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Abstract: Nowadays, space-borne imaging spectro-radiometers are exploited for many environmental
applications, including water quality monitoring. Turbidity is a standout amongst the essential
parameters of water quality that affect productivity. The current study aims to utilize Landsat 8
surface reflectance (L8SR) to retrieve turbidity in the Ramganga River, a tributary of the Ganges River.
Samples of river water were collected from 16 different locations on 13 March and 27 November
2014. L8SR images from 6 March and 17 November 2014 were downloaded from the United States
Geological Survey (USGS) website. The algorithm to retrieve turbidity is based on the correlation
between L8SR reflectance (single and ratio bands) and insitu data. The b2/b4 and b2/b3 bands ratio
are proven to be the best predictors of turbidity, with R2 = 0.560 (p < 0.05) and R2 = 0.726 (p < 0.05) for
March and November, respectively. Selected models are validated by comparing the concentrations
of predicted and measured turbidity. The results showed that L8SR is a promising tool for monitoring
surface water from space, even in relatively narrow river channels, such as the Ramganga River.
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1. Introduction

Turbidity is animportant parameter for water quality and a surrogate for the transparency of
water [1–5]. Turbidity can damage many aquatic organisms and fishes by degrading spawning grounds,
reducing feed supplies, and affecting gill function [6]. A decrease or increase in water transparency can
adversely affect the organic components of systems that adjustto light-dispersing environments [7–15].
In estuarine waters with high turbidity, dissolved oxygen concentrations can significantly decrease
due to irregularities in heterotrophic and autotrophic processes, which may contribute to the depletion
ofmarine organisms [16,17]. Typically, turbidity is assessed visually using aSecchi disk, or presumably
through nephelometry [1,5]. However, these methods only represent the locations from which the
sample was collected. Recently, remote sensing of sea color has become a valuable method to retrieve
and monitor suspended sediment concentration (SSC) and turbidity in coastal turbid waters on the
surface [18–21]. Traditional water quality sampling is cost-effective and time-consuming, as it involves
the collection and analysis of the water. Also, the traditional method of water monitoring does
not provide the spatial or temporal view of the entire body of water that is necessary for proper
management [22].
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The use of remote sensing technology to analyze water quality is concise; it alsocaptures the entire
field of study to create consistent surface data and periodically demonstrate the point-by-point spatial
variability of water quality [23]. Although research on various remote sensing technologies is devoted
to total SSC retrieval, research on retrieving turbidity is limited [21]. Even thoughsatellite remote
sensing cannot identify near-bed absorption, it is used to identify spatial and temporal variations in
turbidity at the surface.“Near-bed absorption” refers to the bottom of a stream or other body of water.
The turbidity of the surface water can influence the reflection of the water body, but not from the
bottom of the stream/lake/ocean, because the reflection data are obtained from the top 2 m of surface
water [24].

The Ramganga River is an important tributary of the Ganges River. It originates from the lower
Himalayas in Uttarakhand, covering the vast Ganga Flood Plains (GFP) of Uttar Pradesh, and then
converges with the Ganges River. It is the primary source of water for the Jim Corbett National Park
(Tiger Reserve) situated in the Uttarakhand, and is one of the critical water sources for domestic,
industrial, and agricultural use in the western Uttar Pradesh [25,26]. The upper reaches of the study
area consist of hillocks and streams, while agricultural fields mainly dominate the middle and lower
reaches; therefore, when sufficient rainfall increases the contribution of suspended substances, due to
weathering and erosion processes in the upper regions and agricultural runoff in the middle and lower
regions, the turbidity and total SSC increase considerably [27]. The aquatic life of the Ramganga River
is negatively affected by the large amount of turbidity in the water, and harmful bacteria and pollutants
may also be associated with the particles that cause turbidity. Estimating turbidity distribution in the
Ramganga River with diverse geomorphology and a complex environment requires anunconventional
approach. Remote sensing technology provides reliable information for monitoring and understanding
the variation of turbidity in time and space, particularly in the substantial zone with limited access,
such as Jim Corbett National Park area of the Ramganga River Basin.

