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Abstract: This paper is concerned with the problem of fixed-time stabilization for a class of uncertain
second-order nonlinear systems. By delicately introducing extra manipulations in the feedback
domination and revamping the technique of adding a power integrator, a new approach is developed,
by which a state feedback controller, together with a suitable Lyapunov function, which is critical
for verifying fixed-time convergence, can be explicitly organized to render the closed-loop system
fixed-time stable. The major novelty of this paper is attributed to a subtle strategy that offers a distinct
perspective in controller design as well as stability analysis in the problem of fixed-time stabilization
for nonlinear systems. Finally, the proposed approach is applied to the attitude stabilization of a
spacecraft to demonstrate its merits and effectiveness.

Keywords: nonlinear systems; state feedback; fixed-time stabilization; adding a power
integrator technique

1. Introduction

Without doubt, the stabilization control of nonlinear systems is important as a first step in
performing additional control objectives, such as output tracking, disturbance attenuation, and/or
decoupling. In the past decades, global asymptotic stabilization of nonlinear systems has been widely
recognized as a challenging problem and received a great deal of attention from the nonlinear control
community. With the help of various mathematical tools, tremendous progress has been achieved
toward the development of powerful design methodologies for global asymptotic stabilization,
including backstepping design [1], feedback linearization [2], sliding mode control [3], fuzzy control [4],
nonlinearH∞ [5], and so on.

Compared to asymptotic stabilization, which means that the convergence rate is, at best,
exponential with infinite settling time [6,7], finite-time stabilization is more attractive as the systems
with finite-time convergence usually demonstrate some superior properties, such as faster convergence,
high accuracies, and better robustness to uncertainties, and/or external disturbances [7–11], which
are rather important for demanding applications. Being aware of these advantages, the finite-time
stabilization problem has been intensively studied for nonlinear systems, and numerous interesting
results have been obtained in the past decades (see, e.g., [12–21]). Among the existing results,
owing to its benefits including fast response and easy implementation, the terminal sliding mode
control [20], together with its nonsingular modification [21], has been extensively recognized as one of
the most popular/effective approaches for finite-time stabilization. By designing a suitable nonlinear
sliding surface while constructing a discontinuous controller, the phase of terminal sliding mode
can be achieved in finite-time, and thereby guaranteeing finite-time stabilization of the closed-loop
system [20–22].
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It should be noted that the associated settling time of the finite-time design is intrinsically related to
the initial states [11,23]. That is, the availability of initial states is somewhat critical for the settling-time
estimates; this inevitably prevents us from applying finite-time schemes [24]. Fortunately, with the
notion of fixed-time stability, along with the Lyapunov-like criteria recently presented in the seminal
work [23], the potential drawback of finite-time schemes was resolved effectively. To be more specific,
as stated in [23], the fixed-time stability not only implies global uniform finite-time stability but also
provides a settling-time function being uniformly bounded by a tunable constant, which depends on
design parameters but is independent of the initial states.

In other words, by fixed-time controller design, a predetermined bound of the settling time
(function) can be accordingly assigned. Particularly, the fixed-time stabilization is very promising,
especially when the organized controller is assigned intentionally to achieve certain control precision in
a desired time interval [23,25,26]. Realizing this feature, research study has been more recently focused
on the fixed-time stabilization of various nonlinear systems, for instance, high-order regulators [27],
multi-agent systems [28,29], power systems [30], etc.

To the best of our knowledge, most of the existing studies on fixed-time stabilization are essentially
concerned with scalar systems or single input control structures [24,26–30]. For multivariable
multi-input systems, very few results are available in the literature; see, for example, [31–33],
in which the fixed-time stabilization of time-invariant linear and nonlinear systems are addressed,
respectively. In fact, due to the complexity of multivariable nonlinear systems, as well as the lack of
constructive/systematic strategies for ensuring the fixed-time convergence, a fundamental problem on
how to organize a controller that renders multivariable nonlinear systems fixed-time stable remains
largely open.

