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Abstract: The shear buckling of web plates and lateral–torsional buckling are among the major failure
modes of plate girders. The importance of the lateral–torsional buckling capacity of plate girders was
further evidenced when several plate girders of a bridge in Edmonton, Alberta, Canada failed in 2015,
because insufficient bracing led to the lateral buckling of the plate girders. In this study, we focus on
the optimisation of the cross-sections of plate girders using a well-known and extremely efficient
meta-heuristic optimisation algorithm called the harmony search algorithm. The objective of this
optimisation is to design the cross-sections of the plate girders with the minimum area that satisfies
requirements, such as the lateral–torsional buckling load and ultimate shear stress. The base geometry,
material properties, applied load and boundary conditions were taken from an experimental study
and optimised. It was revealed that the same amount of load-carrying capacity demonstrated by this
model can be achieved with a cross-sectional area 16% smaller than that of the original specimen.
Furthermore, the slenderness of the web plate was found to have a decisive effect on the cost-efficiency
of the plate girder design.
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1. Introduction

Plate girders are prone to buckling under various load combinations because they are made of
thin plate elements. The web part of these members carries the shear loads; therefore, shear buckling
is a critical phenomenon affecting the web plates of I-shaped plate girders. The out-of-plane shear
buckling resistance of plate girders is often increased by applying transverse stiffeners or corrugated
webs. While the web of the plate girders is the primary element resisting the shear buckling, the flanges
are the primary elements carrying the bending and torsional loads. Therefore, in addition to the
shear buckling analysis, the design of plate girders also involves the lateral–torsional buckling of
structural members. Figure 1 illustrates an example of lateral plate girder buckling during the process
of installation on a bridge.

The design of plate girders with the highest possible load-carrying capacity within cost and material
restraints consists of finding the optimal combination of plate thicknesses, web plate slenderness,
and stiffener spacing [1–3]. Furthermore, to obtain an adequate dimension of steel I-girders, both lateral–
torsional and shear buckling should be considered in all construction stages.
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Figure 1. Lateral buckling of bridge plate girders in Edmonton, Alberta, Canada [4].

In this study, the flange and web dimensions of a doubly symmetric I-shaped plate girder are
optimised. For the optimisation, a novel meta-heuristic optimisation algorithm called the harmony
search algorithm is applied. Optimised cross-sectional dimensions were obtained with a satisfactory
amount of computational overhead leading to a significant reduction in the cross-sectional area.

1.1. Shear Capacity

Steel plates under shear loads are known to exhibit a significant amount of load-carrying capacity in
the post-buckling regime [5]. This structural behaviour was thoroughly investigated by the researchers
and attributed to the existence of tensile stresses acting in the diagonal direction of the plates after
the onset of shear buckling [2,6,7]. These areas along the diagonal axis of the web plate where tensile
stresses acts can also be seen in Figure 2. Their research led to the development of various models for the
prediction of the post-buckling shear capacity of web plates based on the concept of a tension field along
the plate diagonal. Tension field theory is often used as an umbrella term for these models. This theory
is based on the observation that the stiffeners of a plate girder take up the compressive stresses resulting
from the shear forces, and the web plate resists buckling owing to shear forces produced by tensile
stresses forming along the diagonal axis of the plate [8,9]. Among the models of tension field theory,
the theory developed by Basler [6] gained the most widespread acceptance in the research community;
this model was also described in [10]. On the other hand, the model developed by Porter [11] and the
rotated stress field method developed by Höglund [12] are included in the European design codes [13].
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Figure 3 shows a schematic of the tension field on a girder panel surrounded by flanges and
transverse stiffeners, where s denotes the width of the tension field of a web plate under the ultimate
postbuckling shear stress τu. The plate in Figure 3 represents the unstiffened part of a plate girder web
and is assumed to be simply supported (SS) at all edges. Basler [6] developed an equation that predicts
τu. This equation was later modified by Fujii [15], Gaylord [16], and Selberg [17] as follows:

τu = τcr + σy

(
1−

τcr

τy

)(
sinθd

2 + cosθd

)
. (1)
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Once τu is known, the ultimate postbuckling shear force Vu can be obtained as Vu = τuDtw,
where D is the depth of the plate (see Figure 3), and tw is the thickness of the web plate.

