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Featured Application: This work presents a perfect technique for optimizing the operation of
photovoltaic systems by continuously extracting the maximum power even under the worst cases
of atmospheric variations. The proposed technique provides a robust solution that can overcome
the drawbacks of power tracking algorithms under partial shading conditions, such as the failure
of actual maximum power extraction, low tracking speed, complexity in the required computations
and in implementation, low accuracy, and high oscillation around the tracked maximum power.
Therefore, the proposed algorithm will enable the best performance for any applied photovoltaic
configuration without any extra cost and complexity, thus enhancing the utilization of photovoltaic
renewable energy for significant applications.

Abstract: In this paper, we propose enhanced adaptive step size Perturb and Observe (P&O) maximum
power point tracking (MPPT) with properly organized comparison sequences which lead to achieving
the actual maximum power point (MPP) effectively in the presence of partial shading conditions,
taking into account the optimization of all aspects of high-performance MPPT to be novel, simpler,
fast, and accurate, with the best efficiency reaching up to almost 100%. In this study, the proposed
algorithm, along with a boost converter, was designed and simulated in MATLAB/Simulink to validate
the performance of the suggested technique. Four different levels of partial shading conditions were
considered for system examination: weak, moderate, and two different levels of strong shading.
Each case was applied separately first and then combined in a sequence arrangement to provide
robust and comprehensive testing which can provide a guaranteed assessment of the proposed
algorithm. The performance of the suggested technique is discussed and compared with that of
conventional P&O and conventional incremental conductance (IC) MPPT techniques. The failure
of the conventional techniques to work efficiently in the presence of partial shading conditions was
observed from the simulation results. Meanwhile, the success of the proposed technique and its high
performance were clearly confirmed under partial shading conditions with no increase in complexity
or convergence time.

Keywords: partial shading conditions; maximum power point tracking (MPPT); global maximum
power point (GMPP); Perturb and Observe (P&O); incremental conductance (IC)
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1. Introduction

Photovoltaic (PV) energy has grown enough to be the most processed sustainable energy source
that could be considered as a substitute for fossil-fuel energy, as it is inexpensive, clean, requires
little maintenance, and emits no noise, among other properties. Solar cells are the major component
that converts light energy from the sun to DC electrical energy [1]. However, PV—like most of the
approaches for harvesting clean and sustainable solar energy, such as photocatalysis, electrocatalysis,
and photo-electrocatalysis—has non-steady energy extraction [2] and is affected by conditions such as
illumination, temperature, and panel age [2–5]. PV systems can work under both uniform irradiance
and partially shaded conditions; in the presence of partial shading conditions, the PV array P–V curve
contains numerous power peaks which are called the local maximum power points (LMPPs), while
the peak of the highest power is known as the global maximum power point (GMPP). The common
target is to maximize the efficiency of the PV system by keeping the PV module at its maximum power
operation [6], and for that reason, a maximum power point tracking (MPPT) method is essential to
control such problems and check whether the PV system operates at the MPP [7]. Many different
MPPT algorithms have been presented in recent years, and the conventional MPPT algorithms, such
as Perturb and Observe (P&O) and incremental conductance (IC), are considered economical and
easy to implement [8]. Moreover, the soft computing techniques, such as fuzzy logic control [9],
artificial neural network [10], and particle swarm optimization [11], are complex techniques and have
extended computation time and low convergence speed [12]. However, in uniform weather conditions,
the conventional algorithms perform accordingly and can track the MPP, while under partial shading
conditions, the conventional methods may fail to track the global peak power with a key drawback
such as oscillations at the operating power point [13]. Meanwhile, the soft computing techniques can
seek the GMPP but with considerable drawbacks such as long computation time, low convergence
speed, high complexity, and low accuracy [14]. In recent years, many research works and proposed
algorithms have been presented to overcome the problems related to partial shading conditions, and
each algorithm provided a certain process with different aspects such as efficiency, convergence speed,
and complexity [15]. Among the conventional techniques, P&O is the most extensively used due to
its simplicity and low cost. Besides, this technique is considered very accurate as it is based on the
direct measurement of voltage and power, and it has a faster response compared to other conventional
techniques [16]. Nevertheless, it suffers from two major disadvantages: the high oscillations that
happen when the MPP is achieved, and its failure to obtain the maximum available power from
a partially shaded PV array. Many researchers have made modifications to P&O to overcome its
drawbacks. In [17], the authors proposed a variable step P&O and global scanning technique (VSPO &
GS) which contributed better tracking speed and precision. However, its drawback is that the work
did not include any comparison with other techniques, so its effectiveness could not be confirmed.