Being aware of the above obstacles, a new approach is subtly developed in this paper. Compared
with the existing works [24,26–33], the main contributions of this paper can be summarized from
two aspects: (i) This paper is focused on the problem of fixed-time stabilization for time-varying
second-order multivariable nonlinear systems; thus, compared with the existing results concerning
scalar systems or single input systems (e.g., [24,26–30]), we offer a novel insight on how to tackle the
problem of fixed-time stabilization for a more general class of nonlinear systems. (ii) By introducing
extra manipulations in the feedback domination, the technique of adding a power integrator [34] is
skillfully revamped to develop a distinctive approach to the synthesis of a fixed-time stabilizer together
with a Lyapunov function which is significantly important for verifying fixed-time convergence
and stability.

Notations: All notations utilized throughout this paper are highlighted as follows. R is
the set of real numbers, R+ is the set of nonnegative real numbers, and Rn denotes the
n-dimensional Euclidean space. Furthermore, Rn×m is the set of n × m real matrices, In

denotes the identity matrix of dimension n, (·)T represents the transpose of a vector or a
matrix, and (·)+ is the Moore–Penrose pseudoinverse of a matrix. Given a constant p ∈
{p ∈ R | p = p1/p2 with p1 being a positive integer and p2 being a positive odd integer} ⊂
R, a vector y = (y1, . . . , yn)T ∈ Rn, and a diagonal matrix A = diag(a1, . . . , an) ∈ Rn×n,
for simplicity of notation we denote yp = (yp

1 , . . . , yp
n)

T ∈ Rn, Ap = diag(ap
1 , . . . , ap

n) ∈ Rn×n, and
sign(y) = (sign(y1), . . . , sign(yn))T ∈ Rn where sign(·) is the standard sign function satisfying
sign(y) = 1 if y > 0, sign(y) = 0 if y = 0, and sign(y) = −1 if y < 0.

2. Preliminaries

2.1. Problem Formulation

Consider a class of nonlinear systems described by

ẋ1 = x2

ẋ2 = f(x, t) + G(x, t)u + d(x, t) (1)



Appl. Sci. 2020, 10, 424 3 of 16

where x1 = (x11, . . . , x1n)
T ∈ Rn, x2 = (x21, . . . , x2n)

T ∈ Rn and x = (xT
1 , xT

2 )
T ∈ R2n denote the

system states, u ∈ Rm is the control input, d(x, t) = (d1(x, t), . . . , dn(x, t))T ∈ Rn describes the
model uncertainties and/or external disturbances, and f(x, t) and G(x, t) are smooth functions with
rank(G(x, t)) = n for all (x, t) ∈ R2n × R+, which in turn ensures the controllability of system (1)
(see, e.g., [35]). The initial time described by t0 is set to be zero, i.e., t0 = 0, and the initial state of
system (1) is denoted by x(0) = x0 ∈ R2n. It is worth mentioning that a very large class of physical
systems can be represented by system (1), including spacecrafts [36], robotic manipulators [37], etc.
Additionally, the solutions of system (1) are understood in the sense of Filippov [38] since the control
input u = u(x, t) is admitted to be discontinuous (piecewise continuous) and d(x, t) is also assumed
to be piecewise continuous and bounded as follows.

Assumption 1. There exists a known constant ρ > 0 such that

|di(x, t)| ≤ ρ

for all (x, t) ∈ R2n ×R+ and i = 1, . . . , n.

Under Assumption 1, the main objective of this paper is to design a controller u = u(x, t) that
renders the origin of system (1) fixed-time stable in the sense of the following definition.

Definition 1 ([23]). Consider the nonlinear system

ẋ = h(x, t) (2)

where x ∈ Rn, t ∈ R+, and h : Rn × R+ → Rn is discontinuous (piecewise continuous). The initial
time is t0 = 0 and the initial state is x(0) = x0. The solutions of system (2) are understood in the sense of
Filippov [38]. Then, the origin of system (2) is said to be fixed-time stable if it is globally uniformly finite-time
stable (see, e.g., [39]) and the settling-time function T(x0) is globally uniformly bounded by a positive constant;
i.e., there exists a positive constant Tmax > 0 such that T(x0) ≤ Tmax for all x0 ∈ Rn.