In Equation (1), θd is the angle of the web panel diagonal, σy is the yield strength of the plate
material, from which the shear yield strength τy can be obtained as τy = 0.6σy. The elastic shear
buckling strength τcr in Equation (1) is calculated as follows [18]:

τcr =
kπ2E

12(1− ν2)
(

D
tw

)2 , (2)

where E is the modulus of elasticity, ν is the Poisson’s ratio, D/tw is the slenderness ratio, and k is the
shear buckling coefficient, which can be calculated as a function of a/D (span-to-depth ratio) and the
assumed boundary conditions of the web plate. The equation for k for simply supported boundary
conditions is as follows [19]:

k = 5.0 +
5.0

(a/D)2 , (3)

where a is the clear distance between transverse stiffeners.

1.2. Lateral–Torsional Buckling

Another critical failure mode that must be considered in the design of large I-girders is the
lateral–torsional buckling. Most methods developed for the prediction of the lateral–torsional buckling
capacity are only applicable in the case of a uniform bending moment distribution and require a
moment gradient factor for the adjustment of the predicted capacities to the case of non-uniform
moment distributions [20].
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The moment gradient factor Cb incorporates the variation of the bending moment along unbraced
sections of the I-girder into the buckling load capacity prediction. According to Wong and Driver [21],
Cb can be calculated for any non-uniform moment distribution along an unbraced span as follows:

Cb =
4Mmax√

M2
max + 4M2

A + 7M2
B + 4M2

C

≤ 2.5. (4)

where Mmax is the absolute value of the maximum bending moment, and MA, MB, and MC are the
absolute values of the bending moments at lengths of a/4, a/2, and 3a/4 along the unbraced span
of the I-girder, respectively, where a denotes the total length of the unbraced span. In this study,
the moment distribution between two stiffeners is assumed to be linear, corresponding to the unbraced
span of the girder beam shown in Figure 2. Once Cb is known, the critical bending moment for the
lateral–torsional buckling can be calculated as follows:

Mcr = CbM0cr, (5)

where M0cr is the critical bending moment of an unbraced span under uniform bending moment,
which can be expressed as [22]:

M0cr =
π
a

√
EIy

(
GJ +

π2ECw

a2

)
. (6)

where G is the shear modulus, E is the modulus of elasticity, J is the St. Venant torsion constant, Iy is
the moment of inertia with respect to the minor axis of the I-section, and Cw is the warping constant.
The equations for the calculation of J and Cw are given in the Appendix A.

2. Method

The optimisation of the I-girder involves the minimisation of the cross-sectional area,
while maintaining the critical lateral–torsional buckling load Mcr and the ultimate post-buckling
shear stress τu above certain predetermined values. While, in practice, plate girders are often designed
by trial and error, the application of optimisation techniques can lead to better structural performance
and more economical designs. The parameters that can be varied in the process of optimisation are the
flange thickness t f , flange width b f , web plate thickness tw, depth of the web plate D, and unbraced
length between transverse stiffeners a. To start this process, certain constraints need to be placed on
the design parameters and the load-carrying capacity of the structure. These constraints ensure that
the critical lateral–torsional buckling load and the ultimate post-buckling stress obtained from the
optimisation process are greater than certain threshold values. In this study, these threshold values
are chosen to be the values of the bending moment capacity and the ultimate shear stress of the
girder beam tested by Mamazizi et al. [14]. The main finding of the tests carried out by Mamazizi
et al. [14] was that the ultimate shear stress equations of Eurocode 3 are not conservative for certain
ranges of web plate slenderness. In the next step, the design parameters for which constraints are
necessary are identified. One of these design parameters is the slenderness of the web plate, which has
a major impact on the ultimate post-buckling shear strength of the girder plate. The effect of this
parameter on the ultimate post-buckling shear resistance of plate girders has been studied extensively
both experimentally and numerically [23–25]. According to their slenderness ratio, plate girders are
classified as compact, noncompact, or slender; note that the slenderness of both the web and flange
needs to be considered [26]. Compact sections are defined as sections that allow the full development
of the plastic moment prior to the local buckling of the flange or the web, whereas the local buckling of
a non-compact section can occur before the full development of the plastic moment. Slender sections
are sections that would fail due to local buckling before reaching the yield stress. Figure 4 shows the
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classification of the beam sections according to their slenderness, together with the variation of the
corresponding nominal moment.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 14 
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In this study, the girder beam section is optimised under different slenderness constraints. In the
first optimisation attempt, the slenderness of the section is chosen according to the girder tested by
Mamazizi et al. [14]. To apply this constraint, the limits of the slenderness as per AISC [19] are used.
The slenderness limits for the flange and web are, respectively,

