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Abstract: Human living could become very difficult due to a lack of energy. The household sector
plays a significant role in energy consumption. Trying to optimize and achieve efficient energy
consumption can lead to large-scale energy savings. The aim of this paper is to identify the equipment
and property affecting energy efficiency and consumption in residential homes. For this purpose,
a hybrid data-mining approach based on K-means algorithms and decision trees is presented.
To analyze the approach, data is modeled once using the approach and then without it. A data set of
residential homes of England and Wales is arranged in low, medium and high consumption clusters.
The C5.0 algorithm is run on each cluster to extract factors affecting energy efficiency. The comparison
of the modeling results, and also their accuracy, prove that the approach employed has the ability to
extract the findings with greater accuracy and detail than in other cases. The installation of boilers,
using cavity walls, and installing insulation could improve energy efficiency. Old homes and the
usage of economy 7 electricity have an unfavorable effect on energy efficiency, but the approach
shows that each cluster behaved differently in these factors related to energy efficiency and has
unique results.
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1. Introduction

In today’s world, supplying energy is done through various carriers such as oil and gas
(and products derived from them), electricity and renewable energy. Given the limited resources
of energy and the population growth, the increasing annual consumption of energy affects life, the
economy, the environment, politics, and so on. So, managing energy is a complicated task and has
become an important issue in the modern world. The home section has the largest share of energy
consumption in most countries. As each house has its own behavior, energy consumption patterns
rely on several factors. Hence, decision making concerning the domestic sector’s energy management
and efficiency requires taking advantage of modern science capabilities to manage energy efficiency
and consumption.

Data mining science can extract useful knowledge which is hidden in the data. Using its methods
and algorithms, data mining techniques analyze huge amounts of data automatically [1,2]. In general,
data mining is the process of Knowledge Discovery in Databases (KDD). Knowledge obtained from
this fashionable science can be verified by conventional analysis [3]. As this science proves its potential
in solving versatile problems [4], using it to extract knowledge in domestic buildings for managing
energy is reasonable.
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Scholars aim to develop innovation changes in the field of energy, so many studies have been
conducted on the use of data mining science in energy management and efficiency. Energy performance
certificates (EPCs) measure energy performance and give recommendations on how to improve energy
efficiency [5,6]. They try to find inefficient building properties and improve them. In other words,
they help to locate properties whose energy performance is effective and better them to improve their
energy efficiency [7]. Pasichnyi et al. review existing applications of EPCs and present a method of
EPC data quality assurance using data analytics [8]. Developments on EPCs have been done using
data mining in recent years [9,10].

Some important insights related to the energy management requirement for buildings to save
energy have been presented in [11,12]. Also, data mining tasks that can be used to mine building-related
data have been shown in [13]. There are studies which focus on discovering factors which influence
energy. Yan analyzed the impact of psychological, family and contextual aspects on residential energy
consumption which indicate saving money, energy concern, and behavioral barriers which have a
major impact on residential energy consumption behavior [14]. Effective factors on home electrical
energy demand have been analyzed through developing a model using series prediction methods.
The result demonstrates that houses using pool pumps and ducted air-conditioning have an increased
electricity consumption, whereas houses with gas hot water systems have a lower power consumption
than homes that do not use these systems [15]. The adaptive neuro-fuzzy inference system (ANFIS)
has been used to discover major factors influencing energy consumption. This indicates that insulating
materials are the most important parameters in building energy consumption. Attributes such as
the type of materials and their thickness, wall structures, roofs and their ability to stay hot or cold,
the location of walls and windows and geographic area have a major impact on energy saving [16].
The use of unsupervised learning has been applied to discover electricity consumption patterns in
a Spanish public university. The authors found different clusters in which several buildings were
identified. Such clusters were interpreted and rules for saving energy were proposed [17].

Clustering data is the process of putting data in a group so that they have the greatest similarity and
are very dissimilar from data from other clusters. Many studies have been done in clustering [18–21].
Clustering is also used in the field of energy. The dataset has been classified into low, medium and high
energy demand categories to show the factors influencing heating and hot water. A detailed analysis
was performed using the k-means algorithm in the high consumption category. The output model
presents good energy demand patterns and optimal ways to design buildings. The average U-value of
the opaque envelope followed by the aspect ratio is the most important variable [22]. Characteristics of
energy consumption examined have used cluster analysis for 134 LEED-NC certified office buildings.
The buildings gathered into three clusters (low, medium and high) are very different and each one has
a special attribute. The lower U-value of the roof and a lower ratio of windows are the factors which
most influence a lower consumption. The HVAC system has a similar performance in all the clusters.
The internal process load has a significant impact on clusters [23]. A framework based on data mining
used CART classification and K-means clustering to analyze the pattern of energy consumption in a
large data set of flats. Four influencing attributes (aspect ratio, U-value of vertical opaque envelope
and windows, the average global efficiency of the system for space heating and DHW) were analyzed.
High consumption flats were clustered and a reference flat was identified. These can be used to propose
different energy retrofit actions [24].