Remark 1. Compared to global uniform finite-time stability, the key feature of fixed-time stability is the
uniformity of its settling time. To see this point more clearly, the following two examples are considered. First,
it is easy to see that the origin of the system

ẋ = −3
2

x
1
3 (3)

is globally uniformly finite-time stable with the settling-time function T(x(0)) = x
2
3 (0); specifically,

the solutions of system (3) is of the form

x(t) =


(

x
2
3 (0)− t

) 3
2 sign(x(0)), for 0 ≤ t ≤ x

2
3 (0)

0, for t > x
2
3 (0)

where x(0) is the initial state. When adding an additional drift term, that is, considering the system below

ẋ = −3
2

x
1
3 − 3

2
x

5
3 (4)

one can easily obtain the solutions of system (4) is

x(t) =

{
tan

3
2

(
tan−1

(
|x(0)| 23

)
− t
)

sign(x(0)), for 0 ≤ t ≤ π
2

0, for t > π
2
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which means that the origin of system (4) is fixed-time stable with the settling-time function T(x(0)) satisfying
T(x(0)) ≤ π/2 uniformly in x(0).

2.2. Technical Lemmas

We list four technical lemmas which will be constantly utilized in proving the main results of this
paper. The proofs of Lemmas 1–3 are provided whereas the one of Lemma 4 can be found in [34,40].

Lemma 1. Let m ≥ 1 is a ratio of two odd integers. For any x, y ∈ R, the following inequality holds:

|x− y|m ≤ 2m−1 |xm − ym| .

Proof. It is sufficient to prove the case when x 6= y. Consider the function

g(s) = 2m−1(sm + (1− s)m)− 1

with s ∈ R. A direct calculation shows that g(s) takes its minimum at s = 0.5. This implies that

0 ≤ 2m−1(sm + (1− s)m)− 1

for all s ∈ R. Since m is a ratio of two odd integers, the result of Lemma 1 can be obtained by letting
s = x/(x− y).

Lemma 2. Let m > 0. For any yi ∈ R, i = 1, . . . , n, the following inequality holds:

(|y1|+ · · ·+ |yn|)m ≤ c (|y1|m + · · ·+ |yn|m)

where c = nm−1 if m ≥ 1 and c = 1 if m < 1.

Proof. If 0 < m < 1, using Lemma A.1 in [34], we have

(|y1|+ · · ·+ |yn|)m ≤ |y1|m + · · ·+ |yn|m.

In the case where 1 ≤ m, it can be deduced from the Hölder’s inequality [41] that

n1−m (|y1|+ · · ·+ |yn|)m ≤ |y1|m + · · ·+ |yn|m.

Putting the two cases together yields Lemma 2.

Lemma 3. Let 0 < p < 1, q > 0 and σ1, σ2 > 0. If h : [0, ∞) → [0, ∞) is a continuous and decreasing
function with h(0) > 0 such that

h(t)− h(0) ≤ −
∫ t

0

[
σ1hp(s) + σ2hq(s)

]
ds

for all t ∈ [0, ∞), then f (t) = 0 for all t ∈ [tr, ∞) where

tr :=
1

σ1(1− p)
+

1
σ2(q− 1)

. (5)

Proof. Two cases are considered in the proof.
Case 1: When h(0) > 1, it is clear that

h(t)− h(t0) ≤ −σ2

∫ t

0
hq(s) ds (6)
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for all t ∈ M1 ⊂ [t0, ∞) in which f (t) > 1. Let S be a set of the form

S :=
{

t
∣∣∣ t ∈ (0, T] such that h(t) > m(t)

}
where T = (h1−q(0)− 1)σ−1

2 /(1− q) and m : [0, T]→ R is a continuous function defined as

m(t) =
[

h1−q(0) + σ2(q− 1)t
] 1

1−q .