λ f =
b f

2t f
≤

√
E
σy

, (7)

λw =
D
tw
6 5.7

√
E
σy

. (8)

A section is classified as slender if any one of these limits is violated. According to these slenderness
limits, the girder used as a reference in this study has a slender web, but its flange is not slender. In the
second optimisation attempt, both the flange and the web are constrained to be noncompact.

Furthermore, the stiffener spacing is constrained to be not less than 750 mm, which is equal to the
stiffener spacing considered in the experimental study of Mamazizi et al. [14]. Further constraints are
imposed on the lateral–torsional buckling load and the ultimate shear stress capacity of the section.
Based on the experimental studies of the girder plates conducted by Mamazizi et al. [14], the Mcr and
τu values of the section are not allowed to be less than 11.83× 1010 Nmm and 64 MPa, respectively.
Under these conditions, the best and most optimised combination of the flange and web dimensions is
obtained through the harmony search algorithm. Table 1 lists the experimental and optimised values
of the cross-sectional dimensions and the stiffener spacing.

Table 1. Geometric and material properties used in the experimental study by Mamazizi et al. [14].

tf [mm] bf [mm] tw [mm] D [mm] a [mm] fyf [MPa] fyw [MPa]

15 250 2 800 750 235 210
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Harmony Search Method

The use of meta-heuristic techniques for optimisation problems in various fields of science
and engineering has increased in recent years, especially in structural engineering. For example,
the harmony search and flower pollination algorithms have been employed for the optimum design
of truss systems [27,28], steel frames [29], cylindrical reinforced concrete walls [30], plane stress
systems [31], PID controlled active tuned mass damper [32], retaining walls [33], and for the stacking
sequence optimisation of laminated composite plates [34]. In addition to harmony search and flower
pollination, techniques such as random forest [35,36], gene expression programming [37], supervised
machine learning [38], neuro-swarm optimisation [39] and the imperialist competitive algorithm [40]
have also been applied to various engineering problems.

The harmony search algorithm was developed by Geem et al. [41] and has been widely adopted
for the optimisation of a water network design [42], a slope stability analysis [43], heat and power
systems [44], job shop scheduling [45], team orienteering [46], and vehicle routing [47]. The method was
initially designed with discrete valued data for musical composition and was then further developed
for application to the optimisation of continuous valued solution vectors, e.g., those encountered in
the dimensioning of structural components. A parameter-setting-free version of the harmony search
algorithm was developed by Geem and Sim [48]; this algorithm is more accessible and efficient because
the proper selection of algorithm-specific parameters is a difficult task.

The harmony search optimisation algorithm requires a predetermined number of design variables
and an objective quantity to be maximised or minimised. The design variables of a doubly symmetric
plate girder are the width of the flange (b f ), thickness of the flange (t f ), depth of the web plate (D),
thickness of the web plate (tw), and stiffener spacing (a), and the objective quantity to be minimised is
the cross-sectional area of the girder beam. The harmony search optimisation process starts with the
generation of a certain number of design variable combinations, each of which is called a candidate
solution vector. This initial population of candidate solutions is randomly generated within predefined
design constraints. From any given population of solutions, the solution vectors that deliver the best
and worst results are identified. In the next step, based on certain rules, a new candidate solution is
generated and compared to the members of the previously generated population. If the new candidate
solution performs better than the worst performing solution vector in the population, the newly
generated solution vector is incorporated into the population and the previous worst-performing
solution vector is removed from the population. This procedure is repeated for a predetermined
number of iterations, and the convergence of the result is observed.