A new enhanced P&O algorithm with variable step size was suggested in [18], using fuzzy logic
control to provide variable step size convergence to enhance the efficiency of the PV system. In [19],
the suggested approach aimed to avert the drift issue by integrating information of change in current,
voltage, and power into the decision procedure to track the MPP precisely. The authors concluded that
the simple P&O algorithm suffers from drift problems due to the wrong decision-making ability of the
algorithm, particularly in the case of high insolation. The methods presented in [18,19] are expensive,
complicated, and require prior knowledge to handle. A modified P&O algorithm which is basically
different from the conventional one by considering a third test in its flowchart—that is, the change
in the PV current—was suggested in [20]. The algorithm considered eight cases of operating point
perturbation: four were with fixed irradiance, and four were investigated to illustrate the cases of fast
weather variation. The results confirmed that this controller can track MPPs very well under uniform
conditions; however, this algorithm has to be improved to be able to work under partial shading
conditions. Also, a novel adapted variable step size P&O was proposed in [6]. This work was based
on the Pythagorean theorem, which can overcome the weaknesses and restrictions of conventional
P&O MPPT under fast weather changes, while the performance was still not efficient under partial
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shading conditions. For efficient tracking, the author of [21] suggested a new GMPP tracking (GMPPT)
technique based on the Perturbed-based Extremum Seeking Scheme (PESC). A new autoscaling variable
step size MPPT technique which can regulate the step size of the procedure in order to obtain the
fast dynamic was proposed in [22]. In the proposed modified P&O technique, a large perturbation
step is considered when the current operating point is far from the MPP, whereas a small step size is
adopted in close proximity to the MPP. Another technique which can find the characteristic curve from
on-site measurements was proposed in [23]. During the process of defining the characteristic curve,
the values of both current and voltage at the MPP are also specified. The simulation and experimental
outcomes proved the capability of the algorithm to determine the characteristic curve and to fix the
GMPP voltage and current values under variations in shading conditions [23]. GMPPT using the
Fuzzy Logic methodology based on IC was proposed in [24] to track the GMPP. The suggested fuzzy
controller takes the P–V curve slope as an input and produces output adaptable as the duty ratio of the
boost converter for MPP tracking. The algorithm robustness was validated via a comparative study.
The Fuzzy-Logic-based global MPPT algorithm was also applied in [25], and the simulation evaluation
successfully showed that the suggested method is superior to the conventional P&O in terms of
tracking efficiency and convergence speed. A GMPPT algorithm was proposed in [26]. The proposed
algorithm is Moth-Flame Optimization (MFO) depending on the power optimization at the boost
converter output. A combination of two methods was proposed, in which the first one is for tracking
the GMPP for the case of a 100 kW array [26], and the second method is the distributed maximum
power point tracking (DMPPT) structure for the case of a 1 MW PV plant under different partial
shading conditions. The simulation results demonstrated the ability of the proposed algorithm to track
the GMPP of the PV array system, but the algorithm is considered complex with low convergence
speed. An effective and extremely precise hybrid MPPT controller which combines fuzzy logic control
and the P&O method in order to track the MPP of PV under partial shading conditions was proposed
in [27]. The proposed technique had the ability to enhance both steady-state and dynamic conditions.
The results of simulations clarified the strength and effectiveness of the suggested process under intense
atmospheric fluctuations. However, the algorithm suffers from two major drawbacks: the high cost
and the difficulty of implementing a stable efficient controller. Another contribution was also made
to the conventional MPPT algorithm to improve its effectiveness under partial shading conditions.
An enhanced P&O algorithm based on global MPPT integrated with a DC/DC Buck converter was
proposed in [1] to work under partial shading conditions. The presented procedure consists mainly
of two further parts: the foremost MPP algorithm for unchanging weather conditions and a GMPP
algorithm for partial shading conditions. The simulation results confirmed that the suggested technique
is speedier and more precise than the existing algorithms. The GMPP was achieved in 0.15 s with an
efficiency of 99.19%.