Assume that S is nonempty. There exists t1 ∈ S such that h(t1) > m(t1). Further, we define

M :=
{

t
∣∣∣ t ∈ (0, t1) such that h(s) > m(s) for all s ∈ (t, t1]

}
and t2 = inf M. By the continuity of h(·) and m(·), one has h(t2) = m(t2) and h(t) > m(t) ≥ 0 for all
t ∈ (t2, t1]. Hence, it follows that h(t) > m(t) ≥ 0 for all t ∈ [t2, t1]. Additionally, it is not hard to see

m(t)−m(0) = −σ2

∫ t

0
mq(τ) dτ (7)

for all t ∈ [0, T]. With this in mind, it can be deduced from (6) that

∫ t

0
hq(τ) dτ <

∫ t

0
mq(τ) dτ ≤ 0

for all t ∈ [t2 + ε∗, t1] with ε∗ > 0. This implies that there exists t3 ∈ [t2 + ε∗, t1] such that mq(t3) >

hq(t3) providing a contradiction; thus, S is empty. Letting t4 be defined as

t4 :=
1

σ2(q− 1)
≥ h1−q(0)− 1

σ2(1− q)

one readily has h(t) ≤ 1 for all t ∈ [t4, ∞) due to h(t) being decreasing.
Case 2: In the case when h(0) ≤ 1, using the approaches similar to those in Case 1, one can easily

derive that h(t) = 0 for all t ∈ [t5, ∞) with

t5 :=
1

σ1(1− p)
.

Combining two cases shows that a conservation estimate of the time after which f (t) = 0 is
exactly tr = t4 + t5 given by (5).

Lemma 4 ([34,40]). Let m1, m2, γ > 0. For any x, y ∈ R, the following inequality hold:

|x|m1 |y|m2 ≤ γm1

m1 + m2
|x|m1+m2 +

γ
−m1

m2 m2

m1 + m2
|y|m1+m2 .

3. Fixed-Time Stabilizing Controller Design

We first summarize our approach to the construction of a fixed-time stabilizing controller for
system (1) as follows.

Theorem 1. Under Assumption 1, the origin of system (1) is fixed-time stable with the settling-time estimate

T(x0) ≤ Tmax :=
(2n)

κ2
2

2
(2+κ2)κ1

2 −1κ2

− 1

2
(2+κ1)κ1

2 −1κ1

(8)
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if the controller u(x, t) = u is designed as (Because κ1 = κ11/κ12, κ2 = κ21/κ22 and κi1 and κi2, for i = 1, 2,
are positive even integers and positive odd integers, respectively, the controller (9) together with its parameters is
well-defined.)

u = −G+(x, t)
(
L1(x)ξ

2κ1+1
2 + L2(x)ξ

κ1+κ2+1
2 + f(x, t) + ρ sign (ξ2)

)
(9)

with

ξ2 = x
1

1+κ1
2 +

(
2x1+κ1

1 + 2x1+κ2
1

) 1
1+κ1

where κ1 = κ11/κ12 ∈ (−1/2, 0) and κ2 = κ21/κ22 ∈ (0, 1) are parameters with κi1 and κi2, for i = 1, 2,
being positive even integers and positive odd integers, respectively, and L1(x) ∈ Rn×n and L2(x) ∈ Rn×n are
square matrices defined as

L1(x) = α1Φ2+κ1(x) + α2 In + In + 2−κ1(1− κ1)Φ(x)

L2(x) = α3Φ2+κ2(x) + In

Φ(x) = diag (φ1(x), . . . , φn(x))

with φi(x), α1, α2, and α3 of the following form

φi(x) =
2

1
(1+κ1) (κ2 − κ1)

(1 + κ1)
xκ2−κ1

1i

(
1 + xκ2−κ1

1i

) −κ1
1+κ1 + 2

1
1+κ1

(
1 + xκ2−κ1

1i

) 1
1+κ1

α1 =
23−κ2

1 (1 + κ1)
1+κ1(1− κ1)

2+κ1

(2 + κ1)2+κ1

α2 =
2

2
(1+κ1)

−(1+κ1)(1 + κ1)

(2 + κ1)
1+ 1

(1+κ1)

α3 =
22+2κ2−2κ1−κ1κ2(1 + κ2)

1+κ2(1− κ1)
2+κ2

(2 + κ2)2+κ2
.

Proof. A new design philosophy for constructing a fixed-time stabilizer is presented in the proof. To be
more specific, the technique of adding a power integrator [34] is skillfully modified and revamped
by introducing extra manipulations in the construction of virtual controls so that a two-step design
approach is developed whereby a fixed-time stabilizing controller is explicitly designed. Details are
as follows.