Mapping turbidity and other indicators of water quality is routinely performed using information
acquired with wide-swath imagingspectro-radiometers designed to measure sea color—for example,
Orbview-2/SeaWiFS, ENVISAT/MERIS, and Aqua/MODIS [28]. However, these applications are not
suitable for narrow and small regions, due to their low spatial resolution scales, yielding a large number
of mixed pixels and resulting in lower accuracy of retrievals [29]. In comparison to these medium
resolution images, Landsat 8 surface reflectance (L8SR) images aredelivered on a Polar Stereo (PS) or
universal transverse Mercator (UTM) mapped grid with 30 m spatial resolution.

Table 1 shows the important features of the L8SR product. Various surveys of remote detection
of ocean color were carried out to retrieve water quality parameters, most of which used three basic
strategies: (i) implicit, based on the correlation between water quality parameters, using inherent
optical properties (IOPs) and semi-analytical models [30–32]; (ii) using experimental models between
these parameters and IOPs [33,34]; and (iii) experimental models using water quality parameters and
satellite data reflection [35–38]. The third approach was used in this study, which is based on the
correlation between field measurements and reflectance values extracted from L8SR products.

Table 1. Significant features of Landsat 8 surface reflectance (L8SR) data product.

Band Designation Band
Name

Data
Type Units Range Valid

Range
Fill

Value
Saturate

Value
Scale
Factor

ProductID_sr_band1 Band1 INT16 Reflectance −2000–16,000 0–10,000 −9999 20,000 0.0001
ProductID_sr_band1 Band2 INT16 Reflectance −2000–16,000 0–10,000 −9999 20,000 0.0001
ProductID_sr_band2 Band3 INT16 Reflectance −2000–16,000 0–10,000 −9999 20,000 0.0001
ProductID_sr_band3 Band4 INT16 Reflectance −2000–16,000 0–10,000 −9999 20,000 0.0001
ProductID_sr_band4 Band5 INT16 Reflectance −2000–16,000 0–10,000 −9999 20,000 0.0001
ProductID_sr_band5 Band6 INT16 Reflectance −2000–16,000 0–10,000 −9999 20,000 0.0001
ProductID_sr_band6 Band7 INT16 Reflectance −2000–16,000 0–10,000 −9999 20,000 0.0001
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2. Materials and Methods

2.1. Study Area

Ramganga River flows through the Himalayas (Kumaon region) in Uttarakhand and the GFP before
joining the Ganges River in Uttar Pradesh. The river has a catchment area of approximately 22,685 km2,
with a total stretch of 642 km from its origin (Dudhotali Mountain of the district Chamoli) to the
confluence with the Ganges River [39–42]. The Ramganga River catchment lies between 30◦06′02.22′′ N
to 27◦10′42.11′′ N and 79◦16′59.22′′ E to 79◦50′16′′ E, with a mean elevation of 1530 m above mean sea
level. After covering the first 158 km of its stretch in the Kumaon Himalayas and going through the
Jim Corbett National Park, the river enters the GFP at Kalagarh town, where the Ramganga Dam has
been constructed. In the GFP, the river flows through the hugely populated and highly agricultural
and industrialized districts of the Uttar Pradesh, such as Moradabad, Bijnor, Bareilly, Rampur, Hardoi,
Shahjahanpur, and Farrukhabad [43].

2.1.1. Climatic Condition and Rainfall

Summer, rainy, and winter arethe three distinct seasons witnessed by the study area. The rainy
season begins by the middle of June and continues to September or mid-October. Following a brief
spell of autumn starting in mid-October, when the temperature drops drastically, the winter season
begins in November. October/November and May/June are considered to be thepost-monsoon and
pre-monsoon seasons, respectively. Throughout the winter months, some occasional showers also occur
(http://indiawaterportal.org/). The average yearly rainfall receives by the area is around 1000 mm [28].
The relationship between water discharge (Q) and the SSC in the Ramganga River are shown in Figure 1.
It is clear from the figure that there is a direct relation between Q and SSC.
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Figure 1. Plot showing relationship between sediment concentration and water discharge in the
Ramganga River.