The consumption of electricity and heating in six schools was studied using k-means clustering
and self-organizing maps to evaluate energy efficiency. The schools have different construction years,
areas, numbers of students and heating systems. Schools 1 and 4 have the highest cost of energy
on working days and schools 2 and 3 have the lowest cost of energy at weekends compared to the
others. The newest schools are generally better than the old ones in the field of energy efficiency [25].
A study of energy efficiency in 132 countries was estimated using a Data envelopment analysis
model and then K-Means clustering, which specifies whether countries in a cluster are in the field of
development or not. The results show that countries could develop energy efficiency by changing
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energy-related indicators [26]. A cluster analysis was used to analyze the regulations on energy
efficiency of buildings of South America and Europe. This showed that buildings located in a similar
climate zone but in different regions (countries) have different energy performances. It indicated that the
tendencies of energy performance are different between various countries’ regulations and the climate
zones. The results confirmed the ability of cluster analysis to highlight similarity patterns between
various regions of the same climate [27]. In the field of energy management systems, ISO 50001:2011,
a systematic approach to improve the energy performance, plays an important role in the energy
field. A study which classified, gathered, clustered and then applied data analysis techniques showed
strategic decisions for improving the energy performance. The idea is used in an oil refinery and
outputs of better energy management are shown [28]. Also in [29,30], efforts were made to develop
the energy efficiency in industrial buildings. A fuzzy clustering technique was developed to rate
school buildings in Greece. The methodology demonstrates that the energy consumption and global
environmental quality of school buildings can be significantly improved, but the indoor air quality of
these buildings causes some problems for them [31]. Wind is an energy source whose identification
and assessment in its training needs is very important. The Analytic Hierarchy Process has been used
to specify the training of wind farm employees. The results of the research prioritized the tasks and
appropriate training courses tailored to the indicators were provided [32].

Discovering the rules is very much challenged in data mining [33–36]. Yu et al. present associations
between building operational data. The methodology used on HVAC system data offers some “if-then”
rules that are useful in the energy conservation field. Finding faulty equipment and repairing it,
offering cost-efficient conservation strategies and a better understanding of building operation are
suitable solutions for energy saving [37]. In another research work, the geographical and temperature
variables in the electricity energy consumption were analyzed. Energy consumption and monthly
average temperature data were clustered using K-means and then the Apriori algorithm was employed
to discover association rules. These made “if-then” rules to describe the influence of different regions
and physiographic objects. It shows that the most important parameters to increase electricity
consumption are highways and then the ground, whereas rivers and farms (natural elements) decrease
electricity consumption [38]. A combined framework using clustering and association rules developed
to discover unusual energy used patterns. Benchmarking the rules identifies different waste patterns
for different lifestyles [39]. A multi-objective algorithm is proposed to mine rules without a need to
determine a minimum support threshold and a confidence threshold. This algorithm was used in three
different datasets and it demonstrates its ability to mine quantitative association rules [40]. A hybrid
algorithm including the genetic algorithm and particle swarm optimization algorithm was used to
discover rules in continuous numeric datasets. It shows its ability in five different numerical interval
datasets compared to other algorithms [41].

Due to irregular growth in the energy consumption of homes, analyzing their energy efficiency
homes is an unavoidable study. Each building has its unique attribute, function and energy-related
behavior to improve the energy efficiency of buildings. It is necessary to identify which factors and
properties influence it, considering the unique behavior of homes. Analyzing them together leads to a
tendency to pay attention to certain information while ignore others, and the findings are applicable to
fewer buildings. This article proposes a hybrid approach that includes clustering and decision trees to
identify factors affecting energy efficiency and consumption in residential buildings, as well as the
reduction of the loss of some important data. The idea is that by clustering houses and putting similar
patterns in a cluster, and then analyzing the factors in each cluster separately, findings will be extracted
with more detail and accuracy than by not using the approach and analyzing them all together.

The rest of this paper is as follows: The next section provides the methodology used and the
approach presented. In order to set forth the paper’s purpose and also to examine the ability of the
new approach, data analysis is done once without using the hybrid approach, provided in Section 3,
and then again using the proposed approach in Section 4. Data clustering and also modeling each
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cluster separately will be done in this section. The evaluation and deployment are described in Section 5
and the conclusion is presented in Section 6, along with a discussion of the findings.

2. Methodology and Approach Presented

2.1. Methodology

Among the various methods of data mining science, such as [42], the Cross-Industry Standard
Process for Data Mining (CRISP-DM) has been the one most widely used in data mining science.
CRISP-DM is a global standard in project applications in data mining. This methodology consists of
6 phases, starting with the business understanding (problem definition) phase. The data understanding
and the data preparation phases are done next. To achieve a basic understanding of the data, a cleaning
and preparation of the data for modeling usage is done in these two phases. The modeling phase
includes various techniques to analyze data and extract knowledge. The evaluation phase and then
the deployment phase are the other phases of the CRISP-DM methodology [43]. In this methodology,
phases could backtrack to previous phases. The SPSS Modeler of IMB [44] has been implemented with
various tools and algorithms based on the CRISP-DM, The Clementine 12.0 released in Jan 2008 and
IBM SPSS Modeler 18.0 released in March 2016 [45], software of IBM has been used to perform the data
mining process.

