
applied  
sciences

Article

Data Reduction in the String Space for Efficient kNN
Classification Through Space Partitioning

Jose J. Valero-Mas 1,∗,† and Francisco J. Castellanos 2,†

1 Independent Scientist, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
2 Pattern Recognition and Artificial Intelligence Group, Department of Software and Computing Systems,

University of Alicante, 03690 Alicante, Spain; fcastellanos@dlsi.ua.es
* Correspondence: jjvalero@dlsi.ua.es
† These authors contributed equally to this work.

Received: 28 April 2020; Accepted: 8 May 2020; Published: 12 May 2020

Abstract: Within the Pattern Recognition field, two representations are generally considered for
encoding the data: statistical codifications, which describe elements as feature vectors, and structural
representations, which encode elements as high-level symbolic data structures such as strings,
trees or graphs. While the vast majority of classifiers are capable of addressing statistical spaces,
only some particular methods are suitable for structural representations. The kNN classifier constitutes
one of the scarce examples of algorithms capable of tackling both statistical and structural spaces.
This method is based on the computation of the dissimilarity between all the samples of the set,
which is the main reason for its high versatility, but in turn, for its low efficiency as well. Prototype
Generation is one of the possibilities for palliating this issue. These mechanisms generate a reduced
version of the initial dataset by performing data transformation and aggregation processes on
the initial collection. Nevertheless, these generation processes are quite dependent on the data
representation considered, being not generally well defined for structural data. In this work we
present the adaptation of the generation-based reduction algorithm Reduction through Homogeneous
Clusters to the case of string data. This algorithm performs the reduction by partitioning the space
into class-homogeneous clusters for then generating a representative prototype as the median value
of each group. Thus, the main issue to tackle is the retrieval of the median element of a set of strings.
Our comprehensive experimentation comparatively assesses the performance of this algorithm in
both the statistical and the string-based spaces. Results prove the relevance of our approach by
showing a competitive compromise between classification rate and data reduction.
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1. Introduction

In Pattern Recognition (PR), supervised classification is defined as the task of predicting the label
of a given element out of a discrete set of categories based on the knowledge extracted from other
labeled samples [1]. This discipline is largely applied in a wide variety of disciplines such as optical
text or music recognition [2,3], audio analysis [4], speech recognition [5] and image categorization [6],
among many others.

One of the crucial points in classification tasks is the representation considered for encoding the
data. In this regard, two paradigms are typically differentiated in the literature [7]: on the one hand,
the so-called statistical representations represent the data as vectors of numerical descriptors which
describe each element based on a collection of features; on the other hand, structural representations
consider powerful and flexible high-level symbolic data structures for representing the data, such as
strings, trees or graphs. Thus, statistical representations show the clear advantage of being addressable
by most classification algorithms while structural codifications generally exhibit superior accuracy
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rates but are only handled by a reduced set of algorithms [8], mainly distance-based classifiers as,
for instance, the k-Nearest Neighbor rule or Support-Vector Machines (SVM) since they only require
the definition of a dissimilarity measure among the data points [9]. For instance, works such as the one
by Riesen and Schmidt [10] for signature verification or the contribution by Calvo-Zaragoza et al. [11]
for handwritten music symbols recognition state the adequacy of structural approaches, and more
precisely string codifications, over other data representations.

As one of the most well known distance-based classifiers, the k-Nearest Neighbor (kNN)
algorithm [12] is widely used in PR due to its conceptual simplicity and theoretical low errors
properties [13]. This classifier assigns the most common label among the k closest elements to the
input query obtained by performing pairwise dissimilarities to all the elements in the training set
without deriving a classification model (lazy learning). Thus, unlike other distance-based classifiers
as SVM, the kNN algorithm is usually related to low efficiency figures since the entire training data
must be queried for classifying a new element [14]. Furthermore, this issue is especially noticeable
in the structural space since dissimilarity metrics are generally quite complex and time-consuming.
Therefore, distance-based classifiers like the kNN rule require strategies to reduce the complexity and
cost of their computations, and particularly in structural domains such as string data.