From the review above, the research gaps for the modified P&O techniques under partial shading
include tracking the GMPP accurately, reducing the oscillation near the GMPP, limiting the computation
time, increasing the convergence speed, and keeping the algorithm at the same simplicity level as the
conventional P&O. Taking into account all of these limitations, an enhanced adaptive P&O algorithm is
proposed herein for tracking the GMPP of a PV system under partial shading conditions. The proposed
technique has considerable prominent features that are not available for any other classical or soft
computing method, as follows: (1) it is simpler than any modified P&O; (2) GMPP achievement is
quicker than that by any available method; (3) there are nil oscillations near the MPP; and (4) the
GMPP is precisely achieved with the best efficiency. Various patterns involving diversified weather
situations were tested by simulation. The performance of the suggested algorithm under partial
shading conditions was investigated and compared with that of the standard P&O and IC methods.
The comparisons illustrated most of the performance aspects, such as tracking time, efficiency, precision,
and presence of oscillations around the MPP under partial shading conditions.
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2. Partial Shading Effect Implementation

A PV module simulation was performed using MATLAB-Simulink. Thirty-six solar cells in series
connection form a module. The open circuit voltage Voc of each cell is 22.1 V, and the short circuit
current Isc is 4.8 A. The solar array is formed by the combination of such modules. The maximum
power is 80 W with voltage at maximum power Vmp of 17.6 V, and the current at maximum power
Imp is 4.55 A. Figure 1 presents the variation through the I–V and P–V curves taken from the solar cell
module with MPP behavior when the irradiance changes from 200 to 1000 W/m2.
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Figure 1. I–V and P–V curves of a photovoltaic (PV) module at different solar irradiation levels.

A PV array formed from two parallel connections of four modules in series was used in the
simulations, as shown in Figure 2. In order to avoid “hotspots”, bypass diodes were applied [28],
and to discontinue the “reverse flow of current”, blocking diodes were applied [29]. In a uniform
illumination situation, a unique maximum point was produced in the P–V curve, while numerous
peaks were created in the P–V curve under partial shading conditions based on the intensity of shading.

Numerous scenarios were simulated to demonstrate the P–V characteristics of the studied PV
array under partial shading conditions with different levels of strength. Because of the presence of
numerous peaks of power in the PV array P–V curve, a suitable procedure which can precisely and
effectively track the GMPP is required. The overall efficiency of the PV system will be affected by the
employed technique’s performance.
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3. DC/DC Boost Converter Design

A DC–DC converter is installed between the PV module and load in an MPPT system to alter a
DC voltage to another level of DC voltage. It is important to design the DC–DC converter correctly
to ensure that the PV system is working at the best efficiency, as desired. In this work, a boost
converter was chosen to alter the input voltage and control the level of output power to the load, as
shown in Figure 3. Principally, the boost converter structure is established by an inductor, a diode,
a high-frequency power metal oxide semiconductor field effect transistor (MOSFET) switch, and a
capacitor [30]. The input voltage of the boost converter is controlled by the PV array output, and the
duty cycle variation of the converter is performed according to the output of the MPPT. The operation
of a boost converter mainly relies on the opening and closing of the switch, to enter the charging and
discharging states, respectively [31]. For low to moderate power applications, a standard power diode
and power MOSFET are frequently used [32].
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Selection of the resistor: The load resistance (RL) of the boost converter is related to the ideal
internal resistance of the PV array at the MPP (RMPP) by the following equation, as illustrated in [33]:

RL =
RMPP

(1−DMPP)
2 (1)

For the target of maximum power extraction, the ideal internal resistance at the MPP has to be
less than the load resistance of the boost converter (RL ≤ RMPP) [34], since the domain of the duty
ratio (DMPP) is between 0 and 1. For determining the range of RMPP, we can simulate the array under
rapidly varying solar illumination; two diverse levels of irradiance were chosen, among which the
higher was at G = 1000 W/m2 and the lower was at G = 200 W/m2 [35]. Figure A1 in Appendix A
illustrates the characteristic alteration of the curves of P–V, I–V, and ideal internal resistance for the
PV array under three illumination intensities. The MPP declined from 640.6 W to 70.4 W when the
radiation level was reduced from 1000 W/m2 to 200 W/m2. Accordingly, the RMPP rose from 7.74 Ω to
35.5 Ω; thus, the load resistance value was selected as 50 Ω for this work, to be greater than RMPP in
the case of lowermost illumination.