Figure 1 shows the article methodology based on CRISP-DM. The article subject is defined in the
first phase and it mainly discusses the problem definition. As expressed, the purpose is to identify
properties affecting efficiency and also energy consumption in residential homes and also find out how
to manage attributes and characteristics to achieve better energy management.

An understanding and preparation of the data is done in phase 2. A sample of 49,815 records of the
housing stock of England and Wales has been selected. The Department of Energy and Climate Change
has published this dataset [46]. Each record represented a region, a property age, a property type,
the electricity and gas annual consumption from 2005 to 2012, the floor area band, etc. Table 1 describes
the data set variables.

Table 1. Of variables.

Variable Value Description

HH_ID 1 to 49815 Household identifier.

REGION

(E12000001) North-East
(E12000002) North-West

(E12000003) Yorkshire and the Humber
(E12000004) Mid-East
(E12000005) Mid-West

(E12000006) East England
(E12000007) London

(E12000008) South-East
(E12000009) South-West

(W999999999) Wales

Former Government Office Regions (GORs) in England,
and Wales.

IMD_ENG 1 to 5
Index of multiple deprivations 2010 for England.

Households are allocated to five groups. (1) The least
deprived and (5) the most deprived.

IMD_WALES 1 to 5 Welsh Index of multiple deprivations 2011. This has five
groups. (1) The most deprived and (5) the least deprived.

GconsYEAR Annual gas consumption based on kWh.

GconsYEARValid
Flag of households’ gas consumption.

Valid gas consumption (V), households off the gas
network (O) and invalid consumption.

EconsYEAR Annual electricity consumption based on kWh.

EconsYEARValid Flag indicating households with a valid electricity
consumption.

E7Flag2012

(1) Households with Economy 7 electricity
meters in 2012.

(0) Households without Economy 7
electricity meters in 2012.

Economy 7 electricity meters.

MAIN_HEAT_FUEL (1) gas
(2) other Main heating fuel.
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Table 1. Cont.

Variable Value Description

PROP_AGE

(1) before 1930
(2) 1930 to 1949
(3) 1950 to 1966
(4) 1967 to 1982
(5) 1983 to 1995

(6) after 1996

Age of property construction.

PROP_TYPE

(1) detached
(2) semi-detached

(3) end-terrace
(4) mid-terrace
(5) bungalow

(6) flat

Type of property.

FLOOR_AREA_BAND

(1) less than 50 m2

(2) 51 m2 to 100 m2

(3) 101 m2 to 150 m2

(4) more than 150 m2

Floor area band.

EE_BAND

(1) A and B
(2) C
(3) D
(4) E
(5) F
(6) G

Energy Efficiency Band.
(Six groups: A and B grouped).

LOFT_DEPTH (1) less than 150 mm
(2) 150 mm or more Loft insulation depth.

WALL_CONS (1) other
(2) cavity wall Wall construction.

CWI (0) no
(1) yes Cavity wall insulation installed or not.

CWI_YEAR Year of installation of cavity wall insulation.

LI (0) no
(1) yes Loft insulation installed or not.

LI_YEAR Year of installation of loft insulation

BOILER (0) no
(1) yes Boiler installed in property or not.

BOILER_YEAR Year of installation of the boiler.

The data is processed in phase 3. Discrepancy detection is done in this phase and there is also
a negative impact on data quality which should be identified and resolved. The variable is O in
226 record values of the GconsYEARValid, which means that the household has not a gas network,
while the values of the MAIN_HEAT_FUEL variable is 1, which means that the main heating fuel is
gas. The records have been deleted due to a contradiction of the information. When the values of
the GconsYEARValid variable is v, gas consumption must be between 100 kWh to 5000 kWh, but in
1107 records (2% of the records) the value of gas consumption when the GconsYEARValid variable
is v is not valid so these 2% of records were deleted. Most values are the same in some variables.
These variables did not affect the analysis and can be removed from the data set. GconsYEARValid
and EconsYEARValid are variables with such a case. Data preparation/Modeling without a presented
approach/Modeling using a proposed approach:

As the houses have different areas, different members, etc., the energy consumption can be
different. To assess the electricity and gas consumption, these variables need to have a specific unit.
So, the energy consumption has been normalized, based on the floor area (kWh/m2). Since the exact
area of each property is not available and the FLOOR_AREA_BAND variable is banded into four
categories, the value of FLOOR_AREA_BAND variable is divided in the middle of each category of
area variable to achieve a normal consumption based on kWh/m2.

The data set has at times some variables which have no value in some records and there are no
missing values. In other words, some features should have no values. So, these values are replaced to
resolve the problem of blank values and because the algorithms do not consider these values the same
as they do missing data. In this case, a value other than the value which is defined for that feature is set
for these blank values for them not to be confused with missing values. The replacement is 0.514% of
records. At the end of this phase, 48,898 refined records and 33 variables were obtained for the analysis.
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Figure 1. The methodology used—an overview.

