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Featured Application: Excellent potential scaffold for the development of anticancer therapeutics.

Abstract: Developing anticancer therapeutics with no/few side effects is a challenge for medicinal
chemists. The absence of antibacterial activity of an anticancer drug removes its detrimental
effect toward intestinal flora and therefore leads to reduced side effects. Here, a series of novel
N-benzylisatin-aryl-hydrazones was designed, synthesized and evaluated for their antimicrobial
and antiproliferative activities with SAR and ADME studies, aiming to develop anticancer drugs
with no antimicrobial, yet high antiproliferative activities. The results were then compared with the
effects of first-line treatments for lung cancer drug Gefitinib. Novel N-benzylisatin-aryl-hydrazones
were synthesized from isatin and benzyl bromide in three steps with good to moderate yields.
Antimicrobial activity was tested with six Gram-positive/negative bacterial strains, antifungal
activity with a fungal strain and antiproliferative activity against ‘A549’ and ‘HeLa cell lines’,
respectively. As expected, synthesized hydrazones reveled no effects on any of the strains of bacteria
and fungi up to 100-µg/disc concentration. However, four compounds showed two-to-four fold
antiproliferative activity over Gefitinib. For instance, IC50 of a compound (6c) shows concentration
of 4.35 µM, whereas gefitinib shows 15.23 µM against ‘A549.’ ADME predicted studies reveled
that our synthesized hydrazones exhibited higher ADME values than the Gefitinib. Therefore, our
synthesized hydrazones can be an excellent scaffold for the development of anticancer therapeutics
after considering further investigations.

Keywords: N-benzylisatin-aryl hydrazones; gefitinib; cancer; A549 cell lines

1. Introduction

Cancer is a life-threatening disease; one of the major challenges for relieving its burden is to develop
highly effective drugs with specificity for cancer, but few to no side effects on normal mammalian
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cells [1]. Gefitinib, the epidermal growth factor receptor (EGFR) inhibitor, was added recently to the
Food and Drug Administration (FDA) list of the recommended first-line treatments for lung cancer [2].
Gefitinib is particularly recommended for non-small cell lung cancer (NSCLC) type [3]. Although
that erlotinib and afatinib are also included in this list, gefitinib may be the most tolerable [4]. The
most common adverse effects of this group of drugs were gastrointestinal diarrhea, nausea and/or
vomiting which is due to the toxic effect of the drug on normal flora [5,6]. The absence of antibacterial
activity of the anticancer drug removes its detrimental effect against intestinal flora, suggesting a highly
promising new strategy for the development of anticancer drugs with reduced side effects [7]. In 2008,
O’Shea and Moser reported [8] that molecular weight is an important factor for antimicrobial activity.
They did experiment on 147 antibacterial and 4623 non-antibacterial compounds and found average
molecular weight for an antibacterial compound were 812 Da (Gram ‘+’ positive) and 414 Da (Gram
‘−’ negative). In addition, another important factor for becoming an antimicrobially active compound
is polarity. According to the Lipinski’s rule of five, also known as Pfizer’s rule of five or simply the rule
of five (RO5) [9], 70.4% of the antibacterial active compounds showed logP values ranges from 0–5.
Therefore, in order to target a compound with no/little antimicrobial activity, lower molecular weight
and with more logP values should be taken into consideration, isatin and its derivatives with low
molecular weight could be a choice of interests [10–12]. Isatin, a natural compound, is known for more
than a century and still being used extensively in medicinal compound synthesis [13–19]. It has been
reported that, various substituents on isatin nucleus displayed numerous biological activities [12,20].
In recent years, number of isatin derivatives were reported with extensive biological activities [21–25],
included EGFR activity [26]. N-benzylisatin hydrazones of fluorescein had showed antiproliferative
activity as well as topo II inhibitory activity [27]. Moreover, two series of hydrazone derivatives
has been reported recently with antiproliferative activity [28,29]. A number of marketed drugs and
potential anticancer agents having isatin moiety, depicted in Figure 1, inspired us to synthesize a series
of isatin hydrazones having N-benzyl protection at 1-position of isatin and hydrazone formation at
3-position with various aryl substituents. We thus anticipating that simplification of isatin molecule
would prevent its inhibitory effect on different microbes, providing more selectivity in the action on
cancerous cell lines with less/no toxicity on the gastrointestinal tract (GIT) lining cells. Considering the
above points and the importance of the development of anticancer therapeutics with no/few side effects,
we therefore designed and synthesized a series of N-protected N-benzylisatin-aryl hydrazones with a
lower molecular weight (353–418 Da), evaluated their antibacterial activity against two Gram-positive,
four Gram-negative bacterial strains and antifungal activity against Candida albicans NRRL Y-477, and
antiproliferative activities against non-small cell lung cancer cell lines ‘A549’, as well as human cervical
cancer cells lines ‘HeLa.’ In addition, for comparing the potency of the synthesized compounds,
“gefitinib” was used as a positive control for antiproliferative activity evaluation.