The output voltage of the converter VO is specified for a load resistance of 50 Ω, supposing a
lossless converter (PO = Ppv). Therefore, VO and the duty ratio DMPP were determined as

VO =
√
(PO ×RL) = 178.96 V (2)

DMPP = 1−
Vpv
VO

= 0.61 (3)

The output voltage VO and current IO of the converter at the MPP were determined as

VO =
VMPP

1−DMPP
(4)

IO =
PMPP

VO
(5)

Selection of the inductor: The value of the boost inductor is chosen depending on the maximum
amount of acceptable current ripple at the MPP in the case of uppermost solar radiation (1000 W/m2) [34].
When the inductor value is high, the output current ripple will be low, and the opposite is also true,
as shown in Equation (6). The switching frequency fs was fixed at 10 kHz in this work, in order to
reduce the oscillations at the MPP, and the value of the inductor was considered for input current
ripple ∆Ipv of 1% [35]. Therefore, the minimum value of the inductor was designed as follows [34–36]:

Lmin =
Vpv×DMPP

2× ∆Ipv× fs
(6)

Lmin = 0.59 mH.

In this work, we chose L to be 1.6 mH to ensure minimal current ripple at the output of the boost
converter, which is very important for this application.

Selection of the capacitor: The minimum value of the output capacitor was determined according
to the output voltage ripple ∆VO of 1% as given below [34–37]:

Cmin =
VO ×DMPP

2× ∆VO ×R× fs
(7)

Cmin = 60.6 µF.
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In this work, we chose C as 0.5 mF to ensure that we maintained the permissible voltage ripple
limit for efficient MPP tracking under any radiation variations [33].

Using all the equations above, Table 1 summarizes the PV array characteristics in the cases of
higher and lower solar irradiances at the temperature of 25 ◦C.

Table 1. PV array and boost converter characteristics under the lower and higher solar irradiances.

Irradiance (W/m2)
Vmpp
(V)

Impp
(A)

Pmpp
(W)

Rmpp
(Ω) Dmpp

Vout
(V)

Iout
(A)

RL
(Ω)

L
(mH)

C
(µF)

1000 (Higher) 70.4 9.1 640.6 7.74 0.61 179 3.6 50 1.6 500
200 (Lower) 63.57 1.793 114 35.5 0.16 75.7 1.5

4. Enhanced P&O Algorithm

4.1. The Conventional P&O Technique

Among the existing MPPT techniques, the most popular and frequently used is the P&O technique
due its simplicity [8]. The operation principle is based on periodical perturbation on the terminal
voltage of the PV module and comparison between the current power value of the PV output and
the power at the previous perturbation. The operating point is continuously moving in the same
direction if the PV module power rises with increasing operating voltage; otherwise, the operating
point direction will be reversed. Figure 4 explains the MPP tracking procedure of the P&O technique.
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In general, regarding the issues facing the P&O, the first main disadvantage is its oscillations
around the MPP, which can impact the tracking speed. Another drawback is that under fast changes
in radiation, the P&O may lose the correct direction of tracking and, consequently, a considerable
energy loss would be accrued [35]. Furthermore, the classical form of P&O is not efficient under partial
shading conditions. In this work, the classical P&O algorithm is enhanced to conquer these weaknesses.
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4.2. Enhanced P&O MPPT

The proposed modification consists of specified systematic comparison sequences which lead
to tracking the GMPP with a very simple process based on an adaptable step size P&O strategy;
this algorithm comprises three procedures. The first step starts by initiating the tracking process with
the measured VPV and IPV, and if starting from zero, Vmax and Pmax are set to zero at the beginning
of the process. By starting simulation of the PV array, Iph and Vph and the corresponding power Pph
are obtained for the Qth instants. The second step is to make an auto-adjustment to the perturbation
step size in order to improve the tracking response speed and reduce the oscillation around the MPP
by using variable step size instead of a fixed step size. This idea was applied in [6] for MPPT under
uniform conditions and is based on estimating the distance between the current power value and the
MPP. This distance can be calculated based on the Pythagorean theorem, which is an essential relation
in geometry among the three sides of a right-angled triangle. It states that the square of the hypotenuse
is equal to the sum of the squares of the other two sides [6]. However, the parameters of this triangle
are the voltage, the power, and the hypotenuse, where the value of hypotenuse indicates the distance
between the current power value and the MPP; this means the possibility of estimating the best step
using Equation (8).