The next phase, the modeling, simulated the prepared data obtained from phase 3 to extract
knowledge and reveal the influence of property. This phase consists of two parts (Figure 1). First,
modeling and analyzing the entire data altogether. Second, clustering data and then analyzing each
cluster separately (the proposed approach). In fact, the goal is to identify how the results and findings
using a combining approach and without using it differ and how the differences are effective in
planning and decision making for the future. The first part (phase 4.A) is described in Section 3 and
the second part (phase 4.B) will be described in detail in Section 4.

The models are then assessed to choose the most efficient model. In the evaluation phase,
the knowledge gained from the previous phase evaluated whether the result of data analyzing could
lead to the article’s objectives or not. Also, the proposed approach’s findings will be assessed to ensure
that the approach presented in phase 4.B is able to provide more accurate knowledge. These two
phases are described in detail in Section 3 to Section 4.

2.2. The Proposed Approach

Data mining is very powerful to discover unknowns in the absence of a prior knowledge of the
data. Some minority records and their details are ignored, given that each record in the database has
its unique attribute, and behavior modeling them all together causes data mining modeling and results
which tend to yield a majority of records. By identifying records with similar patterns and grouping
them in a cluster, and then analyzing each group separately, the results of the data mining tendency of
a specific number of records, will be reduced to the minimum.

As each home has its unique attribute and property, analyzing all the data together yields a
majority and some details are ignored. As shown in Figure 2, the idea is to put households with similar
patterns (similar characteristics, attributes, and so on) in a cluster, and then evaluate the behavior and
analyze the influential factors in each cluster separately. In this way, findings with more detail and
accuracy are discovered. In fact, the article proposes a combined approach using the data mining
technique with which data clustering will first be done and then each separate cluster will be modeled
to identify more in depth the characteristics and factors influencing the energy efficiency.
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3. Modeling and Analyzing the Energy Efficiency without the Proposed Approach

As mentioned, the purpose of the paper is to discover the factors affecting energy efficiency and
consumption and also to assess the proposed approach. So, the properties are modeled once without
using the approach and then using it to analyze the energy efficiency in the domestic sector. The energy
efficiency rate for each record obtained from EPCs logged for dwelling. The EPCs gather information
on physical characteristics of the property and the main heating fuel, and gives score based on standard
assumptions about residents and behavior. Then quantifies a dwelling’s performance in terms of an
efficiency rating (A the most efficient and G the less efficient). In this data set the most records’ energy
efficiency band is D (42.92%) and fewer records are in band A, B (2.71%) and G (1.31%).

This section deals with modeling and assessing the impact of properties on energy efficiency
without the proposed approach. The aim of using decision trees is to obtain the most effective factor
target class for each case in the data. For this purpose, the C5.0 algorithm [47] is used and all the
variables except energy consumption are employed as the input, the energy efficiency group being the
target. It can be said that the biggest advantage of C5.0 is that it presents its classification model as a
tree structure which can be easily interpreted as rules. An advanced classifier may have better accuracy
in many datasets but they cannot be easily understood and visualized. Also, the C5.0 reduces the
pruning errors and has the ability of feature selection [48]. In C5.0, the root node is the most important
variable and the best predictor. The leaf nodes contain a class label of the classification target.

The percentage presented in the tables show Ptrgt/Prule, which are:

• Ptrgt: Percentage of records that have the characteristics of the relevant rule and are also in the
target energy efficiency group.

• Prule: Percentage of records that have the characteristics of the relevant rule.

Table 2 includes the results of analysis using the C5.0 algorithm. In this table, the rules corresponding
to the C5.0 tree branches, which have a significant difference in the percentage of the target class,
are presented in no particular order. It can be said that houses, which have a large share of better
energy efficiency groups ((A, B) or C) are good cases for improving energy efficiency in other homes
with similar attributes.
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Table 2. The corresponding rules of the C5.0 tree (considering energy efficiency as the target).

Row Rule Result
(Energy Efficiency) Percentage

1
The built year is before 1930 and the home structure is semi-detached,

has cavity walls, an insulation depth less than 150 mm and uses
economy 7 electricity meters.

G 75%

2
The home area is 51 m2 to 100 m2 and has a mid-terrace structure.
The built year is 1966 and 1982, the home has cavity walls and its

boiler was installed in 2009.
C 100%

3
The home area is 51 m2 to 100 m2 and has a mid-terrace structure.
The built-year is 1966 and 1982, the home has cavity walls and its

boiler was installed in 2010.
F 100%

4
The home area is 51 m2 to 100 m2 and has a mid-terrace structure.
The built-year is 1966 and 1982, the home has cavity walls and its

boiler was installed in 2006 or 2011.
D 80%

5
The home area is 51 m2 to 100 m2 and has a mid-terrace structure.
The built year is 1966 and 1982, the home has cavity walls and its

boiler was installed in 2005 or 2012.
E 71.50%

6 The region is 4 and the built year is 1930 to 1949, the home structure is
a flat and which has cavity walls. C 100%

7 The region is 4 and the built year is 1930 to 1949, the home structure is
a flat and it does not have cavity walls. D 66.70%

8
The region is 1 and the home structure is semi-detached, and the built

year is after 1966. The homes have not installed wall insulation,
and they use economy 7 electricity meters.