In order to consider a compound as drug molecule, it is necessary to test their drug likeness
properties as well as the analysis of physiological descriptors such as absorption, distribution,
metabolism and excretion (ADME). ADME are important physiological descriptors of chemical
compounds for selecting highly potential drug targets. However, testing a wide range of compounds
directly in clinical or pre-clinical phase is extensively time consuming and costly. Moreover, ADME was
considered as the last step of drug development where many drugs (approximately 60%) were failed
after all the procedures. To solve these problems, recent experiments utilizes in silico ADME tools as
the first step to shorten the amount of target compounds, by calculating predicted ADME properties
and by discarding the compounds with unsatisfactory ADME values from the drug designing pipe
line [30]. This prediction enabled us to identify potent drug candidate by analyzing the properties of
the designed compounds. Therefore, we studied the ADME predicted parameters of the synthesized
compounds (6a–j) using in silico ADME tools and compared them with that of “gefitinib”.
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Figure 1. Isatin moiety containing active & potential drugs and gefitinib.

2. Materials and Methods

2.1. Chemicals and Solvents Were of Commercial Reagent Grade (Sigma-Aldrich, St. Louis, MO, USA) and
Used without Further Purification

The progress of reactions and purity of reactants and products were checked using pre-coated silica
gel 60 aluminum TLC sheets with fluorescent indicator UV254 of Macherey-Nagel, and detection was
carried out with ultraviolet light (254 nm). Melting points were determined on a Fisher ScientificTM
digital melting point apparatus (model number IA9100) and are uncorrected. Electrospray ionization
(ESI) mass spectrometry (MS) experiments were performed using an Agilent high performance liquid
chromatography (HPLC) 1200 connected to an Agilent 6320 ion trap mass spectrometer fitted with an
electrospray ionization (ESI) ion source (Agilent Technologies, Palo Alto, CA, USA). Infrared spectra
were recorded as KBr disks using the Fourier Transform Infrared Spectrophotometer of Shimadzu;
model: IR affinity-1S (Shimadzu, Tokyo, Japan). NMR spectra were taken on Agilent-NMR-VNMRS
600 MHz spectrometer (Agilent Technologies, Palo Alto, CA, USA) and DMSO-d6 was used as solvent.

2.2. Preparation and Characterization of Target Compounds

2.2.1. 1-Benzylindoline-2,3-dione (3)

Orange powder (95%) mp = 130–131 ◦C (Lit. [31] mp. = 125–126 ◦C).

2.2.2. (Z)-1-Benzyl-3-hydrazonoindolin-2-one (4)

Yellow powder (90%) mp = 124.5–126 ◦C (Lit. [32,33] mp. = 125–126 ◦C). ESI mass m/z = 252
[M + H]+.

2.2.3. General Procedure for the Synthesis of 6a–j

To a mixture of isatin monohydrazone (1 mmol) and substituted aryl aldehyde (1 mmol) in 10 mL
ethanol, a few drops of glacial acetic acid was added. The reaction mixture was refluxed for 4 h. The
precipitate solid was filtered, washed with cold ethanol and air dried to obtain the target compounds
(6a–j), which was then further purified by recrystallization using methanol. 13CNMR spectra for 6a-j
is available in the Supplementary Materials file.

1-Benzyl-3-((4-(dimethylamino) benzylidene)hydrazono)indolin-2-one (6a)

Dark red solid (53%) mp = 183–184 ◦C. IR (KBr): νmax (cm−1): 2926 (C-H aliphatic), 1707 (C=O),
1606 (C=N), 1558 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 3.06 (s, 6H, N(CH3)2), 4.97 (s, 2H, N-CH2-Ph),
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6.84 (d, J = 7.8, 2H, ArH), 6.98 (d, J = 7.2, 1H, ArH), 7.15 (t, 1H, ArH), 7.26 (s, 1H, ArH), 7.34 (m,
5H, ArH), 7.85 (d, J = 7.8, 2H, ArH), 8.30 (d, J = 7.2, 1H, ArH), 8.67 (s, 1H, N=CH) ppm. 13C NMR
(DMSO-d6, 150 MHz: δ 166.41, 164.43, 153.76, 149.56, 144.80, 136.70, 133.09, 131.97, 129.18, 129.08,
127.99, 127.68, 123.35, 120.76, 117.04, 112.30, 110.22, 43.11 and 40.14 ppm. ESI mass m/z = 383 [M + H]+.