M = abs
(√

dP2 + DV2
)

(8)

Therefore, the duty cycle in the adaptive step length P&O MPPT scheme becomes very dynamic
and changes based on the power and voltage values. This concept is applied during the comparison
process between the current power Ppv(Q) and the previous maximum power Pmax(Q− 1) to track the
actual maximal power Pmax(Q) and its voltage Vmax(Q). If the current power Ppv(Q) is higher than
the previous maximum power Pmax(Q− 1), then the actual maximum power Pmax(Q) is equal to the
current power Ppv(Q); otherwise, the actual maximum power Pmax(Q) keeps its original value. In the
final step, the value of Vmax corresponding to the resulting Pmax is updated for a new comparison
between VPV(Q) and Vmax(Q) to achieve the GMPP with accurate voltage and duty cycle by applying
the P&O process with variable step size. The proposed algorithm is illustrated in detail in the
flowchart in Figure 5. The proposed procedure is capable of GMMP tracking under any strength of
partial shadowing with the presence of local and global maximum points, during initial conditions or
fluctuating weather conditions, as validated and shown in the next section.



Appl. Sci. 2020, 10, 3912 9 of 29

Appl. Sci. 2020, 10, x 9 of 29 

 
Figure 5. Flowchart of the proposed algorithm. 

5. Simulation Results 

A DC/DC boost converter was selected for this validation. The applied boost converter design 
was illustrated in the previous section. A complete Simulink model of the MPPT controller is shown 
in Figure 6. 

Figure 5. Flowchart of the proposed algorithm.



Appl. Sci. 2020, 10, 3912 10 of 29

5. Simulation Results

A DC/DC boost converter was selected for this validation. The applied boost converter design
was illustrated in the previous section. A complete Simulink model of the MPPT controller is shown in
Figure 6.Appl. Sci. 2020, 10, x 10 of 29 
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Four (Strong 
shading) 

[1000,1000,600,400] [600,400,400,400] 263.8 W 

Figure 6. Simulink model of the MPPT controller using a boost converter.

The performance evaluation of the proposed enhanced P&O algorithm and comparison with
the conventional P&O and IC algorithms were executed in MATLAB/Simulink in order to prove the
GMPP tracking ability under various partial shading conditions. Different cases were considered
in simulations where the GMPP location changes in P–V characteristics for weak and strong partial
shading patterns to confirm the effectiveness of the algorithm.

5.1. Case One: Weak Shading Pattern

In this case, six connected panels receive uniform radiation condition (1000 W/m2 radiation),
while one receives 800 W/m2 and one receives 600 W/m2. The arrangement is illustrated in Table 2.
Multiple maxima occur in the P–V characteristics. The location of the GMPP is shown in the
characteristics in Figure 7. Figure 8 illustrates the simulation results for this case with a performance
comparison between the proposed technique and the conventional P&O and IC techniques.

Table 2. Incident irradiation for the PV system array with the corresponding power at the global
maximum power point (GMPP).

Case Irradiation of the First
Four Series Modules

Irradiation of the Second Four
Series Modules Power at GMPP

One (Weak shading) [1000,1000,1000,800] [1000,1000,1000,600] 490.9 W
Two (Moderate shading) [1000,1000,800,800] [1000,1000,500,500] 435.5 W
Three (Strong shading) [1000,1000,600,400] [800,600,400,200] 257.4 W
Four (Strong shading) [1000,1000,600,400] [600,400,400,400] 263.8 W
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5.2. Case Two: Moderate Partial Shading Pattern

In this case, four connected panels receive uniform radiation conditions (1000 W/m2 radiation),
while two receive 800 W/m2 and two receive 500 W/m2. The arrangement is illustrated in Table 2.
Multiple maxima occur in the P–V characteristics. The location of the GMPP is shown in the
characteristics in Figure 9. Figure 10 illustrates the simulation results for this case with a performance
comparison between the proposed technique and the conventional P&O and IC techniques.