The process of generating the new candidate solution vector relies on the harmony memory
consideration rate (HMCR) and the pitch adjustment rate (PAR). In this analysis, these parameters
were treated as variable values and calculated using HMCR = 0.5 ∗ (1− iter/maxiter) and
PAR = 0.05 ∗ (1− iter/maxiter), respectively, where iter denotes the index of the current harmony
search iteration, and maxiter denotes the stopping criterion for this index. Once HMCR and PAR are
known, the new solution vector is calculated as follows:

k = [int](rand ∗HMS),

xi,new =

{
xi,min + rand ∗ (xi,max − xi,min), i f HMCR > rand

xi,k + rand2 ∗ PAR ∗ (xi,max − xi,min), i f HMCR ≤ rand
(9)

where rand and rand2 are random numbers in the intervals (0, 1) and (−1/2, 1/2), respectively; HMS is
the total number of candidate solution vectors in the population; xi,k is the i-th design variable in the
k − th member in the population of candidate solution vectors; k is the integer value nearest to the
product rand ∗HMS; xi,min and xi,max are the minimum and maximum values that of the i− th variable
in the population, respectively.

In the initial step of randomly populating the design vectors as well as in the subsequent
iteration steps, certain constraints need to be imposed on the design variables. Besides the slenderness
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constraints given in Equations (7) and (8), the minimum sizes are defined for the flange and the web.
These geometric constraints are in the form of lower bounds for the flange, and web dimensions and are
chosen to be of the same order of magnitude as the specimen dimensions in the experiment conducted
by Mamazizi et al. [14]. These lower bounds are listed in Table 2.

Table 2. Lower bounds for the flange and web dimensions in the harmony search optimisation.

tf [mm] bf [mm] tw [mm] D [mm]

5 100 1 200

3. Results

The candidate solutions that delivered the optimum cross-sectional dimensions resulting in a
minimum area obtained with the harmony search algorithm converged. In the first attempt to optimise
the cross-sectional dimensions, the web was constrained to be slender, and the flange was constrained
to be noncompact in order to replicate the conditions of the experimental study [14]. In this case,
approximately 500 iterations were sufficient to reach convergence to an optimum solution with a
minimum area of the cross-section. Figure 5 shows the convergence of the minimum area among
the population of candidate solutions in the first 800 harmony search iterations. As can be seen from
the figure, the solution stabilises at a cross-sectional area of 5741 mm2 and stays at that level for the
remaining iterations. Although this optimised value of the cross-sectional area with a slender web is
approximately 63% of the area of the girder beam tested by Mamazizi et al. [14], it yields a slightly
greater bending moment capacity and an ultimate shear stress 11% greater than the experimental
specimen. A comparison of the experimental dimensions of the cross-section with the optimised
dimensions can be found in Table 3. An observation of the values listed in Table 3 shows that the
unbraced span length stayed unchanged after the optimisation, which was expected, owing to the
adverse effect of increasing this quantity on the lateral–torsional buckling capacity of the girder beam.
Furthermore, the optimised cross-section has greater web slenderness (D/tw) and flange slenderness
(b f /2t f ) values. From this observation, it can be inferred that the increased slenderness of the web
plate and the flanges can contribute to a more economical dimensioning of the cross-section under
some circumstances. The optimised cross section is also analyzed using the software package CUFSM
(Constrained and Unconstrained Finite Strip Method). The first buckling mode of the optimised cross
section together with the normal stress distribution can be seen in Figure 6.
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Table 3. Geometric and mechanical properties of the optimised cross-section with slender web.

bf [mm] tf [mm] D [mm] tw [mm] a [mm] Mcr [Nmm] τu [MPa] A [mm2]

Experimental value 250 15 800 2 750 1.1834 · 1011 64.017 9100
Optimised value 265.4 8.59 1182 1 750 1.1835 · 1011 70.98 5741

Difference [%] 6.16 −43 48 −50 0 0.008 11 −37
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slender web.