1-Benzyl-3-(((4-chlorocyclohexa−1, 5-dien-1-yl) methylene)hydrazono)indolin-2-one (6b)

Dark red solid (30%) mp = 210–211 ◦C. IR (KBr): νmax (cm−1): 2918 (C-H aliphatic), 1718 (C=O),
1591 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 4.97 (s, 2H, N-CH2-Ph), 7.00 (d, J = 7.8, 1H, ArH), 7.08 (t,
1H, ArH), 7.24–7.44 (m, 6H, ArH), 7.64 (d, J = 7.8, 2H, ArH), 7.92 (d, J = 6.6, 1H, ArH), 8.05 (d, J = 7.8,
2H, ArH), 8.66 (s, 1H, N=CH) ppm. 13C NMR (DMSO-d6, 150 MHz: δ 163.69, 159.86, 150.00, 145.57,
137.31, 136.45, 134.18, 132.66, 131.03, 129.87, 129.20, 128.00, 127.72, 123.60, 116.30, 110.63 and 43.23 ppm.
ESI mass m/z = 374 [M(35Cl) + H]+, 376 [M(37Cl) + H]+.

1-Benzyl-3-((4-hydroxybenzylidene)hydrazono)indolin-2-one (6c)

Orange solid (50%) mp = 235–236 ◦C. IR (KBr): νmax (cm−1): 3329 (O-H), 3022 (C-H aliphatic),
1705 (C=O), 1608 (C=N), 1589 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 4.97 (s, 2H, N-CH2-Ph), 6.92 (d,
J = 7.8, 2H, ArH), 6.98 (d, J = 7.2, 1H, ArH), 7.08 (t, 1H, ArH), 7.22–7.4 (m, 6H, ArH), 7.73 (bs, 1H, OH),
7.86 (d, J = 7.2, 2H, ArH), 8.15 (d, J = 7.8, 1H, ArH), 8.65 (s, 1H, N=CH) ppm. 13C NMR (DMSO-d6,
150 MHz: δ 164.32, 164.11, 162.32, 150.79, 150.31, 145.17, 136.56, 133.62, 132.08, 129.29, 129.18, 127.96,
127.49, 124.88, 123.49 and 43.14 ppm. ESI mass m/z = 356 [M + H]+.

1-Benzyl-3-((2-bromobenzylidene)hydrazono)indolin-2-one (6d)

Orange solid (65%) mp = 173–174 ◦C. IR (KBr): νmax (cm−1): 2935(C-H aliphatic), 1722 (C=O),
1606 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 4.95 (s, 2H, N-CH2-Ph), 6.99 (d, J = 4.8, 1H, ArH), 7.06 (t,
1H, ArH), 7.25 (m, 1H, ArH), 7.3–7.37 (m, 4H, ArH), 7.4 (t, 1H, ArH), 7.51 (t, 1H, ArH), 7.58 (t, 1H,
ArH), 7.78 (d, J = 8.4, 1H, ArH), 7.86 (d, J = 7.2, 1H, ArH), 8.22 (d, J = 7.2, 1H, ArH), 8.75 (s, 1H, N=CH)
ppm. 13C NMR (DMSO-d6, 150 MHz: δ 163.57, 158.38, 149.98, 145.68, 136.37, 134.37, 134.28, 134.15,
132.16, 129.31, 129.19, 129.15, 129.10, 128.00, 127.71, 125.68, 123.64, 116.16, 116.16, 110.68 and 43.22 ppm.
ESI mass m/z = 418 [M(79Br) + H]+, 420 [M(81Br) + H]+.