5.3. Case Three: Strong Partial Shading Pattern

In this case, two connected panels receive uniform radiation conditions (1000 W/m2 radiation),
while one receives 800 W/m2, two receive 600 W/m2, two receive 400 W/m2, and one receives 200 W/m2.

The arrangement is illustrated in Table 2; it creates five peaks in the P–V characteristics curve and forms
a more complex situation for tracking the GMPP. The GMPP is located as shown in the characteristics
in Figure 11. The simulation results for Case Three with a performance comparison between the
proposed technique and the conventional P&O and IC techniques are illustrated in Figure 12.
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5.4. Case Four: Strong Partial Shading Pattern

In this case, two connected panels receive uniform radiation conditions (1000 W/m2 radiation),
while two receive 600 W/m2 and four receive 400 W/m2. The arrangement is illustrated in Table 2.
Four maxima occur in the P–V characteristics. The location of the GMPP is shown in the characteristics
in Figure 13. The simulation results for Case Four with a performance comparison between the
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Figure 14. The simulation results of the proposed technique and the conventional P&O and IC
techniques for Case Four: (a) Tracked output power; (b) Output voltage of the boost converter; (c) Duty
cycle behaviors.

5.5. Discussion of the Simulation Results

The achieved power and tracking time at the maximum voltage of 156.7 V of the proposed
algorithm were 490.9 W in 0.13 s with efficiency of 100%; for the conventional P&O and IC algorithms,
the extracted powers were 461.9 W and 461.4 W, respectively, both at a maximum voltage of 151.6 V,
indicating the failure of both algorithms to track the GMPP, instead just managing to track a LMPP.
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Therefore, the results illustrated in Figure 8 clarify that the proposed enhanced P&O technique
performs with the best efficiency and precision with zero oscillation around the GMPP and definitely
outperforms both the IC and P&O techniques in terms of power extraction accuracy and speed.
The same effectiveness was validated in the moderate shading condition, in which the GMPP of 435.5 W
was tracked at maximum voltage of 147.6 V by the proposed algorithm with 100% efficiency in 0.139 s.
However, the extracted powers by the conventional IC and P&O algorithms at maximum voltage of
121.5 V were 295.5 W and 292.5 W, respectively, showing the same failure in tracking the actual MPP.
The best efficiency of 100% was also confirmed under strong partial shading conditions, as shown
in the third and fourth cases of different strong partial shading patterns (Figures 11–14). Figures 12
and 14 confirmed the high performance of the proposed algorithm under two of the worst cases of
shading conditions, illustrating the ability to accurately track the correct MPPs, which were 257.4 W
at 113.4 V and 263.8 W at 114.8 V for the third and fourth cases, respectively, and both within a time
of 0.140 s. For the conventional P&O and IC algorithms, the wrong MPP was tracked in each case.
Moreover, the stability of the duty cycle is clear for the proposed algorithm, on the contrary to the
conventional P&O and IC algorithms in all cases. Table 3 presents detailed performance indicators for
the studied scenarios.

Table 3. Detailed performance of the proposed algorithm.

Case
Irradiation of the
Parallel First and

Second Series Modules

Ideal Power at
GMMP (A)

Tracked Power
at GMMP (B)

Efficiency
( B

A×100)
Tracking

Speed

One (Weak shading) [1000,1000,1000,800]
[1000,1000,1000,600] 490.9 W 490.9 W 100% 0.13 s

Two (Moderate shading) [1000,1000,800,800]
[1000,1000,500,500] 435.5 W 435.5 W 100% 0.139 s

Three (Strong shading) [1000,1000,600,400]
[800,600,400,200] 257.4 W 257.4 W 100% 0.137 s

Four (Strong shading) [1000,1000,600,400]
[600,400,400,400] 263.8 W 263.8 W 100% 0.127 s

6. Analysis of the Proposed Enhanced P&O for Partial Shading

The performance of the proposed Enhanced P&O technique was further evaluated for different
cases to confirm the effectiveness of the algorithm under fluctuations of weather conditions.
The algorithm was tested under weak, moderate, and strong partial shading conditions. Figure 15
shows an assessment of the Enhanced P&O technique performance under the sequence of Case Three
to Case Two, followed by Case Four, then, finally, Case One. This sequence is the most comprehensive
to cover any weather fluctuation. The increase and decrease in irradiation due to the presence of
anything that can prevent or reduce the amount of received illumination was taken into account and
simulated, and the results are shown in Figure 15.
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the output power, (b) the output voltage, and (c) the duty cycle.