2.1.2. Geology

The entire catchment region is comprised oftwo major lithotectonic zones, namely the
Sub-Himalayas and Lesser Himalayas. In the Sub-Himalayas, the major components are siltstone,
sandstone, clays, and boulders, with molasse sediments of Mid-Miocene to Pleistocene age.
Unfossiliferous sequences of low- to high-grade meta-sediments of the Palaeozoic to Mesozoic age are
the major components of the Lesser Himalayas. In general, the important lithologies in the Ramganga
basin are (1) calcareous shales and siltstones (Blaini/Infrakrol formations); (2) quartzites (Nagthat and

http://indiawaterportal.org/
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Sandra formations); (3) low-grade metamorphics (phyllites, slates, and schists); (4) limestones (Krol
and Deoband formations); and (5) high-grade metamorphics (granite gneisses) [44].

The river emerges in the Ganga alluvial plain, also known as the GFP, after covering a distance
of about 158 km in the Kumaon Himalayas. The Ganga alluvial plain is a foreland basin closely
linked with the extension of the Himalaya orogenic belt, as demonstratedin Figure 2. The Quaternary
lithostratigraphic sequence established in descending order is comprised of the (1) Ganga/Ramganga
Recent Alluvium; (2) Ganga/Ramganga Terrace Alluvium; and (3) Varanasi Older Alluvium, with two
facies, i.e., sandy facies and silt clay facies.The first two, the Recent and Terrace alluviums, constitute
the Newer Alluvium [45].
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2.2. Sample Collection and Analysis

Figure 2 shows the locations where water samples were collected from the Ramganga River.
Sampling process was done on 13 March and 27 November of the year 2014 (Table 2). Sixteen samples
of river water from each location were collected in a five-liter bottle, preserved, and transferred to
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the laboratory as suggested in Standard Methods for the Examination of Water and Wastewater (APHA),
20th edition [46].

Table 2. Sampling sites description with insitu concentration of turbidity.

Sample ID Longitude Latitude Turbidity (NTU)-March Turbidity (NTU)-November

RG1 79.321581 29.984017 4.310 0.6
RG2 79.255436 29.732233 5.600 1.2
RG3 79.261153 29.696792 2.820 0.5
RG4 79.093611 29.606047 0.888 0.6
RG5 78.761167 29.496639 5.270 3.5
RG6 78.636108 29.314433 24.600 14.2
RG7 78.649336 29.243347 52.600 8.9
RG8 78.679081 29.127161 20.600 13.3
RG9 78.698394 29.068136 75.900 15.4
RG10 78.744111 28.890639 112.000 2.5
RG11 78.912031 28.668564 99.900 2.3
RG12 79.229528 28.449917 106.000 2.9
RG13 79.368028 28.294722 28.900 3.2
RG14 79.513861 28.094222 41.700 2.7
RG15 79.623308 27.681989 64.500 2.1
RG16 79.697544 27.497983 42.500 2.4

The sample bottles were rinsed with 2% nitric acid in the laboratory, and rinsed twice with water
of the river at the time of sampling to avoid contamination. Turbidimeter (HACH instruments) was
used to measure the turbidity in NTU of each water sample.

2.3. Satellite Images

It was observed that all the sampling locations occurred in three images (path 145 and rows
139, 140, and 141). The three images cover an area of approximately 180 km east–west to 540 km
north–south. There could be significant variability in the atmospheric conditions over such an area,
which affects the relationship between the top of the atmospheric reflectance retrieved from the satellite
data and the insitu water turbidity. This problem is mitigated by using a single image where 13 of
the 16 sampling sites were located. The reflected electromagnetic solar radiation is the basis for the
spectral examination of satellite imagery, issued to measure turbidity. Unique signatures and curves
are generated, depending on the reflection and absorption at different wavelengths [47,48]. The major
errors in the reflected electromagnetic solar radiation remained when retrieving water properties from
satellite images. The thirteen samples (RG2–RG14) included in the analysisare located on the image,
with path 145 and row 40. Nine samples wereused to retrieve the turbidity model. To validate this
model, the measured and predicted turbidity was compared. The four samples that were not included
in the model retrieving were used for further validation of the model.

2.4. Statistical Summary of Ramganga River In Situ Measurements

Insitu concentrations of turbidity were measured in both March and November 2014.
The distribution of data of turbidity was generally skewed, with low values and without any
outliers or very high values (Table 3). Turbidity concentrations ranged between 20.6 and 112.0 NTU
with a mean value of 62.467 NTU during March 2014, and between 2.3 and 15.4 NTU with mean value
of 7.267 NTU during November 2014.