1-Benzyl-3-((E)-(3-bromobenzylidene)hydrazono)indolin-2-one (6e)

Orange solid (52%) mp = 173–174 ◦C. IR (KBr): νmax (cm−1): 2920 (C-H aliphatic), 1720 (C=O),
1624 (C=N), 1573 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 4.97 (s, 2H, N-CH2-Ph), 7.01 (d, J = 8.4, 1H,
ArH), 7.09 (t, 1H, ArH), 7.25 (m, 1H, ArH), 7.24–7.38 (m, 4H, ArH), 7.41 (t, 1H, ArH), 7.54 (t, 1H, ArH),
7.79 (d, J = 8.4, 1H, ArH), 7.86 (d, J = 7.8, 1H, ArH), 8.02 (d, J = 7.8, 1H, ArH), 8.12 (s, 1H, ArH), 8.60
(s, 1H, N=CH) ppm. 13C NMR (DMSO-d6, 150 MHz: δ 163.60, 158.67, 149.59, 145.61, 136.43, 136.10,
135.22, 134.12, 132.07, 131.88, 129.21, 129.10, 128.01, 127.73, 127.66, 123.65, 122.86, 116.20, 110.67 and
43.25 ppm. ESI mass m/z = 418 [M(79Br) + H]+, 420 [M(81Br) + H]+.

1-Benzyl-3-((4-bromobenzylidene)hydrazono)indolin-2-one (6f)

Orange solid (68%) mp = 216–217 ◦C. IR (KBr): νmax (cm−1): 2922 (C-H aliphatic), 1720 (C=O),
1602 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 4.95 (s, 2H, N-CH2-Ph), 6.85 (d, J = 7.2, 1H, ArH), 7.05
(t, 1H, ArH), 7.22–7.42 (m, 6H, ArH), 7.76 (d, J = 7.8, 2H, ArH), 7.9 (d, J = 7.8, 3H, ArH), 8.60 (s, 1H,
N=CH) ppm. 13C NMR (DMSO-d6, 150 MHz: δ 163.67, 159.89, 149.91, 145.53, 136.42, 134.18, 132.94,
132.77, 131.15, 129.19, 128.01, 127.70, 126.34, 123.60, 116.26, 110.61 and 43.20 ppm. ESI mass m/z = 418
[M(79Br) + H]+, 420 [M(81Br) + H]+.
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1-Benzyl-3-((2-methyl benzylidene)hydrazono)indolin-2-one (6g)

Orange solid (60%) mp = 176–177 ◦C. IR (KBr): νmax (cm−1): 2920 (C-H aliphatic), 1716 (C=O),
1624 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 2.53 (t, 3H, Ph-CH3), 4.96 (s, 2H, N-CH2-Ph), 7.0 (d,
J = 7.8, 1H, ArH), 7.07 (t, 1H, ArH), 7.23–7.41 (m, 8H, ArH), 7.45 (t, 1H, ArH), 7.95 (d, J = 7.8, 1H, ArH),
8.08 (d, J = 7.2, 1H, ArH), 8.85 (s, 1H, N=CH) ppm. 13C NMR (DMSO-d6, 150 MHz: δ 163.80, 159.92,
149.81, 145.45, 139.86, 136.46, 134.04, 132.44, 131.80, 131.72, 129.19, 128.91, 128.07, 128.00, 127.71, 127.09,
123.54, 116.33, 110.59, 43.19 and 19.59 ppm. ESI mass m/z = 354 [M + H]+.

1-Benzyl-3-((3-methylbenzylidene)hydrazono)indolin-2-one (6h)

Pale orange solid (60%) mp = 138–139 ◦C. IR (KBr): νmax (cm−1): 2920 (C-H aliphatic), 1718 (C=O),
1670 (C=N), 1606 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 2.38 (s, 3H, Ph-CH3), 4.95 (s, 2H, N-CH2-Ph),
7.0 (d, J = 8.4, 1H, ArH), 7.07 (t, 1H, ArH), 7.22–7.42 (m, 7H, ArH), 7.45 (t, 1H, ArH), 7.76 (s, 1H, ArH),
7.78 (d, J = 7.8, 1H, ArH), 7.95 (d, J = 7.2, 1H, ArH), 8.85 (s, 1H, N=CH) ppm. 13C NMR (DMSO-d6,
150 MHz: δ 163.74, 161.14, 149.83, 145.45, 139.06, 136.46, 134.03, 133.75, 133.43, 129.98, 129.62, 129.19,
129.13, 129.10, 127.99, 127.71, 126.45, 123.60, 117.81, 116.34, 110.57, 43.19 and 21.35 ppm. ESI mass m/z
= 354 [M + H]+.