Although the optimised cross-section with a slender web delivers good results from an economical
point of view, the 1-mm-thick web of this optimal configuration is not practical. To obtain a better
solution, a second attempt at optimising the cross-sectional dimensions was made by confining the
slenderness value of both the web plate and the flange within the noncompact range. The harmony
search process for this second case can be seen in Figure 7. The outcome of this second attempt
was satisfactory. The optimised cross-sectional area was approximately 84% of that of the original
configuration with the same load-carrying capacity. Table 4 lists all the cross-sectional dimensions
of the original optimised specimens. It can be observed that the flange slenderness of the optimised
cross-section is approximately 2.5 times that of the original specimen. Nevertheless, this flange
slenderness remains in the noncompact range according to Equation (7). On the other hand, the web
slenderness of the optimised cross-section is 43% of that of the original specimen. This web slenderness
is also in the noncompact range according to Equation (8). The first buckling mode of the optimised
cross section with noncompact web together with the normal stress distribution can be seen in Figure 8.
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Table 4. Geometric and mechanical properties of the optimised cross-section with noncompact web.

bf [mm] tf [mm] D [mm] tw [mm] a [mm] Mcr [Nmm] τu [MPa] A [mm2]

Experimental value 250 15 800 2 750 1.1834× 1011 64.017 9100
Optimised value 374 8.97 399 2.31 750 1.1857× 1011 64.029 7629

Difference [%] 66 −54 −52 14 0 0.19 0.02 −16Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 14 
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seen in Figure 10. A minimum cross-sectional area of 7250 𝑚𝑚  could be reached after 347 harmony 
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Figure 8. Results of the analysis with finite strip method using the software package CUFSM for the
noncompact web.

Figure 9 shows a finite element model with the Huber–von Mises–Hencky stress distribution of
the optimised girder with the noncompact web. It can be observed that, under the concentrated load at
the mid-span, the local buckling of the web plate occurs near the top flange. It has been recommended
that plate girders should be designed with a span-to-depth ratio in the range of 10–12 [26]. This range
for the a/D ratio corresponds to a recommended range for the angle of the panel diagonal (θd) between
4.76◦ and 5.71◦. Considering this requirement, the optimised plate girder is suitable for span lengths of
up to 4.7 m.
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In order to extend the analysis to more cases, and to better understand the effect of moment
distribution on the structural performance, the harmony search process is repeated under the assumption
of constant distributed loading for a cross-section with a slender web and noncompact flange.
The moment gradient factor Cb is adjusted according to the new load case using Equation (4). In order
to incorporate the change in the value of Cb, the minimum bending moment capacity constraint was
also lowered accordingly. The outcome of the harmony search optimisation can be seen in Figure 10.
A minimum cross-sectional area of 7250 mm2 could be reached after 347 harmony search iterations.
The geometric properties of the optimised cross-section are listed in Table 5. It can be observed that
the optimised web plate has a decrease in depth, an increase in thickness and is less slender than the
original geometry, which is contrary to what was observed in the load case with concentrated load.



Appl. Sci. 2020, 10, 3639 10 of 14
Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 

 
Figure 10. Variation in the minimum cross-sectional area with slender web under distributed loading 
in the first 600 harmony search iterations. 

Table 5. Geometric properties of the optimised cross-section with slender web under distributed 
loading. 

 𝒃𝒇[𝒎𝒎] 𝒕𝒇[𝒎𝒎] 𝑫[𝒎𝒎] 𝒕𝒘[𝒎𝒎] 𝒂[𝒎𝒎] A [𝒎𝒎𝟐] 
Experimental 

value 250 15 800 2 750 9100 

Optimised value 263.83 11.26 492.21 2.66 750 7250 
Difference [%] 5.53 −25 −38 33 0 −20 

As can be seen from the presented results, the effect of slenderness on the structural performance 
is not clearly discernable. Figure 11 shows the results of a parametric study that was carried out in 
order to visualise the effect of changing the web plate slenderness on the structural behaviour. Using 
the equations in Section 1.1, the ultimate shear stress 𝜏  was calculated for different values of web 
plate slenderness 𝜆 . Each curve in Figure 11 represents a different web plate thickness, while the 
flange slenderness and flange thicknesses are kept constant. It can be observed that, at small web 
thicknesses, increasing the web slenderness has a favourable effect on the ultimate shear stress, 
whereas, at higher web thickness values, slenderness has the opposite effect. 