In general, turbidity concentrations were higher in March than in November (Figures 3 and 4).
The SSC depends on the location and time of the year. When matched to the pre-monsoon and
post-monsoon data, the SSC values weremuch higher during the monsoon months. Thisis caused by
high Q, leading to high rates of weathering and erosion from the catchment and the river channel
itself. Pre-monsoon concentrations (March 2014) are consistently higher than the corresponding
post-monsoon concentrations (November 2014). Thiscan be attributed to a considerable difference in
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elevation levels of 530 m (RG4) to 259 m (RG5) from the mean sea level. This elevation difference leads
to a decrease in potential energy and an increase in the kinetic energy of the river, thereby increasing
the sediment-carrying capacity of the river [16].

Table 3. Descriptive statistics values of turbidity in March and November 2014.

Parameters March 2014 November 2014

Number of Samples 9 9
Mean 62.47 7.27

Standard Error of the Mean 12.23 1.89
Standard Deviation 36.70 5.67

Variance 1346.55 32.14
Skewness 0.27 0.55

Standard Error of Skewness 0.72 0.72
Kurtosis −1.88 −1.92

Standard Error of Kurtosis 1.4 1.4
Range 91.4 13.1

Minimum 20.6 2.3
Maximum 112.0 15.4
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2.5. Image Acquisition

In this study, two L8SR images from 6 March and 17 November 2014 were used to retrieve turbidity
in the Ramganga River. The selected images, with path 145 and row 40, were downloaded from the
United States Geological Survey (USGS) websites (http://earthexplorer.usgs.gov/). Each downloaded
image was in a compressed folder containing TIFF images of each band.

2.6. Methodology

2.6.1. Rescaling

Rescaling of original L8SR bands wasapplied, as the range of the data wasfrom −2000–16,000.
The valid range of reflectance is between 0–1. The minimum fraction of irradiance to be reflected from
any surface should be 0.0 if it is a fully absorbed material, while the maximum fraction is 1.0 if it is
a fully reflective material. The data were rescaled for the valid ranges, according to the information
(Table 1) by multiplying each band by the scale factor of 0.001.

2.6.2. Masking

Only the river water body should be retained, and the rest needs to be masked. Masking of the
water body was difficult, as the river is very narrow and it has many bridges. In addition, some areas
of water in the river have been isolated in the form ofoxbow lakesthat appear after a broad meander
from the main channel of the river is cut off, creating a free-standing body of water. Imagery masking
was performed using version 10.2.2 of ArcGIS software. The river wasidentified by thresholding the
images of the spectral reflectance.

2.7. Regression Models

The relationship between the L8SR reflectance and insitu measurements was developed by
exploiting a simple linear backward elimination method. The backward elimination method begins
with all the variables observed in the model. At each step, the least significant variable is removed.
This process continues until there are no more insignificant variables. The user defines the level of
significance at which the variables can be removed from the model [49]. In this study, IBM SPSS
programming statistics v. 23.0 (Armonk, NY, USA), was used. Figure 5 shows the outline of the
methodology applied in the present study. A regression model between the measured turbidity
and the surface reflectance was applied. The output model has been validated, and the final results
werethematic maps. For March, the regression was determined between the insitu turbidity on
13 March 2014 and the surface reflectance on 6 March 2014, while for November, the regression was
between the insitu turbidity on 21 November 2014 and the surface reflectance on 17 November 2014.

Water quality indicators, such as turbidity, chlorophyll, and temperature, as well as suspended
matter, have been retrieved from remote sensing, according to [22]. The following four types of
expressions have been used to show the general forms of these experimental equations:

Y = A + BX

Y = ABX

Y = A + B lnX

lnY = A + BX

where X is the measurement from remote sensing (i.e., radiance, reflectance, and energy);
Y representswater quality parameters; A and B are empirically derived factors; and X could be
energy, reflectance, orradiance in a single or two-band ratio. This concept has been adopted by many
researchers in the past to retrieve the parameters of water quality; therefore in the present study,

http://earthexplorer.usgs.gov/
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we followed the same concept, constructing an algorithm for turbidity retrieval that is dependent on
the relationship between L8SR and insitu observation.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 17 
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3. Results