1-Benzyl-3-((4-methylbenzylidene)hydrazono)indolin-2-one (6i)

Pale red solid (82%) mp = 191–192 ◦C. IR (KBr): νmax (cm−1): 2920 (C-H aliphatic), 1722 (C=O),
1683 (C=N), 1602 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 2.38 (s, 3H, Ph-CH3), 4.95 (s, 2H, N-CH2-Ph),
6.99 (d, J = 7.8, 1H, ArH), 7.07 (t, 1H, ArH), 7.22–7.41 (m, 8H, ArH), 7.87 (d, J = 8.4, 2H, ArH), 8.00 (d,
J = 7.2, 1H, ArH), 8.65 (s, 1H, N=CH) ppm. 13C NMR (DMSO-d6, 150 MHz: δ 163.83, 161.88, 150.09,
145.40, 143.17, 136.48, 133.96, 131.14, 130.33, 129.53, 129.19, 127.98, 127.70, 123.55, 116.43, 110.54, 43.18
and 21.74 ppm. ESI mass m/z = 354 [M + H]+.

1-Benzyl-3-((4-(methylthio)benzylidene)hydrazono)indolin-2-one (6j)

Orange solid (65%) mp = 177–178 ◦C. IR (KBr): νmax (cm−1): 2926 (C-H aliphatic), 1720 (C=O),
1606 (C=N). 1H NMR (DMSO-d6, 600 MHz: δ 2.49 (s, 3H, S-CH3), 4.97 (s, 2H, N-CH2-Ph), 7.01 (d,
J = 7.8, 1H, ArH), 7.09 (t, 1H, ArH), 7.27 (m, 1H, ArH) 7.3–7.42 (m, 5H, ArH), 7.43 (d, J = 8.4, 2H, ArH),
7.92 (d, J = 7.8, 2H, ArH), 8.04 (d, J = 7.2, 1H, ArH), 8.70 (s, 1H, N=CH) ppm. 13C NMR (DMSO-d6,
150 MHz: δ 163.89, 162.07, 150.20, 145.41, 144.96, 136.51, 133.95, 130.01, 129.88, 129.20, 127.99, 127.72,
126.07, 123.55, 116.50, 110.54, 43.20 and 14.50 ppm. ESI mass m/z = 386 [M + H]+.

2.3. Antimicrobial Evaluation

Different organisms were selected to cover the Gram-positive and Gram-negative bacteria; namely
Staphylococcus aureus ATCC 29213 and Bacillus subtilis ATCC 3366 as Gram-positive, Escherichia coli
ATCC 25922, Klebsiella pneumoniae ATCC 13883, Salmonella typhi ATCC 25566 and Pseudomonas
aeruginosa ATCC 27853 as Gram-negative microorganisms. Antifungal effect was investigated using
Candida albicans NRRL Y-477. Disc diffusion method was used as the method of the microbiological
study, where the standard antibiotic discs were Ampicillin 10 µg/disc, erythromycin 10 µg/disc and
anti-fungal fluconazole. The negative control was DMSO (100%). The result was collected to estimate
the existence of antibacterial efficiencies of the prepared compounds depending on the criterion
procedure by Bauer et al [34]. Bacterial culture, at first, which is adjusted to 0.5 McFarland standards,
was applied to Mueller Hinton agar plates in-house. After that, the plates were dried for 15 min. and
then applied for the sensitivity test. The discs were impregnated with the tested compounds on the
MH agar surface together with the control antibiotic and the negative control and incubated at 37 ◦C
for 24 h. After incubation, the plates were examined for any inhibition zone. To ensure reliability of
the result, the test was repeated three times.
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2.4. Antiproliferative Assay

A549 and Hela cells (Produced from ATCC, Rockville, MD, USA) were cultured in DMEM
(Dulbecco’s Modified Eagle Medium), supplemented with 10% FBS, 100 mg/mL of streptomycin and
100 U/mL of penicillin at 37 ◦C in a 5%-CO2 humidified atmosphere. Cell cytotoxicity assay was done
by MTT method [35]; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Concisely,
cells were seeded in 96-well tissue culture plates and incubated for 48 h at 37 ◦C, 5% CO2. The culture
medium was removed and replaced with fresh medium containing the synthesized compounds in
different concentrations to the wells and incubated for another 24 h. Thereafter, the MTT solution
(1 mg/mL) was added and incubated for 3 h. To dissolve the reduced MTT crystals, one hundred
microliters of ethanol was added to each well, then, the optical density of each well was measured at
492/630 nm with enzyme immunoassay instrument.