Data Reduction (DR) is one of the main proposals for overcoming the efficiency issues inherent
to kNN [15]. This family of methods aims at obtaining a reduced set of the original training data so
that the time consumption is severely reduced while the classification rate is, ideally, not affected.
While several approaches have been proposed in the literature, two particular strategies stand out in
the literature [16]: (i) Prototype Selection (PS) methods, which reduce the initial data by selecting a
subset out of it; and (ii) Prototype Generation (PG) methods, which generate a new set of data by means
of performing some transformations on the initial one. In general, PG methods obtain higher reduction
figures than PS, but their applicability is severely limited by the data representation considered since
the transformations required are not as straightforward to define as in statistical codifications.

The difficulties associated with structural representations have hindered the development of
PG methods as possible DR strategies for tackling the kNN efficiency issue in the structural space.
Hence, most research efforts related to PG have been devoted to statistical representations. A relevant
algorithm in this topic is Reduction through Homogeneous Clusters (RHC) by Ougiaroglou and
Evangelidis [17], which reduces the initial set of data by obtaining same-class clusters of prototypes
for then generating a new single prototype as the median value of the ones in the cluster. As most PG
techniques, RHC was designed for statistical representations, being thus unsuitable for its application
to structural data.

In this work, we aim at further studying the possibilities of PG as a DR strategy in structural
representations due to their aforementioned relevance in the PR field. More precisely, we present
an adaptation of the state-of-the-art RHC method by Ougiaroglou and Evangelidis [17] to the string
space. As aforementioned, this algorithm replaces same-class subsets of prototypes by new elements
generated by estimating their median value. Thus, the main issue to tackle is the actual retrieval of the
median value of a group of strings, which in our case we resort to the set median as the calculus of
the exact median string constitutes an NP-hard problem [18]. Additionally, in order to compare the
performance of RHC strategy in both statistical and structural spaces, we make use of the Dissimilarity
Space (DS) technique [19] to map the initial strings representation onto a feature-based codification so
that additional conclusions can be gathered.

The rest of the work is structured as follows: Section 2 introduces the general background of the
work; Section 3 presents the adaptation of the RHC algorithm to the string space; Section 4 explains
the evaluation methodology proposed; Section 5 shows and discusses the results obtained; finally,
Section 6 concludes the work and proposed future work to be addressed.
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2. Background in Prototype Generation for Efficient Nearest Neighbour Classification

The lack of efficiency constitutes one of the main issues in the kNN rule as it relies on
comprehensively consulting the entire training set for every query. In this regard, several strategies
have been posed to palliate this drawback, which are generally divided into three categories [20]:
(i) Fast Similarity Search, which proposes the creation of search indexes for a fast set consulting;
(ii) Approximate Search, which works on the premise of retrieving sufficiently similar prototypes to
a given query in the training set instead of exhaustively searching for the exact ones; and (iii) Data
Reduction, which seeks for a reduced version of the training set without significantly altering its
classification rate. In this work we focus on the latter family of methods, and more precisely on the
so-called Prototype Generation strategies.

Prototype Generation (PG) stands for the particular type of DR processes which generate
an alternative training set by applying certain transformations on the original training data [15].
The premise behind these methods is that, given a certain data corpus to be reduced, the most adequate
elements to properly summarize it may not be among the existing prototypes, but they could be
generated using some type of data aggregations. Thus, the main issue here is the definition of the
generation policy.

According to Triguero et al. [21], PG strategies are broadly divided into four categories depending
on the mechanism considered to obtain the reduced set:

• Class relabeling: This family of mechanisms considers that certain elements may be mislabelled
due to tagging errors or noise in the data, being thus necessary to modify their categories
by following certain criteria. Note that, while generalization accuracy is generally improved,
no reduction is achieved.

• Centroid-based: These techniques divide the training data into different subsets, mainly resorting to
proximity criteria, for then obtaining their centroids, which constitute the generated prototypes.

• Position adjustment: Methods belonging to this case modify the training set altering the features
of the prototypes to reallocate them with the aim of improving the success rate. Given that this
adjustment does not report any size reduction, these methods are generally paired with an initial
reduction process.

• Space partitioning: This strategy divides the space into different regions for then generating one
or more representative elements from each of them. While each of these partitions may contain
one or more prototypes, the generated elements are not necessarily derived from them since the
actual premise is to somehow represent the space partition independently of the data.

