figure 9. The ROC curve of various pre-trained models with SSTL for breast cancer classification using
the BCDR dataset.
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Figure 10. The ROC curve of various pre-trained models with DSTL for breast cancer classification
using the BCDR dataset.

Table 7. Comparison of various pre-trained models performance using the CBIS-DDSM dataset.

Dataset Model Val. Acc. Testing Acc. Specificity Sensitivity AUC

AlexNet 90.18% 81.92% 86.65% 76.11% 89.24%
ShuffleNet 93.85% 89.28% 92.51% 85.30% 95.46%

MobileNet-v2 94.50% 92.03% 93.39% 90.35% 96.20%
GoogleNet 96.56% 93.68% 96.26% 90.50% 97.47%

CBIS-DDSM ResNet-50 96.97% 93.20% 95.26% 90.65% 96.59%
ResNet-101 97.09% 93.47% 95.88% 90.50% 97.57%

VGG-16 96.20% 92.58% 93.76% 91.18% 97.11%
VGG-19 95.12% 90.93% 93.02% 88.36% 96.65%

Table 8. The comparison of various pre-trained models with SSTL and DSTL on MIAS and
BCDR datasets.

Dataset & Technique Model Validation Acc. Testing Acc. Specificity Sensitivity AUC

AlexNet 56.07% 88.60% 92.06% 84.31% 96.14%
ShuffleNet 68.73% 92.98% 93.65% 92.15% 96.64%

MobileNet-v2 64.60% 92.11% 93.65% 90.19% 96.20%
MIAS GoogLeNet 60.21% 88.60% 95.24% 80.39% 98.41%

(With SSTL) ResNet-50 72.35% 93.86% 95.24% 92.15% 98.41%
ResNet-101 70.80% 91.23% 95.24% 86.27% 97.60%

VGG-16 66.15% 92.11% 96.83% 86.27% 98.23%
VGG-19 57.88% 90.35% 90.48% 90.19% 97.45%
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Table 8. Cont.

Dataset & Technique Model Validation Acc. Testing Acc. Specificity Sensitivity AUC

AlexNet+ 61.50% 92.11% 95.24% 88.24% 96.92%
ShuffleNet+ 80.88% 96.49% 96.82% 96.07% 99.44%

MobileNet-v2+ 83.46% 98.25% 98.41% 98.03% 99.53%
MIAS GoogLeNet+ 86.30% 96.49% 98.41% 94.11% 99.69%

(With DSTL) ResNet-50+ 82.43% 95.61% 96.82 % 94.11% 99.25%
ResNet-101+ 87.08% 97.37% 98.41% 96.07% 99.60%

VGG-16+ 77.00% 93.86% 96.82% 90.19% 99.04%
VGG-19+ 76.23% 93.86% 95.24% 92.16% 99.28%

AlexNet 65.20% 73.38% 77.27% 69.46% 80.64%
ShuffleNet 70.86% 81.75% 75.75% 87.78% 88.57%

MobileNet-v2 69.60% 82.13% 80.30% 83.96% 88.71%
BCDR GoogLeNet 74.00% 83.65% 83.33% 83.96% 91.59%

(With SSTL) ResNet-50 73.38% 77.95% 70.45% 85.49% 85.94%
ResNet-101 77.78% 81.37% 77.27% 85.49% 89.90%

VGG-16 73.17% 79.09% 77.27% 80.92% 89.14%
VGG-19 81.97% 84.41% 82.57% 86.25% 91.99%

AlexNet+ 77.36% 82.13% 83.33% 80.91% 93.20%
ShuffleNet+ 81.97% 87.83% 86.36% 89.31% 94.74%

MobileNet-v2+ 82.39% 86.31% 80.30% 92.36% 91.51%
BCDR GoogLeNet+ 87.84% 88.21% 86.36% 90.07% 95.65%

(With DSTL) ResNet-50+ 83.65% 87.07% 84.09% 90.07% 93.92%
ResNet-101+ 82.81% 87.07% 81.06% 93.13% 94.29%

VGG-16+ 81.76% 87.97% 90.91% 87.02% 94.52%
VGG-19+ 86.79% 89.11% 89.39% 90.84% 94.57%

In Table 9, the number of iterations and epochs is different for each model because we use the
validation accuracy monitoring algorithm which helps with reducing the number of iterations and
epochs by keeping track of the best validation accuracy and the number of validations, hence, when
there has not been any improvement of the validation accuracy (validation lag), an early stop mode of
the training process will be triggered. For example, if the validation accuracy is not improving after 10
iterations, the training process will stop automatically.

Table 9. The performance analysis of different pre-trained networks with SSTL and DSTL on MIAS
and BCDR datasets.