3.1. Retrieval of Turbidity

Statistical techniques for the derivation of chlorophyll- a (Chl-a) concentration and turbidity have
been a common approach, based on the correlation between insitu data and spectral band values.
The derived algorithms can provide an adequate estimate of Chl-a concentration [50] and turbidity [51].
These techniques were also adopted in the Ramganga River, in order to combine in situ data with
satellite data to retrieve turbidity. The correlation was pursued between the insitu turbidity data
and L8SR (single and ratio bands) for March and November 2014. After testing more than 20 band
combinations in this correlation analysis, all single bands showed very poor correlation coefficients.
Similar results appeared with different band ratios, except for b2/b3 and b2/b4, which produced
higher coefficients of determination. The most significant results are presented in Table 4. Our results
agree well with the findings of [52,53], who used b2/b3 and b2/b4 for the retrieval of turbidity from
surface reflectance.

Using backward linear regression for the March data, all insignificant bands were removed,
and the predictive model results were 0.75 and 0.56 for correlation coefficient (R) and R2 values,
respectively—whereas, for November, the value of R and R2 were 0.852 and 0.726, respectively.
However, the absence of autocorrelation in the residuals was indicated by Durbin–Watson’s statistic
(Tables S1 and S2). The description and summary of the final models of water quality parameters are
shown in Table 5.
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Table 4. Correlation between bands and reflectance for March and November 2014.

Bands March November

b2 0.051 −0.39
b3 −0.141 0.196
b4 −0.209 0.069
b5 −0.416 −0.155

logb2 0.045 −0.402
logb3 −0.153 0.187
b2b3 0.581 −0.852 **
b2b4 0.748 * −0.756 *
b2b5 0.424 0.101
b3b4 0.523 0.391
b3b5 0.372 0.360

log(b3/b5) 0.389 0.280
b4/b3 −0.530 −0.38
b4/b5 0.348 0.331
b5b4 −0.363 −0.126

log(b5/b3) −0.389 −0.28
log(b5/b4) −0.360 −0.236

logb2 0.045 −0.402
logb3 −0.153 0.187
logb4 −0.211 0.045

** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level.

Table 5. Statistical summary and description of the final turbidity model that was computed for March
and November 2014.

Model R R2 Std.Error of
the Estimate R2 Change Durbin–Waston

March 2014 −1.1 + 5.8 (b2/b4) 0.75 0.56 0.2 −0.08 1.36
November 2014 3.896 – 4.186 (b2/b3) 0.852 0.687 0.202 −0.002 1.972

3.2. Algorithm Validation

Comparisons between the measured and predicted turbidity for the nine samples that were used
to determine the turbidity model are shown in Figures 6 and 7 and Table S3, along with squared
residual and root mean square error (RMSE). Moderate correlation factors(R2) of 0.56 and 0.726,
with RMSE 1.013 and 0.178, wereobtained for March and November, respectively. For March, the
predicted turbidity ranged from 2.329 to 3.023 NTU in relation to the measured turbidity, which ranged
from 1.31 to 2.049 NTU (Figure 6). For November, the predicted turbidity varied from 0.337 to 1.33
NTU, compared with 0.362 to 1.18 NTU for the measured values (Figure 7).Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 17 
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Figure 6. (a) Scatter plots and (b) line graphs show the comparison of observed and satellite-retrieved
turbidity values at nine sampling sites from the Ramganga River in March 2014.
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Figure 7. (a) Scatter plots and (b) line graphs shows the comparison of observed and satellite-retrieved
turbidity values at nine sampling sites from the Ramganga River in November 2014.

3.3. Additional Validation for the Retrieved Model

For more precision inthe model, the four samples (RG2–RG5), which werenot included in the
analysis, wereused to validate the model (Table 6). The first value in March and the last value in
November weretoo high, because we tried to collect water samples where the water condition was
rather uniform. However, it is still possible that the water samples capture locally high turbidity,
while the reflectance of the satellite is on average about 900 m2.

Table 6. Validation of the retrieved model in March and November 2014.