Note that some of the presented PG mechanisms imply operations on the data itself as, for instance,
retrieving the centroid of a set of instances or modifying them in some sense. While such processes
are relatively straightforward to apply in the case of feature-based data, in structural representations
this point arises as an important issue. This fact limits the application of PG in classification tasks
involving these latter data representations. Nevertheless, since structural representations have been
proved as being the most suitable choice for some particular classification tasks [10,11], the issue of
adapting such reduction strategies for this data codifications arises a relevant research problem.

In this paper, we present the adaptation of a space partitioning PG method to the case of string
data, more precisely the Reduction through Homogeneous Clusters. This approach performs the
reduction by recursively applying a clustering process on the initial data until a set class-homogeneous
groups are retrieved for then generating a representative element out of each cluster as the median
value of the elements in it. Thus, in our structural version of the RHC, this process implies obtaining
of the median value of a set of strings. Nevertheless, given that the estimation of the median string
constitutes an intricate problem by itself due to its high complexity [22], in this case we resort to the
use of the set median as a means of retrieving the median value of a string data distribution.
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3. Reduction Through Homogeneous Clusters in the String Space

The Reduction through Homogeneous Clusters algorithm proposed by Ougiaroglou and
Evangelidis [17] stands out as one of the most recent proposals for PG based on a space partitioning
premise for feature data. This method basically works in two different phases:

1. The partitioning phase in which the space is divided into a set of regions comprising one or more
prototypes each one. These regions are obtained by means of applying a clustering process to the
initial data until reaching a class homogeneity, i.e., the prototypes associated to a region share the
same class. This process is typically carried out using a k-means process [1].

2. For each of those class-homogeneous clusters, a new single is derived as a combination of the
prototypes associated to the cluster. Typically, this process is conducted by a feature-wise mean
or median operation.

As commented, one of the main contributions of this work is the adaptation of the RHC algorithm
to the case of structural representations, and more precisely to string data, which is now presented.
Note that several considerations must be taken into account due to the particularity of the data
representation, since the original algorithm is only designed for processing statistical data.

Let us denote initial set of instances T = {(xi, yi)}
|T |
i=1 where xi represents the i-th prototype

from a given structural space X and yi stands for its associated label belonging to the set of possible
categories Y . Let us also denote ζ (·) as the function that retrieves the class associated to instance xi,
i.e., ζ (xi) = yi ∈ Y . Finally, consider d (·) as a dissimilarity measure in space X . The string-based
RHC algorithm retrieves a reduced versionR out of the initial set T using Algorithm 1.

Algorithm 1 Reduction through Homogeneous Clusters.

1: function RHC(T ) . Initial set T = t1 . . . t|T |
2: R, C ← ∅
3: for each y ∈ Y do
4: V ← {ti ∈ T : ζ(ti) = y} . Class-homogeneous grouping
5: C ← C ∪ set-median (V)
6: end for
7: for each c ∈ C do
8: S ← {ti ∈ T : c = arg minc′∈C d (ti, c′)} . S : Set of prototypes in cluster c
9: if | {ζ (ti) : ti ∈ S} |> 1 then . Cluster homogeneity as set cardinality

10: R ← R ∪ RHC (S) . Non-homogeneous cluster
11: else
12: R ← R ∪ set-median (S) . Homogeneous cluster
13: end if
14: end for
15: returnR . Reduced setR = r1 . . . r|R|
16: end function

The main consideration in this design is the actual computation of the median string. As it has
been introduced, the retrieval of the exact median value of a set of strings is known to be a NP-hard
problem [18]. Thus, in this case we consider the set-median operation due to its lower complexity. This
process is the one denoted as set-median (·) in Algorithm 1 and is obtained following Equation (1).

set-median (S) = arg min
s∈S ∑

s′∈S
d
(
s, s′

)
(1)

where d (·) denotes the dissimilarity measure previously defined and S is the set of prototypes
contained in a particular cluster.
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4. Experimentation

Figure 1 shows the experimental scheme conceived for this work. The idea is to comparatively
assess the performance of the RHC strategy in both the string and feature-based spaces. For that the
initial string data undergo two different processes: on the one hand, the data is directly processed
in the string space with our extended RHC proposal; on the other hand, the string data is mapped
onto a feature-based representation by means of the Dissimilarity Space methodology for then being
processed by the original RHC. The comparison between the results obtained in both representation
spaces provides the main conclusions of the work.