Step 1: Choose the scalar function V1 : Rn → R as below

V1(x1) =
1
2

xT
1 x1

which is obviously positive definite, proper (A scalar function γ : Rn → R+ is said to be proper if
for any c > 0, the set γ−1 ([0, c]) is compact in Rn.) and continuously differentiable. Clearly, the time
derivative of V1(x) along the solutions of system (1) takes the following form

V̇1(x1) =
∂V1(x1)

∂x1
ẋ1

= xT
1 x∗2 + xT

1 (x2 − x∗2(x1))



Appl. Sci. 2020, 10, 424 7 of 16

for all x ∈ Rn, where x∗2(x1) =
(

x∗21(x11), . . . , x∗2n(x1n)
)T ∈ Rn is the virtual control. Select the virtual

control x∗2(x1) as

x∗2(x1) = −2
(

x1+κ1
1 + x1+κ2

1

)
.

It follows that

V̇1(x1) = −
n

∑
i=1

2
(

x2+κ1
1i + x2+κ2

1i

)
+

n

∑
i=1

x1i (x2i − x∗2i(x1i)) (10)

for all x1 ∈ Rn. By Lemmas 1 and 4, it can be verified that

x1i (x2i − x∗2i) ≤ |x1i| ·
∣∣∣∣∣
(

x
1

1+κ1
2i

)1+κ1

−
(

x
∗ 1

1+κ1
2i

)1+κ1
∣∣∣∣∣

≤ 1
2κ1
|x1i| ·

∣∣∣∣(x
1

1+κ1
2i

)
−
(

x
∗ 1

1+κ1
2i

)∣∣∣∣1+κ1

≤ 1
2

x2+κ1
1i + α2

∣∣∣∣(x
1

1+κ1
2i

)
−
(

x
∗ 1

1+κ1
2i

)∣∣∣∣2+κ1

.

With this in mind, (10) becomes

V̇1(x1) ≤ −
n

∑
i=1

3
2

x2+κ1
1i −

n

∑
i=1

2x2+κ2
1i +

n

∑
i=1

α2

∣∣∣∣(x
1

1+κ1
2i

)
−
(

x
∗ 1

1+κ1
2i (x1i)

)∣∣∣∣2+κ1

(11)

for all x1 ∈ Rn.
Step 2: Based on x∗2(x1) = −2x1+κ1

1 − 2x1+κ2
1 , we define

ξ1 = (ξ11, . . . , ξ1n)
T = x1

ξ2 = (ξ21, . . . , ξ2n)
T = x

1
1+κ1
2 − x

∗ 1
1+κ1

2 (x1). (12)

As (1 + κ1) is a ratio of two positive odd integers, it is obvious that there is a one-to-one
correspondence between (ξT

1 , ξT
2 ) and (xT

1 , xT
2 ). Consider the scalar function V : R2n → R as below

V(x) = V1(x1) + V2(x)

with

V2(x) =
n

∑
i=1

∫ x2i

x∗2i(x1i)

(
s

1
1+κ1 − x

∗ 1
1+κ1

2i (x1i)

)1−κ1

ds.

Note that, V(x) is clearly positive definite, proper, and continuously differentiable (for the proofs,
please refer to Appendix A). A direct calculation yields

V̇(x) =
∂V1(x1)

∂x1
ẋ1 +

∂V2(x)
∂x

ẋ

≤ −
n

∑
i=1

3
2

x2+κ1
1i −

n

∑
i=1

2x2+κ2
1i +

n

∑
i=1

α2 |ξ2i|2+κ1 +
(

ξ1−κ1
2

)T (
f(x, t) + G(x, t)u + d(x, t)

)
−

n

∑
i=1

(1− κ1) ∂x∗1/(1+κ1)
2i (x1i)

∂x1i
x2i

∫ x2i

x∗2i(x1i)

(
s

1
1+κ1 − x

∗ 1
1+κ1

2i (x1i)

)−κ1

ds (13)
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for all (x, t) ∈ (R2n ×R+) \ N1 where N1 is the set of measure zero [42] defined below:

N1 := {(x, t) | (x, t) ∈ R2n ×R+ such that d(x, t) is discontinuous} ⊂ R2n ×R+.