2.5. In Silico ADME Prediction Analysis

In this experiment, in silico ADME analysis was done in QikProp module of Schrodinger
Maestro [36] where the important physiological descriptors like predicted IC50 for blocking hERG K+

channel in vitro, predicted octanol or water partition coefficient [log P(o/w)], number of hydrogen
bond acceptors (HBA), number of hydrogen bond donors (HBD), predicted aqueous solubility (logS),
MDCK cell permeability (MDCK), blood–brain partition coefficient (logBB), percentage human oral
absorption rate, etc. were analyzed.

3. Results and Discussion

3.1. Synthesis of 6a–j

The synthetic pathway of the compounds (6) is illustrated in Scheme 1. N-benzylisatin (3) was
prepared using our previously reported method [31] by heating same equivalent of isatin (1) and
benzyl bromide (2) at 80 ◦C in dimethylformamide (DMF) for 12 h. N-benzylisatin monohydrazone
(4) also was prepared using previously reported hydrazone formation method [27,32,33,37] using 1.2
equivalent of hydrazine hydrate and N-benzylisatin (3) at refluxing condition for 3–4 h in alcoholic
solution (MeOH/EtOH). Designed N-benzylisatin-aryl hydrazones (6a–j) were synthesized by reacting
compound 4 with substituted aryl aldehydes (5a–j) in absolute ethanol in presence of catalytic amount
of glacial acetic acid [27]. The choice of the substituents and its positions on the aromatic ring of
benzaldehyde is to offer various electron withdrawal and donation on the aromatic ring which will, in
turn, give different degrees of electron density on the biologically active parts of isatin molecule.

Scheme 1. Synthesis of N-benzylisatin-aryl hydrazones (6a–j).
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3.2. Biological Evaluation

3.2.1. Antimicrobial Evaluation of 6a–j

Synthesized N-benzylisatin-aryl hydrazones (6a–j) were evaluated for their antibacterial activity
against two Gram-positive Staphylococcus aureus ATCC 29,213 and Bacillus subtilis ATCC 3366, four
Gram-negative, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Salmonella typhi ATCC
25,566 and Pseudomonas aeruginosa ATCC 27,853 bacterial strains. As expected, the result of the
antibacterial evaluation revealed no effect of these compounds (6a–j) on selected strains of bacteria
in concentration up to 100 µg/disc (where no significant inhibition zones were detected). In case of
antifungal activity, no inhibition zone was detected against Candida albicans NRRL Y-477. Excitingly,
our hypothesis matched with the antimicrobial data of the evaluated compounds 6a–j, which are all
having low molecular weight (353–418 Da), conforming to O’Shea and Moser’s findings. In addition,
the antimicrobial data of 6a–j also meet the rule of five (RO5) with logP value of 9.36–11.8 (please see
Section 3.4), which is far more than to have anti-microbial activity. In case of antifungal activity, there
were no inhibition zones detected against Candida albicans NRRL Y-477 either.

3.2.2. Antiproliferative Activity of 6a–j

The antiproliferative activity of compounds 6a–j are listed in Table 1 as values of IC50. All the
tested compounds displayed excellent antiproliferative activity against non-small cell lung cancer
cell lines ‘A549’ and human cervical cancer cells lines ‘HeLa’ tested. Among them, compound 6c
displayed the highest antiproliferative activity against the cell lines ‘A549’ (4.35 µM) and ’Hela’ (4.09
µM). Whereas positive control gefitinib showed less antiproliferative activity against the cell lines
‘A549’ (15.23 µM) and ‘Hela’ (7.35 µM). Besides compound 6c, another three bromo derivatives of
N-benzylisatin-aryl hydrazones (6d, 6f and 6g) showed excellent antiproliferative activity, which is
comparable to the control gefitinib. Detail explanations and SARs study are given below.

Table 1. Antiproliferative activity of N-benzylisatin-aryl hydrazones (6a–j).

Compound

IC50 ( µM)

A549 Hela

4 – 14 ± 2.15 46 ± 1.30
6a 4-N(CH3)2 23.7 ± 0.69 25.1 ± 0.95
6b 4-Cl 22 ± 1.11 14.8 ± 0.94
6c 4-OH 4.35 ± 0.05 4 ± 0.09
6d 2-Br 7.3 ± 0.52 6.7 ± 0.17
6e 3-Br 41 ± 1.20 9.1 ± 0.35
6f 4-Br 7.30 ± 0.03 7.4 ± 0.20
6g 2-CH3 7.5 ± 0.11 7.7 ± 0.21
6h 3-CH3 8.4 ± 0.25 13.4 ± 0.35
6i 4-CH3 17 ± 0.70 18.5 ± 0.65
6j 4-SCH3 14.6 ± 0.53 9 ± 0.86