 
Figure 11. The ultimate shear stress variation for different values of web slenderness. 

Figure 10. Variation in the minimum cross-sectional area with slender web under distributed loading
in the first 600 harmony search iterations.

Table 5. Geometric properties of the optimised cross-section with slender web under distributed loading.

bf [mm] tf [mm] D [mm] tw [mm] a [mm] A [mm2]

Experimental value 250 15 800 2 750 9100
Optimised value 263.83 11.26 492.21 2.66 750 7250

Difference [%] 5.53 −25 −38 33 0 −20

As can be seen from the presented results, the effect of slenderness on the structural performance is
not clearly discernable. Figure 11 shows the results of a parametric study that was carried out in order
to visualise the effect of changing the web plate slenderness on the structural behaviour. Using the
equations in Section 1.1, the ultimate shear stress τu was calculated for different values of web plate
slenderness λw. Each curve in Figure 11 represents a different web plate thickness, while the flange
slenderness and flange thicknesses are kept constant. It can be observed that, at small web thicknesses,
increasing the web slenderness has a favourable effect on the ultimate shear stress, whereas, at higher
web thickness values, slenderness has the opposite effect.
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In addition to slenderness and the moment gradient factor, the effect of changing the angle of
the panel diagonal on the ultimate shear stress is also analyzed. The θd values in a wide range that
also contains the angles corresponding to the recommended range for the a/D ratio are used in the
calculations for τu. The results of this analysis are visualised in Figure 12. This visualisation clearly
shows the nonlinear relationship between τu and θd. Figure 12 shows that lowering θd has a favourable
effect on τu at small angles up to about 20◦. On the other hand, increasing θd beyond this threshold
value only slightly increases τu.
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4. Conclusions

The lateral–torsional buckling and shear capacity of plate girders are significant factors in the
design of plate girders. The buckling of plate girders used during the construction stage of the
replacement project of the 102 Avenue over Groat Road Bridge in Edmonton, Alberta, Canada (Figure 1)
is a recent example of the impact of these structural failure modes on infrastructures. In addition
to satisfy the serviceability requirements, structures should also be designed in an economical way.
In this study, it was demonstrated that by adequately dimensioning the cross-section of a girder beam,
its cost can be significantly reduced without compromising the structural performance. The harmony
search algorithm was utilised to optimise the cross-sectional dimensions under two different sets of
slenderness constraints. In the first set, the flange slenderness was kept in the noncompact range,
while the web was allowed to be slender. In the second set, the web slenderness was constrained in the
noncompact range. In addition to satisfying certain slenderness requirements, the cross-sections were
constrained to have buckling moments and ultimate shear stresses at least as high as the moment and
ultimate shear stress capacity of the specimen tested by Mamazizi et al. [14].

The optimisation under the first set of slenderness constraints resulted in a cross-sectional area
corresponding to 63% of the cross-sectional area of the experimental specimen. Despite this favourable
outcome, the 1-mm-thick web of this configuration was not practical. The following optimisation
attempt with the second set of slenderness constraints resulted in a cross-sectional area approximately
84% of the cross-sectional area of the experimental specimen. These two outcomes show that a suitably
optimised cross-section can lead to great savings in material and costs. However, without a rigorous
optimisation procedure, it is difficult to design a cross-section with suitable dimensions; it was observed
that either increasing or decreasing the slenderness of the web can lead to a better design. Further
research should be conducted to better understand the effects of the flange and web slenderness on the
structural performance. Furthermore, additional constraints should be placed on the design variables
to satisfy the requirements for the span-to-depth ratio.
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Appendix A

Torsional section properties of a doubly symmetric I-section [49]. St. Venant’s torsion constant:

J =
2bft3

f +
(
D + tf

)
t3
w

3

Warping constant:

Cw =

(
D + tf

)2
b3

f tf
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31. Kayabekir, A.E.; Toklu, Y.C.; Bekdaş, G.; Nigdeli, S.M.; Yücel, M.; Geem, Z.W. A Novel Hybrid Harmony

Search Approach for the Analysis of Plane Stress Systems via Total Potential Optimization. Appl. Sci. 2020,
10, 2301. [CrossRef]
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