Dataset & Technique Model Training-Time Epoch Iteration

AlexNet 04 min 22 s 48 1824
ShuffleNet 17 min 51 s 38 1444

MobileNet-v2 12 min 17 s 20 760
MIAS GoogLeNet 08 min 50 s 29 1102

(With SSTL) ResNet-50 11 min 30 s 18 684
ResNet-101 37 min 17 s 25 950

VGG-16 09 min 55 s 21 798
VGG-19 25 min 13 s 46 1748

AlexNet+ 02 min 43 s 21 798
ShuffleNet+ 11 min 49 s 28 1064

MobileNet-v2+ 11 min 35 s 19 722
MIAS GoogLeNet+ 08 min 08 s 25 950

(With DSTL) ResNet-50+ 09 min 54 s 16 608
ResNet-101+ 31 min 23 s 21 798

VGG-16+ 08 min 22 s 18 684
VGG-19+ 08 min 48 s 15 570
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Table 9. Cont.

Dataset & Technique Model Training-Time Epoch Iteration

AlexNet 02 min 45 s 42 1974
ShuffleNet 10 min 30 s 30 1410

MobileNet-v2 09 min 51 s 23 1081
BCDR GoogLeNet 05 min 51 s 28 1316

(With SSTL) ResNet-50 21 min 37 s 42 1974
ResNet-101 13 min 38 s 14 658

VGG-16 11 min 56 s 21 987
VGG-19 28 min 11 s 43 2021

AlexNet+ 02 min 40 s 41 1927
ShuffleNet+ 05 min 02 s 16 752

MobileNet-v2+ 07 min 13 s 17 799
BCDR GoogLeNet+ 03 min 32 s 17 799

(With DSTL) ResNet-50+ 15 min 13 s 30 1410
ResNet-101+ 11 min 04 s 11 517

VGG-16+ 09 min 30 s 15 705
VGG-19+ 08 min 27 s 13 611

5. Conclusions

In this research, an effective transfer learning technique called double-shot transfer learning
(DSTL) has been introduced to improve the overall accuracy and performance of various pre-trained
models, especially in the field of medical image analysis. Simple and effective image augmentation
techniques were also used to overcome the lack of breast X-ray images, improve invariance,
and reduce overfitting by generating new training samples based on the existing breast X-ray images
manipulations. The most common image display functions performed by doctors and radiologists
during the diagnostic image viewing have been considered as the augmentation methods for this
research. The proposed technique will overcome the lack of available training samples issues, improve
the pre-trained models accuracy and performance, and will provide a valuable solution to the difference
between the source and target domain problem in transfer learning.
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ILSVRC ImageNet Large-Scale Visual Recognition Challenge



Appl. Sci. 2020, 10, 3999 17 of 18

References

1. Alkhaleefah, M.; Wu, C.C. A Hybrid CNN and RBF-Based SVM Approach for Breast Cancer Classification
in Mammograms. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Miyazaki, Japan, 7–10 October 2018; pp. 894–899.

2. Greenspan, H.; Van Ginneken, B.; Summers, R.M. Guest editorial deep learning in medical imaging:
Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 2016, 35, 1153–1159.
[CrossRef]

3. Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.;
Agapow, P.M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and
medicine. J. R. Soc. Interface 2018, 15, 20170387. [CrossRef] [PubMed]

4. Lévy, D.; Jain, A. Breast mass classification from mammograms using deep convolutional neural networks.
arXiv 2016, arXiv:1612.00542.

5. Hussain, Z.; Gimenez, F.; Yi, D.; Rubin, D. Differential data augmentation techniques for medical imaging
classification tasks. In Proceedings of the AMIA Annual Symposium, Washington, DC, USA, 4–8 November
2017; p. 979.

6. Chen, Y.; Zhang, Q.; Wu, Y.; Liu, B.; Wang, M.; Lin, Y. Fine-Tuning ResNet for Breast Cancer Classification
from Mammography. In Proceedings of the International Conference on Healthcare Science and Engineering,
Guilin, China, 1–3 June 2018; pp. 83–96.

7. Falconí, L.G.; Pérez, M.; Aguilar, W.G. Transfer Learning in Breast Mammogram Abnormalities Classification
With Mobilenet and Nasnet. In Proceedings of the International Conference on Systems, Signals and Image
Processing (IWSSIP), Osijek, Croatia, 5–7 June 2019; pp. 109–114.

8. Huynh, B.Q.; Li, H.; Giger, M.L. Digital mammographic tumor classification using transfer learning from
deep convolutional neural networks. J. Med. Imaging 2016, 3, 034501. [CrossRef] [PubMed]

9. Vesal, S.; Ravikumar, N.; Davari, A.; Ellmann, S.; Maier, A. Classification of breast cancer histology images
using transfer learning. In Proceedings of the International Conference Image Analysis and Recognition,
Póvoa de Varzim, Portugal, 27–29 June 2018; pp. 812–819.

10. Shan, H.; Wang, G.; Kalra, M.K.; de Souza, R.; Zhang, J. Enhancing transferability of features from pretrained
deep neural networks for lung nodule classification. In Proceedings of the 2017 International Conference on
Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Xi’an, China, 18–23 June
2017; pp. 65–68.

11. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classificationwith deep convolutional neural networks.
In Proceedings of the 26th Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–6 December 2012; pp. 1097–1105.

12. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

13. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 28th IEEE conference on computer vision and pattern
recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

15. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520.

16. Zhang X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856.

17. Heath, M.; Bowyer, K.; Kopans, D.; Moore, R.; Kegelmeyer, W.P. The digital database for screening
mammography. In Proceedings of the 5th International Workshop on Digital Mammography, Toronto,
ON, Canada, 11–14 June 2000; pp. 212–218.

18. Lee, R.S.; Gimenez, F.; Hoogi, A.; Miyake, K.K.; Gorovoy, M.; Rubin, D. A curated mammography data set
for use in computer-aided detection and diagnosis research. Sci. Data 2017, 4, 170177. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TMI.2016.2553401
http://dx.doi.org/10.1098/rsif.2017.0387
http://www.ncbi.nlm.nih.gov/pubmed/29618526
http://dx.doi.org/10.1117/1.JMI.3.3.034501
http://www.ncbi.nlm.nih.gov/pubmed/27610399
http://dx.doi.org/10.1038/sdata.2017.177
http://www.ncbi.nlm.nih.gov/pubmed/29257132


Appl. Sci. 2020, 10, 3999 18 of 18

19. The Mini-MIAS Database of Mammograms. Available online: http://peipa.essex.ac.uk/info/mias.html
(accessed on 1 January 2020).

20. Suckling, J. The Mammographic Image Analysis Society Digital Mammogram Database. In 2nd International
Workshop on Digital Mammography; Elsevier Science: Amsterdam, The Netherlands, 1994; pp. 375–378.

21. Lopez, M.G.; Posada, N.; Moura, D.C.; Pollán, R.R.; Valiente, J.M.F.; Ortega, C.S.; Solar, M.; Diaz-Herrero,
G.; Ramos, I.M.A.P.; Loureiro, J.; et al. BCDR: A breast cancer digital repository. In Proceedings of the 15th
International conference on experimental mechanics, Porto, Portugal, 22–27 July 2012; pp. 1–5.

22. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

23. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral
images based on convolutional neural networks. IEEE Trans. Geo-Sci. Remote Sens. 2016, 54, 6232–6251.
[CrossRef]

24. Alkhaleefah, M.; Chittem, P.K.; Achhannagari, V.P.; Ma, S.C.; Chang, Y.L. The Influence of Image
Augmentation on Breast Lesion Classification Using Transfer Learning. In Proceedings of the 2020
International Conference on Artificial Intelligence and Signal Processing (AISP), Amaravati, India,
10–12 January 2020; pp. 1–5.

25. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu,Y.; Zhu, H,; Xiong, H.; He, Q. A Comprehensive Survey on Transfer
Learning. Available online: https://arxiv.org/pdf/1911.02685.pdf (accessed on 4 January 2020).

26. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 10, 1345–1359. [CrossRef]
27. Wenyuan, D.; Yang, Q.; Xue, G.; Yu, Y. Boosting for transfer learning. In Proceedings of the 24th International

Conference on Machine Learning, Corvallis, OR, USA, 20–24 June 2007; pp. 193–200.
28. Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.A.; Nielsen, H. Assessing the accuracy of prediction algorithms

for classification: An overview. Bioinformatics 2000, 16, 412–424. [CrossRef] [PubMed]
29. Carroll, H.D.; Kann, M. G.; Sheetlin, S.L.; Spouge, J.L. Threshold Average Precision (TAP-k): A measure of

retrieval designed for bio-informatics. Bioinformatics 2010, 26, 1708–1713. [CrossRef] [PubMed]
30. Fawcett, T. An introduction to roc analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
31. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained

part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [CrossRef] [PubMed]
32. Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding transfer learning for medical

imaging. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada,
8–14 December 2019; pp. 3342–3352.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://peipa.essex.ac.uk/info/mias.html
http://dx.doi.org/10.1109/TGRS.2016.2584107
https://arxiv.org/pdf/1911.02685.pdf
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1093/bioinformatics/16.5.412
http://www.ncbi.nlm.nih.gov/pubmed/10871264
http://dx.doi.org/10.1093/bioinformatics/btq270
http://www.ncbi.nlm.nih.gov/pubmed/20505002
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1109/TPAMI.2009.167
http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Dataset Description
	CBIS-DDSM Dataset
	MIAS Dataset
	BCDR Dataset

	Pre-Trained Networks
	AlexNet
	GoogLeNet
	VGG
	MobileNet-v2
	ResNet
	ShuffleNet

	Double-Shot Transfer Learning

	Execution Environment
	Results
	Sensitivity
	Specificity
	Accuracy
	Receiver Operating Characteristic (ROC)

	Conclusions
	References