Figure 1. Description of the experimental setup considered. Dissimilarity Space is used for obtaining the
feature-based representation of the initial string data. In both string and feature-based representations,
classification is performed both before and after the RHC Data Reduction process.

As of dissimilarity metrics used in this experimentation, we have considered the well-known
Edit Distance [23] for the string space. This measure defines the distance between two sequences of
characters as the minimum number of modifications (insertions, deletions, or substitutions) required
to transform one string into the other. Regarding the feature-based representation we have resorted
to the Euclidan distance. In all the classification stages we have fixed the parameter k = 1 for the
kNN classifier. Note that since each cluster obtained by the RHC algorithm is represented by a single
element, there is no point in using other values for this parameter.

The rest of the section introduces the Dissimilarity Space process considered for mapping the
string data to a statistical representation as well as the corpora and performance metrics used for
the evaluation.

4.1. Dissimilarity Space Mapping

Dissimilarity Space stands for the strategy of mapping a given structural representation onto
a feature-based one by computing pairwise dissimilarities between the elements of the dataset [19].
By performing this process a new dataset is derived in which the new features constitute the actual
dissimilarity values to a subset of the data usually known as pivots. This process enables the use of
certain data transformations which are unfeasible, or at least not well defined, in the structural space but
it usually entails a drop in terms of classification accuracy due to the loss of representation capabilities.

Mathematically, let again T be a labeled set of prototypes such that T = {(xi, yi) : xi ∈ X , yi ∈ Y}
|T |
i=1,

where X and Y denote a structural space and a set of discrete classes, respectively. In order to map
the prototypes of T onto a feature space F , Dissimilarity Space methods seek for a subset R out
of the training set (R ⊆ T) by following a certain policy. The elements of R, which constitute the
aforementioned pivots, are noted as ri with 1 ≤ i ≤ |R|. Then, a prototype x ∈ X can be represented in
F as a set of features (v1, v2, v3, ..., v|R|) computed as vi = d(x, ri), where d : X ×X → R+ represents
a dissimilarity function in space X . This way, an |R|-dimensional vector is obtained for each prototype
in the initial space.

Among the existing policies for selecting the mapping pivots, in our experimentation we consider
the use of the RandomC strategy [24]. This approach selects a random subset of prototypes from each
class for the mapping process. The number of prototypes selected from each class is exactly c (tuning
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parameter), being thus the total number of pivots |R| = c|Y|. In our experiments different values of
parameter c are considered to compare its influence in the overall performance.

4.2. Corpora

Regarding the different corpora for the experimentation, we considered three different datasets
of handwritten characters publicly available as images: the United States Postal Service (USPS)
dataset of handwritten digits [25] whose images have a resolution of 16× 16 pixels; the NIST SPECIAL
DATABASE (NIST) of handwritten characters [26] in images of 28× 28 pixels; and the MNIST collection
of isolated handwritten digits [27] which is also distributed as images of 28× 28 pixels.

In order to extract a string-based representation, all these images have undergone a process of
contour extraction as the one described in [28] which is later encoded as a Freeman Chain Code [29].
Note that in no case we are claiming that this representation is the most suitable for these datasets
but it allowed us to perform the considered experimentation. Figure 2 shows an example of this
codification process.

(a) (b)

333333333334555656565656556781111121212118777667811
(c)

Figure 2. Example of a contour and string codification of a sample from the USPS corpus representing the
digit 7. (a) Original image; (b) Extracted contour; (c) String representation using Freeman Chain Codes.

So as to obtain the feature-based representations we have resorted to the RandomC strategy
previously introduced. Several values were tested to tune the c parameter of the number of pivots per
class taking as a reference value the performance of the Nearest Neighbor classifier in the target space.
Nevertheless, as no significant differences were observed, we considered the value of c = 5. This
particular value constitutes the lowest one tested in our tuning experimentation and implies the least
number of features in the statistical space.

As of data partitions, the sets have been distributed in five different folds maintaining the same
class distribution as the complete set. It must be mentioned that, for a fair comparison between the
two representation spaces, the different folds in both structural and statistical representation contain
the exact same instances with the sole different of the encoding type considered.