Gefitinib – 15.2 ± 0.48 7.3 ± 0.42

Data represent means ± SD obtained from three different experiments. Cell lines used as follows,
non-small cell lung cancer cell lines ‘A549’ and human cervical cancer cells lines ‘HeLa’. Gefitinib was
used as positive controls.
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3.3. Structure Activity Relationships (SARs) of 6a–j

The compound, namely (E)-1-benzyl-3-hydrazonoindolin-2-one (4) showed moderate
antiproliferative activity (14.15 µM) against the non-small cell lung cancer cell lines ‘A549’ similar to
that of gefitinib (15.23 µM), but six-fold less active against human cervical cancer cells lines ‘HeLa’
(46.03 µM). Compound 4 reacted with 4-substituted aryl aldehydes forming compound 6a having
4-(N,N-)-dimethyl group (6a), chloro group (6b) and methyl group (6i) decreased the antiproliferative
activity than the gefitinib against both cell lines tested. While substituted by methylthio group (6j)
shows similar antiproliferative activity comparing gefitinib. Interestingly, as depicted in Table 2, entry
6c, substituted by hydroxy group at 4-position showed higher antiproliferative activity which is around
four fold than the gefitinib against non-small cell lung cancer cell lines ‘A549’ (4.35 µM) and two fold
higher than the HeLa cell lines (4.09 µM). In case of bromo substituents at the 2- and 4-positions of the
aryl ring, the compounds 6d and 6f, respectively, the antiproliferative activity dramatically increased
more than two-fold for A549, and similar for HeLa cell lines in comparison to the gefitinib. While
addition at the 3-position by a bromo group (6e) and by a methyl group (6h) of the aryl ring showed
similar or less antiproliferative activity comparing to gefitinib. Interestingly, the methyl group at
2-position (6g) increased the activity by two-fold compared to gefitinib, against A549 and similarly
against HeLa cell lines. In conclusion, ortho and para substitution by bromo and hydroxy group
proved to be the most active potential agents for non-small cell lung cancer cell lines ‘A549’ among the
compound tested.

Table 2. Analysis of drug likeness properties and pharmacokinetic properties by QikProp for 6a–j.

No. MW b HBD c HBA d logPo/w e logS f logP HERGg Caco-2 h BBB i MDCKj HOA(%) k

6a 382 0 6.5 4.77 −5.76 10.2 −7.35 3189 −0.36 1733.1 100
6b 374 0 5.5 4.86 −5.60 9.4 −7.16 3720 −0.02 5054.6 100
6c 355 1 6.25 3.82 −5.07 11.8 −7.13 1102 −0.83 549.7 100
6d 418 0 5.5 4.87 −5.58 9.5 −7.19 3656 −0.04 4745.7 100
6e 418 0 5.5 4.93 −5.74 9.4 −7.20 3637 −0.02 5296.9 100
6f 418 0 5.5 4.93 −5.72 9.4 −7.19 3719 −0.01 5433.8 100
6 g 353 0 5.5 4.61 −5.30 9.4 −7.14 3754 −0.19 2067.3 100
6 h 353 0 5.5 4.67 −5.46 9.4 −7.17 3638 −0.21 1998.3 100
6i 353 0 5.5 4.67 −5.44 9.3 −7.16 3734 −0.20 2054.9 100
6j 385 0 6.0 5.01 −5.93 9.7 −7.38 3479 −0.21 3246.6 100
Gl 447 1 7.7 4.37 −5.23 10.8 −7.12 1053 0.31 2313.1 100

b Molecular weight in Daltons (acceptable range: <500); c Hydrogen bond donor (acceptable range: ≤5); d Hydrogen
bond acceptor (acceptable range: ≤10); e Predicted octanol/water partition coefficient (acceptable range: −2–6.5);
f Predicted aqueous solubility, S in mol/dm−3 (acceptable range: −6.5–0.5); g Predicted IC50 value for blockage of
hERG K+ channels (concern: below −5); h Caco−2 value, permeability to Caco−2 (human colorectal carcinoma) cells
in vitro; I Blood−brain barrier permeability (acceptable range: ~−0.4); j Predicted apparent MDCK cell permeability
in nm/sec, QPPMDCK= >500 is great, <25 is poor; k Predicted human oral absorption on 0% to 100% scale (<25% is
poor and >80% is high); l G = Gefitinib.