D 100%

9
The region is 1 and the home structure is semi-detached, and the built

year is after 1966. The homes have not installed wall insulation,
and they do not use economy 7 electricity meters.

C 66.80%

10
The houses are in Wales and their built-year is before 1930, the home

structure is semi-detached and does not have cavity walls, their
insulation depth is less than 150 mm, and a boiler has been installed.

C 100%

11
The region is 1 and the built year is before 1930, the home structure is
semi-detached, and does not have cavity walls, and a boiler has been

installed and their insulation depth is less than 150 mm
F 100%

12
The region is 3 and the built-year is before 1930, the home structure is
semi-detached, and does not have cavity walls, the home’s boiler was

installed in 2009 and loft insulation was used.
D 100%

13
The region is 3 and the built-year is before 1930, the home structure is
semi-detached, and does not have cavity walls, the home’s boiler was

installed in 2009 and loft insulation was not used.
E 66.80%

According to the rules, some knowledge can be discovered.

• Carefully scrutinizing the rules of rows 2 to 5, it is concluded that installing a boiler will result
in better energy efficiency. Dwelling which install boilers in 2009 are in better energy efficiency
group. They are followed by the boilers installed in 2005 and 2012. The homes whose boiler was
installed in 2010 have not a good Energy Efficiency.

• A comparison of rules 8 and 9 indicates that in area 1, tariffs do not yield an improved energy
efficiency. Of course, this was seen among other households, but was not provided due to the low
support value.

• In the rules of rows 1, 11 and 13, the household energy efficiency group is very bad. The issue is
their built year (built before 1930). Obviously, in old houses, the thermal performance and energy
consumption of equipment are weak compared to new ones. In general, only 0.35% of the old
homes of datasets have energy efficiency groups A and B, while nearly 52% of them are in weak
energy efficiency groups (E, F, and G). But in newly-built houses (after 1996), these percentages
reach 13.8% for the energy efficiency groups A and B, and only 2% for poor energy efficiency groups.

• Rules 1, 10 and 11 refer to similar old houses that are located in different regions. Among these
rules, the homes of Wales are in better condition in terms of energy efficiency.

• Data set records are in different climate zones (Table 1) and same energy efficiency rating is not
obtained with similar conditions in a cold climate zone or a warm climate zone. Region 7 has the
most A, B rating (3.84%) and region 5 the least (1.99%). This difference should be referring to the
buildings structure, different equipment, and surely the family lifestyle.
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• It is obvious that installing insulation on the ceiling and walls leads to a reduction of energy
dissipation. Rules 12 and 13 show that an improvement in energy efficiency is achieved by
installing insulation in the roof of residential buildings. Also, rules 6 and 7 state that the structure
of the cavity wall is better than other structures. Policies to install new insulators in homes
that do not have the proper equipment, especially among older homes, can lead to significant
improvements in energy efficiency.

In general, old houses have a very bad energy efficiency. Installing proper insulation and using
appropriate wall structure, also using equipment with energy efficiency grade of A or B can be effective
in improving the efficiency of these homes. The installation of boilers and the non-use of electricity
tariffs have led to better energy efficiency among households of this dataset. Various regions of England
and Wales have more desirable homes in terms of energy efficiency than the rest.

4. Modeling and Analyzing the Energy Efficiency Using the Proposed Approach

4.1. Clustering Data

Each home has different characteristics and energy consumption. Categorizing data based on
the author’s opinion and the distribution of features is not very appropriate because it involves the
author’s assumptions and speculation. In this type of category, the probability of error and inaccuracy
increases, which is contrary to the purpose of the article, to achieve results with greater accuracy.
Cluster analysis is an unsupervised learning technique which finds data that has the most similarity
with each other, and also the greatest difference with other data, and places them in a group called
a cluster.

Clustering algorithms have a wide range that can be named partitioning, hierarchical, density-based,
and grid-based methods. The residential buildings of this article are clustered using the k-means
algorithm. This algorithm is used for clustering in different data sets [49] and also in energy consumptions
field for different datasets [50–52]. Among different indicators for estimating the optimal number
of clusters [53,54], the silhouette index [55] has been selected to calculate with a different number of
clusters. The silhouette has a range of −1 to 1, where 1 indicates the best matched and −1 indicates
variables which are poorly matched to their cluster.

Table 3 shows the Silhouette index values of clustering data of this article. While this indicator is
an important factor for clustering, it should be noted that in the real world and information retrieval,
clusters must have a comprehensible interpretation (cluster labeling). So, the selection of the best
number of clusters should be based on a combination of the index and the labeling. The silhouette
value of 2 and 3 clusters is greater than others (Table 3), which means that these clusters have a better
coherence, although these values are close together. Therefore, the appropriate value is that which has
a better interpretation and labeling adequate to the cluster’s data attributes. Regarding the values
of variables, in either case, three clusters have more interpretation and make a better differentiation
within and between clusters. Hence, it was selected as the best number of clusters.

Table 3. Silhouette index values.