Finally, Table 1 summarizes the details of the different data collections considered providing
a description about the length of the string samples obtained after the aforementioned encoding
processes from the images as well as the number of features after the RandomC stage.

Table 1. Description of the data collections considered in terms of number of instances, classes,
and sample sizes in both the initial string and the Dissimilarity Space (feature-based) one using
RandomC. Min, Med, and Max stand for the minimum, median, and maximum datum length while Q1
and Q3 denote the first and third quartiles, respectively.

Dataset Instances Classes
String Length

Feature Space Size
Min Q1 Med Q3 Max

NIST 5200 26 11 153 190 232 674 130

MNIST 10,000 10 15 53 59 69 115 50

USPS 8684 10 13 42 46 51 78 50
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4.3. Performance Measurement

In order to assess and compare the different situations proposed in the experimentation,
we evaluate both the classification rate achieved by each strategy as well as the resulting size of
the dataset. Note that, in the context of a DR task, the former concept relates to the goodness of the
reduction algorithm to extract a representative set of prototypes while the latter conceptis associated
with the reduction capabilities of the strategy.

As of classification performance metric, we have considered the use of the F-measure (F1) to avoid
any bias towards any particular class in the case of a certain data imbalance. In a two-class classification
task this metric is defined as a function of the successes and misclassifications of the algorithm as

F1 =
2 · TP

2 · TP + FP + FN
(2)

where TP, FP, and FN stand for True Positives or correctly classified elements, False Positives or type I
errors, and False Negatives or type II errors, respectively.

It must be noted that, due to the non-binary nature of our datasets, we consider the use of
the macro-averaged F1 score which extends the definition of the binary F1 to multiclass scenarios.
This measure is defined as the average of the F1 scores obtained for each class, that is:

FM
1 =

1
|Y| ·

|Y|

∑
i=1

F(i)
1 (3)

where Y represents the set of classes in the task and F(i)
1 the value of the F1 metric for class yi ∈ Y .

Reduction capabilities have been assessed comparing the resulting set sizes of the training data in
the different situations proposed. Computation time was discarded as evaluation metric due to its
variability depending on the load of the computing system.

As commented, DR methods seek for simultaneously optimizing two contradictory goals, set size
reduction and classification performance. Thus, it is not possible to retrieve a global optimum: some
approaches will retrieve sharper reduction figures at the expense of a decrease of the classification rate
while other will just show the opposite behavior.

In this sense DR can be addressed as a Multi-objective Optimization Problem (MOP) in which
the two objectives to be optimised are the aforementioned reduction capabilities and classification
performance. The possible solutions under this framework are usually retrieved resorting to the
concept of non-dominance: one solution is said to dominate another if it is better or equal in each
goal function and, at least, strictly better in one of them. The resulting elements, typically known as
non-dominated elements, constitute the so-called Pareto frontier in which all elements are optimal
solutions of the problem without any hierarchy among them.

Finally, in order to provide a single value which relates both the performance and reduction
capabilities of the strategies considered, we also consider the estimated profit per prototype measure
defined as the ratio between the classification accuracy and the total number of distances computed [30].
It must be mentioned that, for its use in this work, this metric was slightly adapted from its original
definition by considering the F1 instead of the classification accuracy as well as the resulting set size
instead of the number of distances computed.

5. Results

This section presents the results obtained following the experimental methodology considered.
Table 2 provides the figures achieved for each dataset in terms of the F1 and resulting set size.
Each value constitutes the average of the five folds considered in the cross-validation scheme. Note that,
as previously mentioned, the idea is not to outperform the classification rates of this particular corpora
but to proof the validity of the DR proposal for the string space.
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Table 2. Results in terms of F1 as classification rate and resulting set size for the different corpora
considered. ALL and RHC stand for the classification results obtained with the initial set and the
reduced one, respectively. Set size percentages are obtained referring to the ALL case for each corpus
and data representation. Standard deviation values are not reported as they are lower or equal than 0.01.
Bold values highlight the non-dominated elements for each dataset.