Observed (NTU) Predicted (NTU) Square Residual RMSE

March 2014

5.600 2.28803 10.969

2.2
2.820 2.14487 0.456
0.888 1.45088 0.317
5.270 5.45901 0.036

November 2014

1.2 2.204 1.008

1.39044
0.5 0.854 0.125
0.6 1.331 0.535
3.5 1.3641 4.562

The final turbidity maps, after applying the generated models, are presented in Figures 8 and 9,
Figures S1a–c and S2a–c. For March, the estimated concentrations ranged from 2.329 to 3.023 NTU
(Figure 8 and Figure S1a–c) in relation to the in situ concentration turbidity, which ranged from 1.31 to
2.049 NTU. For November, the estimated concentrations ranged from 0.337 to 1.33 NTU, compared to
0.362 to 1.18 NTU for the measured values (Figure 9 and Figure S2a–c).
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4. Discussion

The main objective of this study was to construct an algorithm to retrieve turbidity in the Ramganga
River using L8SR. Statistical techniques [54,55] have been applied to determine the relationship between
surface reflectance and measured turbidity. Bands from b1–b5 showed weak correlations for March and
November. Different band ratios were utilized—for example, b2/b5, b3/b4, b3/b5, and b4/b5. The b2/b4
ratio was observed to be the most proficient for the estimation of turbidity for March, whereas b2/b3
was the most effective ratio for the estimation of turbidity in November for the Ramganga River.
That was because vegetation indices (VIS) (b1, b2, and b3) and near infrared (NIR) (b5) are the most
sensitive bands to SSC changes in water surface [56].

Such a monitoring system by remote sensing could be used as an early forewarning system for
turbidity exceedance, which could help to make timely decisions about allowed emissions into the
river water. Thus, simple and less expensive regular monitoring can be applied at a considerably larger
spatial scale than continuous conventional sampling methods. However, errors related to satellite data,
which reduce the accuracy of the resulting maps, are as follows:

• The samples collected may not be representative in relation to the total area of the water body;
• Water contains many soluble substances that hinder the process ofobtaining the precise signature

of the studied parameters;
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• The difference in date between the acquisition of the satellite data and the insitu data;
• The relatively low spatial resolution of satellite images may affect their accuracy;
• The uncertainty of the locations of the pixels and insitu samples;
• The small number of samples affects the regression model, as well as the validation process.

A major problem with medium-resolution satellite data like Landsat 8 is that the Ramganga River
is irregular in shape, generally narrow (about 100 m wide), and includes small islands. The reflected
radiation from the shore and the vegetation near the shore is generally stronger than the radiation
from the water. Therefore, the retrieval water quality parameters might not be possible if even a small
portion of a pixel is covered with land. Also, the distinguished turbidity models are probably not
relevant for different streams, and are along these site-specific lines. In all cases, testson freshwater
bodies with comparable attributes should be undertaken to access the suitability of the models.

5. Conclusions

To retrieve surface turbidity from the L8SR product, a regional algorithm was developed and used
in the Ramganga River. This investigation suggests that satellite information can be a ground-breaking
device to foresee the concentration of turbidity in stream waters, and particularly in the Ramganga
River. However, the distinguished models would be efficient only in the Ramganga River or rivers with
comparable water quality and morphological characteristics. Nevertheless, even with the existence of a
lot of ground information similar to the case in our examination, a quantitatively accurate estimation of
water quality components in inland waters is a great challenge. Using the data acquired byvarious other
sensors, such as Sentinel 2, Moderate Resolution Imaging Spectroradiometer (MODIS), and Gaofen-3
(GF-3),can help improve our ability to correctly estimate surface water characteristics from space.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/11/3702/s1,
Figure S1a: Turbidity map of Ramganga River in 6 March 2014, Figure S1b: Turbidity map of Ramganga River
in 6 March 2014, Figure S1c: Turbidity map of Ramganga River in 6 March 2014, Figure S2a: Turbidity map of
Ramganga River in 11 November 2014, Figure S2b: Turbidity map of Ramganga River in 11 November 2014,
Figure S2c: Turbidity map of Ramganga River in 11 November 2014, Table S1: Models’ summary and regression
analysis statistics among turbidity concentrations and surface reflectance values for March and November 2014
(dependent variable), Table S2: Variables entered/removed from turbidity predictive models relying upon the
regression method utilized for March and November 2014, Table S3: Comparison of satellites retrieved and in-situ
observed turbidities values at 9 sampling sites of Ramganga River in March and November 2014 with statistical
analysis for squared residual, root mean square (RMSE).
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