Number of Clusters Silhouette Index Value

2 0.243
3 0.239
4 0.189
5 0.195
6 0.155
7 0.155
8 0.166
9 0.158

10 0.179
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The three-clusters clustering results are as follows. Figure 3 indicates the size of these clusters.
According to these characteristics and the average annual energy consumption of each cluster,
cluster 1, cluster 2 and cluster 3 are labeled as medium-consumption, high-consumption and
low-consumption clusters.

• Cluster 1: This cluster’s homes are old (almost 68% built before 1930). Most of the households
have a D label in the energy efficiency group and half of them have houses with an area of 51 m2

to 100 m2.
• Cluster 2: 27.5% of the homes were built between 1968 and 1982. Most of the households have a D

label in the energy efficiency group and 58.6% of them have houses with an area of 51 m2 to 100 m2.
The households of this cluster have more energy consumption than those of the other clusters.

• Cluster 3: Most of the households have a C label in the energy efficiency group. The cluster homes
are small (59% of homes have an area less than 51 m2). In comparison to other clusters, this cluster
contains more newly-built houses and these also have the lowest energy consumption.
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4.2. Modeling the Energy Efficiency in Each Cluster

According to the approach presented, each cluster which includes records with the most
similarity must be analyzed separately to identify factors which influence the energy efficiency
group. The corresponding rules of the decision trees’ (C5.0) branches in the separate analysis of each
cluster are given in Table 4. The percentage presented in the tables is explained in Section 3.

The findings of Table 4 show that:
In the Low-consumption cluster:

• Economic tariff 7 Electricity in this cluster has also shown its impact. More than 34% of the homes
that have this tariff have the D label, while more than 46% of the homes which do not use this
tariff are labeled C. By comparing rules 2 and 3, it can also be concluded that the use of this tariff
in small houses has a greater impact on poor energy efficiency.

• Survey households in this cluster also state that a greater percentage of homes that do not use this
electricity tariff 7 are better in energy efficiency than those using tariff 7. This different percentage
in the small houses of this cluster (area less than 51 m2) is shown in Table 5.

• Rules 4 and 5 stated that newly built houses are in good condition in terms of energy efficiency
and old ones have a poor energy efficiency. The survey reveals that 36.9% of households living in
newly built houses have an A or B label, and 3.28% of the old ones have a G label.



Appl. Sci. 2020, 10, 3589 11 of 18

Table 4. The corresponding rules of the C5.0 tree in each cluster separately.

Cluster
Label Row Rule Result

(Energy Efficiency) Percentage

Low-consumption
cluster

1 The home structure is a bungalow and uses economy 7
electricity meters and has installed a boiler. D 80%

2
The home structure is mid-terrace and the built-year is
between 1950 and 1966, the floor area is less than 51 m2

and it uses economy 7 electricity meters.
F 75%

3
The home is in region 2 and the floor area is between 51
m2 and 100 m2, the built-year is between 1950 and 1966

and it uses economy 7 electricity meters.
D 71.50%

4 The home structure is detached houses built before 1930. G 66.70%

5
Homes built after 1996, having cavity walls, and whose
floor area is between 51 m2 to 100 m2 and which do not

use economy 7 electricity meters.
A and B 54.90%

Medium-consumption
cluster

6
The home structure is detached and was built before

1930, does not have a cavity wall, and the floor area is
more than 151 m2, it uses economy 7 electricity meters.

E 100%

7
The region is Wales, and the home structure is

semi-detached and built before 1930 and has a boiler
installed.

C 100%

8
The home structure is detached and built before 1930 and
does not have a cavity wall, the floor area is more than

151 m2 and it does not use economy 7 electricity meters.
F 80%

9
The home structure is a flat built after 1996, does not

have a cavity wall and does not use economy 7
electricity meters.

A and B 67.90%

10

The home structure is detached, semi-detached,
mid-terrace, and end-terrace, built after 1996, does not

have a cavity wall and does not use economy 7
electricity meters.

C 65.70%

High-consumption
cluster

11

The home structure is detached and the region is Wales
and it was built between 1983 and 1995, a boiler was

installed in 2010 and the home does not use economy 7
electricity meters.

A and B 100%

12

The home structure is detached and the region is Wales
and it was built between 1983 and 1995, a boiler was

installed in 2010 and the home uses economy 7
electricity meters.

D 100%

13 The home structure is a flat, built after 1996 and the floor
area is between 51 m2 and 100 m2. A and B 100%

14 Houses built after 1996, and the structure is mid-terrace. C 81.40%

15
The home structure is detached and the region is 4, 5 and

9, it was built in 1983 to1995, a boiler was installed in
2010 and it does not use economy 7 electricity meters.

C 80%

16 The home structure is mid-terrace, it was built between
1983 and 1995 and has a boiler installed. C 78.80%

17 Houses built after 1996; the structure is semi-detached. C 72.50%

18 The home structure is mid-terrace, it was built between
1966 and 1982 and has boilers installed. C 72.20%

Table 5. The percentages of homes located in different energy efficiency groups.

Household Characteristic
Energy Efficiency Group

A, B C D E F G

The small homes which have tariff 7 6.92% 40.34% 32.54% 13.51% 5.47% 1.50%

The small homes which do not have tariff 7 12.74% 51.23% 26.51% 6.73% 2.23% 0.68%

In the medium-consumption cluster:

• Rules 6 and 8 stated that, firstly, large old houses have not a good energy efficiency. Also, they state
that among these homes, the ones which use electricity tariff 7 are better off.