For brevity, we let

∂

(
−x
∗ 1
(1+κ1)

2i (x1i)

)
∂x1i

=

∂

(
2

1
1+κ1 x1i

(
1 + xκ2−κ1

1i

) 1
1+κ1

)
∂x1i

=: φi(x). (14)

In addition, it is easy to see from (12) and Lemma 2 that

|x2i| ≤ |ξ2i|1+κ1 + |x∗2i|

≤ |ξ2i|1+κ1 + 2 |x1i|1+κ1 + 2 |x1i|1+κ2 . (15)

Also, by Lemma 1, we obtain∣∣∣∣∣
∫ x2i

x∗2i(x1i)

(
s

1
1+κ1 − x

∗ 1
1+κ1

2i (x1i)

)−κ1

ds

∣∣∣∣∣ ≤ 21−(1+κ1)

∣∣∣∣(x
1

1+κ1
2i

)
−
(

x
∗ 1

1+κ1
2i (x1i)

)∣∣∣∣1+κ1

|ξ2i|−κ1

=
1

2κ1
|ξ2i| . (16)

Using (14)–(16) and Lemma 4, we further have∣∣∣∣∣∣
(1− κ1) ∂

(
−x∗1/(1+κ1)

2i (x1i)
)

∂x1i
x2i

∫ x2i

x∗2i(x1i)

(
s

1
1+κ1 − x

∗ 1
1+κ1

2i (x1i)

)−κ1

ds

∣∣∣∣∣∣
≤ (1− κ1) φi(x)

(
|ξ2i|1+κ1 + 2 |x1i|1+κ1 + 2 |x1i|1+κ2

) 1
2κ1
|ξ2i|

≤ 1
2
|x1i|2+κ1 +

1
2
|x1i|2+κ2 + α3φ2+κ2

i (x) |ξ2i|2+κ2 +

(
(1− κ1)

2κ1
φi(x) + α1φ2+κ1

i (x)
)
|ξ2i|2+κ1 . (17)

It follows from (13) and (17) that

V̇(x) ≤ −
n

∑
i=1

x2+κ1
1i −

n

∑
i=1

x2+κ2
1i +

n

∑
i=1

(
(1− κ1)

2κ1
φi(x) + α1φ2+κ1

i (x) + α2

)
|ξ2i|2+κ1

+
n

∑
i=1

α3φ2+κ2
i (x) |ξ2i|2+κ2 +

(
ξ1−κ1

2

)T (
f(x, t) + G(x, t)u + d(x, t)

)
(18)

for all (x, t) ∈ (R2n ×R+) \ N1. In order to guarantee the state convergence of the overall system,
the controller u is designed as (9) in which a discontinuous (piecewise continuous) term ρ sign(ξ2) is
subtly included to produce the efforts for effectively compensating the influence of the uncertainties
d(x, t). Substituting the controller (9) into (18) yields

V̇(x) ≤ −
n

∑
i=1

x2+κ1
1i −

n

∑
i=1

x2+κ2
1i −

n

∑
i=1

ξ2+κ1
2i −

n

∑
i=1

ξ2+κ2
2i (19)

for all (x, t) ∈ (R2n ×R+) \ (N1 ∪N2) where

N2 = {(x, t) | (x, t) ∈ R2n ×R+ such that u is discontinuous} ⊂ R2n ×R+
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which is a set of measure zero. Now, similarly to the derivation of (16), it is not difficult to derive that∣∣∣∣∣
∫ x2i

x∗2i(x1i)

(
s

1
1+κ1 − x

∗ 1
1+κ1

2i (x1i)

)1−κ1

ds

∣∣∣∣∣ ≤ 21−(1+κ1)

∣∣∣∣(x
1

1+κ1
2i

)
−
(

x
∗ 1

1+κ1
2i (x1i)

)∣∣∣∣1+κ1

|ξ2i|1−κ1

≤ 1
2κ1

ξ2
2i

which leads to

V(x) ≤ 1
2

n

∑
i=1
|x1i|2 +

n

∑
i=1
|x2i − x∗2i(x1i)| · |ξ2i|1−κ1

≤ 1
2κ1

n

∑
i=1

(
x2

1i + ξ2
2i

)
. (20)