3.4. In Silico Drug Likeness Property Analysis

In modern drug discovery approaches, evaluation of absorption, distribution, metabolism and
excretion (ADME) of drug candidates impose significant value to the rational drug design. In vitro
and in vivo ADME prediction has now become faster and more accurate with the computational
chemistry tools which has been developed recently and aids the pharmaceutical industries to screen
many compounds within a very short time [38]. In this experiment, we analyzed the predicted ADME
values of the designed compounds (6a–j) and are summarized in Table 2. Since high molecular weight
compounds are always less effective in terms of intestinal absorption, our synthesized compounds’
(6a–j) molecular weight (353–418Da) of this study are less than the established drug gefitinib (447Da),
which supports the established parameters [9,39]. Subsequently, the studied compounds showed
recommended values for hydrogen bond donor (<5) and acceptor (<10). Gefitinib showed HBD value
of 1 and HBA value of 7.7 whereas the studied compounds showed HBD values of 0 (except 6c having
HBD 1) and HBA values of maximum 6.5 (compound 6a), 6.25 (compound 6c), 6.0 (compound 6j)
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and other compounds 6b, 6d–6i having HBA values of 5.5, which indicates superior values to the
gefitinib (HBA values is 7.7). In 2002, Jorgensen and Duffy established a parameter to check the
bioavailability of the drug compound which can be determined by octanol/water partition coefficient and
solubility scoring where the recommended values are −2–6.5 and −6.5–0.5 mol/dm−3, respectively [40].
Compounds of this study showed scoring within the reference values including gefitinib. Octanol/water
partition coefficient and solubility score in between 3.82–5.01 and −5.93–−5.07, respectively. The
hERG K+ channel blockers are potentially toxic for the heart and thus the recommended range for
predicted log IC50 values for blockage of hERG K+ channels (loghERG) is > −5 [41]. Intriguingly, all
the compounds of this study showed higher value for loghERG score (>−7.13) than gefitinib (−7.12)
which proved their less toxicity than gefitinib. The Caco-2 cell, considered as the reliable in vitro
models to estimate oral drug absorption and transdermal delivery [42], was high for all compounds
except gefitinib and compound 6c, which signifies the improved and well oral drug absorption and
transdermal delivery efficiency of the studied compounds than gefitinib. The blood–brain barrier
separates CNS from blood and a successful compound must pass through the blood stream [43] which
depends on several factors such as molecular weight which must be below 480. Since our synthesized
compounds have less molecular weight than the recommended values therefore its showed significant
result. Madin–Darby canine kidney (MDCK) cell permeability is considered as the measurement of the
blood–brain barrier permeability where greater than 500 is of great value and less than 25 indicates very
poor result according to Jorgensen’s rule of 3 [44]. Compounds 6b, 6d, 6e, 6f and 6j gave much higher
MDCK value than gefitinib while others showed around similar values except 6c. The synthesized
compounds also gave a predicted human oral absorption rate of 100%. Taken together, all the designed
compounds of this study showed higher predicted ADME values than gefitinib which can be tested
further by in vitro and in vivo experiments to establish successful drug candidates.

4. Conclusions

A series of novel N−benzylisatin−aryl−hydrazones were designed and synthesized with good to
moderate yields for their antimicrobial and antiproliferative activity evaluation, for the development
of potent anticancer therapeutics with no or minimal side effects. Six bacterial strains and a fungal
strain were used for the antimicrobial screening of the synthesized compounds and no inhibitory
effect was found on different microbes in concentration up to 100-µg/disc. On the other hand, four
compounds showed two−to−four-fold antiproliferative activity than the FDA approved first−line
treatments for lung cancer drug gefitinib. For example, IC50 of compound 6c is 4.35 µM, whereas
gefitinib shows 15.23-µM concentration against non−small cell lung cancer cell lines ‘A549.’ In case
of HeLa cell lines, antiproliferative activity of compound 6c also showed two-fold higher than the
gefitinib. The strong inhibitory effect of 6c, among the tested compounds, on the growth of cancerous
cells accompanied by their complete safety on the growth of microbial cells, indicate a high level of
target selectivity and a unique mechanism of action. Higher predicted ADME values were obtained
than the known gefitinib. In our observation, this N−benzylisatin−aryl−hydrazones can be a potential
agent for anticancer therapeutics. Studies on the mechanism of action of antiproliferative activity of
these derivative are ongoing and the results will be explored in due courses.
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