• Rules 9 and 10 refer to the role of house structures in energy efficiency. So, in newly-constructed
houses with a flat structure the energy efficiency groups are A and B, and other house structures
have a C label.
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• In Wales, houses which have a detached structure, are old (built before 1930) and which have
installed boilers have an energy efficiency group C (rule 7).

In the high-consumption cluster:

• The good performance of boiler installation in the residential houses of this cluster is evident.
In the 12th, 16th and 17th rules, the homes are not newly-built, but are located in the energy
efficiency group C. The existence of a boiler in these houses, structured as mid-terrace and
end-terrace, has diminished the role of the built-year.

• A comparison of rules 11, 15 and, 18 shows that similar homes in different areas have different
energy efficiencies. The study of climatic conditions shows that the groups of areas that are located
in one rule are not similar in terms of temperature and have different climates. Thus, it cannot be
said that just the similarity or the difference in weather has led to different energy efficiencies.
However, in this cluster, households living in Wales have generally a better energy efficiency.

• In the rules 13 and 14, newly-built houses are noted in good energy efficiency groups. It is
important to say that newly-built flats have the best efficiency. In fact, the type of house structure
is not ineffective in the energy performance.

5. Assessment and Deployment

5.1. Assessment

Phase 5 of the methodology measures the models evaluated in the previous sections and the
accuracy of modeling. Using training and testing sets is an important step to evaluate the decision tree
accuracy. The higher the accuracy of the model means that its performance is better. So, the data were
divided into two groups (training and testing set). 70% of the records were taken as the training set
and the remaining 30% as the testing set. In addition to accuracy, the lift criterion, which indicates the
degree of correlation, was calculated for the C5.0 tree branches. If its value is greater than 1, this means
a positive correlation. For all the branches presented in Tables 2 and 4, the lift value was more than
one, hence indicating a positive correlation.

As stated, the purpose of the proposed approach is to achieve results with more precision and
details. Therefore, the accuracy of the models of Sections 3 and 4 should be compared in order to assess
the efficiency and effectiveness of this approach. In Table 6 the accuracy of the C5.0 tree in all the data
and in each cluster is provided. As can be seen, the accuracy of modeling using the proposed approach
(modeling in each cluster separately) is greater than analyzing all the data together. This means that
the presented approach exposed unknown information more accurately and its tendency to a majority
of records has declined.

Since this classification is of a multi-class type, the target feature (energy efficiency group) has
six different modes ((A and B), C, D, E, F and G), the percentages obtained being acceptable. If the
accuracy were by chance, as the target field has six different states, the accuracy of the tree would
be about 17% (1/6). But Table 4 offers percentages other than this. The percentages indicate that the
accuracy of the algorithm in the analysis of each cluster separately is greater than the total analysis of
the data. This approach is capable of providing knowledge and discovering unknown information
more accurately.

Table 6. Accuracy of the C5.0 Algorithm in the entire data and also in each cluster.

Input Data The C5.0 Accuracy

All the data 54.4%
Cluster 1 (medium-consumption) 51.5%

Cluster 2 (high-consumption) 57.83%
Cluster 3 (low-consumption) 69.3%
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Data clustering is also evaluated through the silhouette index (Table 3). Based on the values of
this index in different scenarios and the analysis of characteristics in different values of k, 3 clusters
were selected as the most suitable number of clusters (mentioned in Section 4.1)

5.2. Deployment and Discussion

Leading research has been conducted to explore the factors affecting energy efficiency in residential
homes. To this end, a hybrid approach was proposed to reveal findings with greater detail and accuracy.
This section reviews the findings. These suggest that some were commonly found in modeling without
using the proposed approach and using it. These findings are as follows.

• In general, the installation of boilers will lead to an improved energy efficiency. Dwelling which
installed boilers in 2009 have better energy efficiency than others and ones which install boiler
in 2010 have the weakest performance, which is seen as an urgent need to replace or modify
these boilers.

• Most old homes suffer from unfavorable energy efficiency. This is also reflected in the proposed
approach. Homes in the high-consumption cluster are older than those in the low-consumption
cluster. In old houses, the appliances and structures have a poor energy efficiency performance.
Therefore, planning for structural improvements, installing proper insulation and switching
equipment, especially in high-consumption cluster houses, is a constructive way to improve
energy efficiency.

• Not using electricity tariffs 7 yields better energy efficiency group in most homes.

The interesting point is that the proposed approach, in addition to the results described above,
could also reveal new findings. In fact, this approach offers more detailed results (Table 7). A scrutiny
of the data through the proposed approach provides new findings, as follows.

• In homes with similar attributes, not using this tariff has resulted in a better energy efficiency
group. However, the electricity tariff 7 has different effects in each cluster. An analysis of the
approach presented shows that in the low-consumption cluster, the energy efficiency is poor,
particularly in small (less than 51 m2) and old houses which do not use this tariff.

It was especially seen in the medium-consumption cluster that big (over 151 m2) and old houses
which use this tariff have a better energy efficiency.