In addition, it can be shown directly by Lemma 2 that

(
n

∑
i=1

x2
1i + ξ2

2i

) 2+κ1
2

≤
n

∑
i=1
|x1i|2+κ1 + |ξ2i|2+κ1 (21)

(
n

∑
i=1

x2
1i + ξ2

2i

) 2+κ2
2

≤ (2n)
κ2
2

n

∑
i=1

(
|x1i|2+κ2 + |ξ2i|2+κ2

)
. (22)

With (20)–(22) in mind, we have

2
(2+κ1)κ1

2 V
2+κ1

2 (x) ≤ 2
(2+κ1)κ1

2

(
2−κ1

n

∑
i=1
|x1i|2 + |ξ2i|2

) 2+κ1
2

≤
n

∑
i=1
|x1i|2+κ1 + |ξ2i|2+κ1

and

(2n)−
κ2
2 2

(2+κ2)κ1
2 V

2+κ2
2 (x) ≤ (2n)−

κ2
2 2

(2+κ2)κ1
2

(
2−κ1

n

∑
i=1
|x1i|2 + |ξ2i|2

) 2+κ2
2

≤
n

∑
i=1
|x1i|2+κ2 + |ξ2i|2+κ2 ,

which immediately leads to

V̇(x) ≤ −2
(2+κ1)κ1

2 V
2+κ1

2 (x)− (2n)−
κ2
2 2

(2+κ2)κ1
2 V

2+κ2
2 (x) (23)

for all (x, t) ∈ (R2n × R+) \ (N1 ∪ N2). Notably, it follows from [43] and (23) that with the initial
state x0 ∈ R2n, the (non-unique) solutions x(t) of the closed-loop system (1) under the (piecewise
continuous) controller (9) are well-defined on [0, ∞) and locally absolutely continuous; moreover,
V(x(t)) is continuous, decreasing, and satisfies

V(x(t))−V(x(0)) ≤
∫ t

0

[
−2

(2+κ1)κ1
2 V

2+κ1
2 (x(s))− (2n)−

κ2
2 2

(2+κ2)κ1
2 V

2+κ2
2 (x(s))

]
ds

for all t ∈ [0, ∞). As 2(2+κ1)κ1/2 > 0 and (2n)−κ2/22(2+κ2)κ1/2 > 0, it readily follows from Lemma 3
that V(x(t)) = 0 for all t ∈ [Tmax, ∞) where Tmax is given by (8). This along with the fact of V(x) being
positive definite, proper, and continuously differentiable leads to x(t) = 0 for all t ∈ [Tmax, ∞); i.e.,
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the origin of the closed-loop system (1) under the (piecewise continuous) controller (9) is fixed-time
stable.

Remark 2. Notably, the controller parameters are simply κ1 and κ2. Once κ1 and κ2 are determined,
the associated settling-time estimate Tmax can be computed accordingly. In practice, Tmax can be suitably
assigned by adjusting the parameters κ1 and κ2 thereby acquiring a smaller settling-time (convergence time) and
its estimate, though this might increase the control effort accordingly.

Remark 3. Although the technique of adding a power integrator was also employed in [24] to perform fixed-time
stabilization, the system considered in [24] has only a single input. Unlike the results of [24], the approach
developed in this paper is applicable, not only to a class of second-order multivariable multi-input systems,
but also to systems with a single input. Moreover, the controller designed in [24] is continuous only so that
the possible external disturbances were necessarily neglected in [24]. In contrast, by means of the approach
presented in this paper, the resultant controller is discontinuous and therefore is capable of handling both the
model uncertainties and external disturbances; of course, when there is no uncertainty/disturbance, the resultant
controller becomes continuous.

Remark 4. The presented controller (9) is constructed with the utilization of fractional powers so that the
resultant control efforts provide a finite-time (fixed-time) state convergence; however, the convergence rate will be
slower/worse when the initial state is far way from the origin. As shown in [30], a potential strategy achieving a
fast convergence simultaneously for the case of initial states being close to or far way from the origin is to design
controllers in a uniform way with considering concurrently the feedbacks of both linear and fractional powers
forms. Addressing this issue will be one of our future research directions.