The success of the proposed enhanced P&O technique can clearly be observed in the three parts
of Figure 15, which are the tracked power, the maximum voltage, and the duty cycle. The sequence
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started with strong partial shading (Case Three) for 0.4 s, then the PV array experienced moderate
partial shading (Case Two) for another 0.4 s. Then, the PV array underwent strong partial shading
(Case Four), and after 1.2 s, the array came under weak partial shading (Case One). The proposed
method conserved its performance in all four cases in terms of tracking speed, tracking precision, and
stability (oscillations were less than 0.5 W and can be neglected). The performance and comprehensive
analysis of the enhanced P&O algorithm under the sequence of these four cases is summarized in
Table 4. In order to support more confirmation of its effectiveness, the performance evaluation of the
proposed algorithm compared with well-known MPPT algorithms is presented in Table 5.

Table 4. Performance analysis of the proposed algorithm under a sequence of four cases.

Case Three (Strong Shading 0–0.4 s) 257.4 W 257.4 W 100%

Case Two (Moderate shading 0.4–0.8 s) 435.5 W 435.5 W 100%
Case Four (Strong shading 0.8–1.2 s) 260.3 W 263.8 W 98.67%
Case One (Weak shading 1.2–1.6 s) 490.9 W 490.9 W 100%

Table 5. Performance evaluation of the proposed algorithm compared with well-known
MPPT algorithms.

Ref. Year Converter Type Steady State
Oscillations

Speed of
Tracking

Tracking
Efficiency Complexity

Proposed
algorithm 2020 Boost Converter Nil Highest Highest Very Low

[1] 2019 DC/DC Buck
converter Low High High Reasonable

[27] 2018 Boost Converter Low High High High

[17] 2015 Boost Converter Low High Average Reasonable

[16] 2015 SEPIC converter Low High Low Medium

[18] 2012 Buck converter High High Medium High

[28] 2018 Boost converter High High Medium High

[10] 2017 Boost converter Medium High Medium High

[9] 2016 SEPIC converter Low High High High

7. Additional Configuration Testing

To confirm the robustness and high performance of the proposed method for any PV array
configuration under any irradiation fluctuation conditions, more configuration tests were executed
with comprehensive comparisons in the overall performance between the suggested method and
the conventional P&O and IC techniques under different shading conditions. The configuration of
eight PV modules in series (8S) is presented in cases “a” and “b” of Figure 16 for two diverse shading
conditions. Moreover, four modules in series (4S) is the PV configuration as illustrated in cases “c” and
“d” of Figure 16 for two different shading situations.
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of (8S); (c) The first case of (4S); and (d) The second case of (4S).

The characteristic curves for all the configurations of Figure 16 with the acquired outputs of the
different algorithms are presented in Figures 17–20. The powers at the GMPPs for cases “a” and
“b” of the (8S) PV array were 246.2 W and 292.9 W, respectively. For cases “c” and “d” of the (4S)
PV array, the powers at the GMPPs were 156 W and 119.7 W, respectively. These results prove the
ability of the proposed technique to track the GMPP for each case with the best efficiency and accuracy
with no oscillation or power loss in perfect tracking time, less than 0.14 s, working at the desired
maximum voltage in all cases of shading conditions. Moreover, the results show that the proposed
technique performed far better than both the IC and P&O techniques in terms of extracted power,
speed, and efficiency.
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Figure 19. (a) Scenario of case “c” of the (4S) PV array; (b) The extracted power by the proposed
technique and the conventional P&O and IC techniques; (c) The voltage at the boost converter output;
(d) The duty cycle behaviors.
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In future work, we will move on to experimentally confirming the proposed algorithm performance.
Also, it would be an interesting objective to check its validity on other converter structures.
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can track the GMPP effectively under partial shading conditions was presented in this paper.
The performance of this procedure was successfully tested and evaluated using different and
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