• The building structure influences different effects in the proposed approach. In the medium-
consumption cluster, flats have a more favorable energy efficiency group than other structures,
even among the newly built ones. Also, old homes which are structured as detached have a good
energy efficiency group in this cluster. On the other hand, it has been seen before that old houses
do not have a good energy efficiency.

In the high-consumption cluster, buildings with mid-terrace and end-terrace structures which
have installed boilers belong to a better energy efficiency group.

• In the high-consumption cluster, homes in Wales have better energy efficiency than homes with
similar attributes but which are in different areas.

Table 7 shows the findings, analyzing the entire dataset and each cluster separately. New findings
extracted which are obtained from the proposed approach are shown as new finding. This suggests that
the approach presented can discover findings in more detail and this proves the ability and usefulness
of this approach in discovering unknown information. These detailed findings can be very helpful for
policy maker, architects, and engineers.
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Table 7. Assessing the results of the proposed approach.

Evaluated Data Findings and Results

All Data (without
using the approach)

Installing boilers lead to
better performance.

Old homes (built before
1930) suffer from

unfavorable energy
efficiency.

Old homes in Wales have
better energy efficiency.

Not using tariff 7 leads to
better energy efficiency.

Improving energy
efficiency is achieved

by installing insulation
in the roof of

residential buildings.

Low-consumption
cluster

Not using tariff 7 leads to
better energy efficiency.
Using the tariff leads to

poor energy efficiency in
small and old houses

(less than 51 m2).
(new finding)

Medium-consumption
cluster

Flats have a more
favorable energy
efficiency; even

newly-built flats.
(new finding)

Old homes in Wales
which have a detached

structure, and have
installed boilers have a
good energy efficiency.

(new finding)

Using this tariff leads to
a better energy efficiency
in big (over 151 m2) and

old houses.
(new finding)

High-consumption
cluster

Installing boilers leads to
a better energy efficiency.

In mid-terrace and
end-terrace structures,
boilers lead to better

energy efficiency.
(new finding)

The newly constructed
flats have the best

efficiency.
(new finding)

Households living in
Wales have better
energy efficiency.

(new finding)

6. Conclusions

The excessive demand for energy is a major challenge for countries. Therefore, governments
seek to improve energy management and efficiency to reduce energy waste. In this article, a hybrid
approach based on clustering and classification proposes discovering factors affecting energy efficiency
in the domestic sector.

49,815 examples of the housing stock of England and Wales were used. First, households were
analyzed to identify the influence of factors using a decision tree (without using the proposed approach).
Then, the proposed approach was used. The K-means algorithm yields three clusters (low-consumption,
medium-consumption, and high-consumption clusters). Households in each cluster were analyzed
using the C5.0 algorithm. Comparing the results and modeling accuracy, once without using the
approach and then using it, showed the ability of the approach presented to identify the properties
that affect energy efficiency and consumption in-depth and more accurately. The approach presented
is adaptable to different data sets.

The results of not using the approach shown is that installing boilers has improved the energy
efficiency, especially with respect to those that dwelling installed in 2009, followed by boilers installed
in 2005 and 2012. Dwelling install boilers 2010 have the least performance. Using electricity tariff
7 results in poor efficiency. Also, in old homes the thermal equipment and energy consumption of the
equipment are weak compared to newly-built houses, which results in in weaker energy efficiency.
The data also showed that walls which have a cavity structure as well as insulating installation lead
to improved energy efficiency. Of course, the cavity wall itself has different types, which produces
comments on how these walls affect the energy efficiency. The need for information on the type of
cavity wall used in the residential buildings is urgent to find out more thorough knowledge.

Besides the findings presented above, the proposed approach provides new and more detailed
results. It is demonstrated that electricity tariff 7 has different behaviors in different clusters. Generally,
it was seen that the use of this tariff is not good to improve energy efficiency. The approach shows
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that in the low-consumption cluster, old and small houses (less than 51 m2) that use this tariff have a
poor energy efficiency. Also, among the old and big houses (over 151 m2) of the medium-consumption
cluster using this tariff has a positive impact.

The approach shows that the home structure influences energy efficiency. In the high-consumption
cluster, installing boilers in mid-terrace and end-terrace structures, and detached structures in Wales
in the medium-consumption cluster, leads to better energy efficiency. In the medium-consumption
cluster, it was seen that flats are better in energy efficiency than other structures, even compared to
newly-built houses.

Different geographic regions also had a different behavior. The high-consumption cluster shows
better energy efficiency in the houses in Wales. Definitely, having more comprehensive and adequate
information of the different regions of England and Wales could extract more knowledge. The accuracy
of modeling in the approach presented was better than modeling without it and detailed findings can
be discovered.

Through its new and in-depth results, this approach has shown that it is capable and beneficial
in the field of retrieval knowledge. These new findings demonstrate that we cannot make a similar
decision for all homes. As homes in a cluster have their unique behavior, policies and decisions must
be unique for them. The knowledge obtained is suitable and useful for residential buildings of similar
features and nature to plan and upgrade energy efficiency, and also to improve EPCs.
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