Classification Performance (%) Set Size (%)

Dataset String-Based Feature-Based String-Based Feature-Based

ALL RHC ALL RHC ALL RHC ALL RHC

NIST 89.2 84.2 82.5 77.2 100 22.6 100 27.2

MNIST 94.1 90.7 92.4 88.6 100 15.0 100 10.3

USPS 90.2 85.1 89.5 84.7 100 20.6 100 12.8

An initial remark to begin with is that the best classification rate for each dataset is obtained when
addressing the case of the string-based data representation with no prototype reduction policy. This is
actually the expected behavior as there is no information loss due to any reduction and/or mapping
process. Also note that these cases report the lowest efficiency in the entire experimentation since not
only the entire training set is used for the classification but also the actual computation of the Edit
Distance for each pair of prototypes exhibits a remarkable time consumption by itself.

Once the RandomC procedure is applied, there is a clear drop in the classification rates compared
to its counterpart in the string space. As it can be checked, the NIST dataset suffers the sharper
drop going from a value of F1 = 89.2% to F1 = 82.5%, roughly a 7%; USPS is the least affected one
going from F1 = 90.2% to F1 = 89.5%, just almost a 1% performance decrease; MNIST depicts an
intermediate decrease figure of about 2% as it drops from F1 = 94.1% to F1 = 92.4%. As in the previous
case, given that no size optimization procedure is applied, the entire training set is again used for the
classification task. Nevertheless, since this space considers the Euclidean distance, the process is faster
than the string-based situation. n.

Having already introduced the cases related to the exhaustive search, we now discuss the results
involving the RHC implementations. Considering the string space, once the proposed reduction
method is applied, there is a decrease in the set sizes which are paired with a drop in the classification
performance. More precisely, for all corpora the reduction figures are roughly between the 75% and
90% of the initial set size with performance drop close to the 5% with respect to the non-reduced case.
This fact shows that this adaptation of the RHC algorithm is capable of properly dealing with the task
given the remarkable reduction achieved with a very limited performance drop.

Focusing now on the equivalent situation in the statistical space, several points can be commented.
As it may be checked, the performance decrease between the non-reduced and reduced feature-based
cases is relatively similar to the same comparison in the string space (a classification rate drop between
3% and 5%). Note that, while these performance decreases refer to the dataset once it has been mapped
onto the feature space, it must be reminded that this process entails a performance drop itself which
can be avoiding if working in the original string space.

As of the reduction achieved by the RHC in this feature space, it is shown that the figures obtained
are sharper than in the string representation both for the MNIST and the USPS sets with reduction
figures close to 90%. Nevertheless, the reduction achieved by this algorithm in NIST set for string
codifications is not as sharp as in the feature-based data.

Regarding the analysis in terms of the non-dominance criterion, the first point to comment is that
the cases of non-reduced classification in the string space belong to the Pareto frontier for all corpora.
This is a expected result given that they achieve the best classification performance at the expense
of exhibiting the lowest efficiency among the cases considered. However, note that its statistical
counterpart does not contain any element among the non-dominated elements. This point makes sense
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since the non-reduced feature-based elements suffer a certain performance drop due to the mapping
process which is not paired with any reduction in the set size. In spite of this, the cases based on
RHC in statistical representation improve the reduction figures with respect to the structural space,
hence obtaining non-dominated results for both MNIST and USPS feature-based corpora. Oppositely,
the RHC method on string space has obtained better size-reduction level in NIST dataset, turning it
into another non-dominated result.

Note that, depending on the corpus considered, the RHC-based non-dominating solutions which
define the frontier are obtained from either the string space or the feature one, if not both. Concretely,
the non-dominated solution in the NIST dataset is depicted by the case of the RHC in the string space
whereas for the USPS corpus it is the RHC in the statistical one. The only case in which the RHC
contributes to define the frontier in both spaces is with the MNIST dataset.

As a last analysis on the results, Table 3 presents the figures obtained in terms of the estimated
profit per prototype metric. As the values retrieved are generally quite low, for an easier comparison
all results have been scaled up two orders of magnitude.

Table 3. Results in term of the estimated profit per prototype metric. All values have been scaled up two
orders of magnitude for simplifying the comparison. Bold values represent the best overall profit for
each corpus. All results report deviation values lower than 0.01.

Dataset
String-Based Feature-Based

ALL RHC ALL RHC

NIST 0.021 0.089 0.020 0.068

MNIST 0.012 0.076 0.012 0.110

USPS 0.013 0.059 0.013 0.096

The first point that can be observed is that all reduced cases achieve better profit figures than the
non-reduced ones. This fact depicts that, while both set size and classification rate decrease with the
reduction process, the accuracy drop is less accused than the size one, which is the desired behavior.

Note that, while the best profit figures for both the MNIST and USPS datasets are obtained in
the feature space, in the case of the NIST corpus this optimum is obtained in the string encoding.
This fact of obtaining better results directly in the structural space without mapping the data onto a
statistical space justifies the research efforts towards the development of reduction strategies in the
native structural representation.

Finally, in order to statistically assess the figures obtained, a significance analysis has been
performed on these results. More precisely we have considered the Wilcoxon rank-sum test [31]
for comparing the results obtained before and after applying the RHC reduction algorithm for each
representation space separately with a significance level of p-value < 0.05. As a figure of merit we have
considered the estimated profit per prototype since it properly summarizes both performance and
reduction capabilities of the strategy considered in one single value. Furthermore, since the idea is
comparing the non-reduced and reduced scenarios, we are not particularizing in any of the corpora.
Thus, the individual results obtained for each fold, corpus, and reduction scenario constitute each of
the samples of the distributions to compare. The resulting data distribution is graphically shown in
Figure 3.
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Figure 3. Boxplot graph of the data distributions considered the statistical analysis. Data is grouped
according to the representation space considered and the reduction strategy performed (note that ALL
stands for the case in which no reduction is performed). All values have been scaled up two orders of
magnitude for an easier understanding of the plot.

The results of this statistical test state that, for both string and feature-based spaces, the profit per
prototype figures obtained for the case in which no reduction is performed are significantly lower than
the results obtained once the RHC method is applied. This fact is somehow graphically confirmed by
Figure 3 as the RHC data distribution consistently achieves better profit figures than the non-reduced
cases without any overlapping areas between them.

6. Conclusions and Future Work

Prototype Generation methods stand as one of the possible Data Reduction strategies for
improving the efficiency of the k-Nearest Neighbor classifier. These methods perform transformations
and combinations of the prototypes in the initial set of data with the aim of reducing its size and
improving, if possible, the success rate of the classifier.

Despite its usefulness in the Pattern Recognition field, these methods are constrained by the
representation space considered. Hence, while the aforementioned transformation and combination
operations are straightforward to apply in the context of a statistical or feature-based space, their
definition in the case of structural data requires some additional considerations.

In this work we present the adaptation of a state-of-the-art Prototype Generation strategy
to the case of string data, more precisely the Reduction through Homogeneous Clusters method.
This algorithm addresses the reduction process by recursively applying a clustering process on the
initial data until a set of class-homogeneous groups is retrieved for then generating a single element
from each cluster as the median value of the prototypes in it. In our case this problem has been tackled
with the retrieval of the set median value the string data at issue.

The experimentation carried out compares the performance of the original with the proposed
algorithm for the same data in both representation spaces using a Dissimilarity Space mapping
process. Results obtained show that the relevance of the proposal as it avoids the representation
gap of the mapping process as well as showing the best compromise between classification rate and
data reduction.

In light of the results obtained, a first point which should be considered is the possibility of
approximating the actual median string for the prototype generation stage instead of considering the
set median value. In principle, the results presented in this work should constitute a lower bound in
terms of performance. Thus, more sophisticated policies for the retrieval of the median string should
report better representation capabilities and, hence, higher classification rates.

As noted, the retrieval of the median value is totally dependent on the distance considered. In this
regard, the use of alternative string-based distance metrics as, for instance, the Cosine similarity, could
report additional conclusions.

Another aspect to address is the adaptation of other generation-based Data Reduction strategies to
the string space. While this work proves the validity and interest of adapting a feature-based reduction
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method to this particular representation space, other strategies may obtain sharper reduction rates and
with higher classification figures, thus being a promising path to explore.

In addition, extending these developments to other structural-based codifications as, for instance,
tree structures or graphs also constitutes an important research challenge due to the complexity of the
generation operations in these representations,

Finally, a last point to consider as future work is the application of these reductions
string-reduction strategies as a preprocessing stage other dissimilarity-based algorithms as, for instance,
Support Vector Machines or Nearest Class Mean rule, among others.
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