Remark 5. In the proof of Theorem 1, two zero-measure sets N1 and N2, having no influence on stability
analysis, are isolated from the region of verifying the inequality (23); this means that in stability analysis of the
closed-loop system it is enough to consider only the region of both d(x, t) and u being continuous. A notable
feature of the closed-loop system is that in the case when (x(t), t) ∈ N1, the discontinuity of d(x, t) will result
in an abrupt change in the values of the control signals; also, when (x(t), t) ∈ N2, the controller u becomes
discontinuous and the chattering phenomenon might appear in the responses of the controller u.

4. Simulation Studies

The proposed design approach is now applied to the attitude stabilization problem of a spacecraft.
Consider the attitude control model of a spacecraft shown in [35,44], which has the same form as
(1) with n = m = 3. The system states of this model are the three Euler angles (φ, θ, ψ) and their
derivatives (φ̇, θ̇, ψ̇), i.e., x1 = (x11, x12, x13)

T = (φ, θ, ψ)T and x2 = (x21, x22, x23)
T = (φ̇, θ̇, ψ̇)T .

Moreover, the drift term f(x, t) is time-invariant and G(x, t) is a constant matrix [44]; thus, f(x, t)
and G(x, t) are briefly denoted by f(x) = ( f1(x), f2(x), f3(x))T and G, respectively, while having the
following form [35]:

f1(x) = ω0x23cx13cx12 −ω0x22sx13sx12 +
Iy − Iz

Ix

[
x22x23 + ω0x22cx11sx13sx12

+ ω0x22cx13sx11 + ω0x23cx13cx11 +
1
2

ω2
0s(2x13)c2x11sx12

+
1
2

w2
0c2x13s(2x11)−ω0x23sx13sx12sx11 −

1
2

ω2
0s2x12s2x13s(2x11)

− 1
2

ω2
0s(2x13)sx12s2x11 −

3
2

ω2
0c2x12s(2x11)

]
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f2(x) = ω0x23sx13cx11 + ω0x21cx13sx11 + ω0x23cx13sx12sx11

+ ω0x22sx13cx12sx11 + ω0x21sx13sx12cx11 +
Iz − Ix

Iy

[
x21x23

+ ω0x21cx11sx13sx12 + ω0x21cx13sx11 −ω0x23sx13cx12

− 1
2

ω2
0s(2x12)s2x13cx11 −

1
2

w2
0cx12sx11s(2x13) +

3
2

ω2
0s(2x12)cx11

]
f3(x) = ω0x21sx11sx13sx12 −ω0x23cx11cx13sx12 −ω0x22cx11sx13cx12

+ ω0x23sx13sx11 −ω0x21cx13cx11 +
Ix − Iy

Iz

[
x21x22

+ ω0x21cx13cx11 −ω0x21sx13sx12sx11 −ω0x22sx13cx12

− 1
2

ω2
0s(2x13)cx12cx11 +

1
2

w2
0s2x13sx11s(2x12)−

3
2

ω2
0s(2x12)sx11

]

G =

 0.67 0.67 0.67
0.69 −0.69 −0.69
0.28 0.28 −0.28

 .

Here, Ix = 2000 N ·m · sec2, Iy = 400 N ·m · sec2, and Iz = 2000 N ·m · sec2 are the inertias of the
coordinate axes, ω0 = 1.0312× 10−3 rad/sec denotes the orbital rate, and s(·) and c(·) represent the
sine and cosine functions, respectively. Additionally, we also assume that the attitude model suffers
from the following discontinuous disturbances

d(x, t) =

{
(sin(t), cos(2t), sin(3t))T if t ≤ 0.4 sec
0.1(cos(3t), sin(t), cos(2t))T if t > 0.4 sec

.

For demonstration, the parameters κ1 and κ2 are selected as κ1 = −2/15 and κ2 = 2/15,
respectively. With these settings, the settling-time estimate is Tmax = 35 and the associated gain
matrices L1(x), L2(x), and Φ(x) can be determined accordingly.

The simulation results shown in Figures 1 and 2 are conducted for the initial state x(0) =

(0.5, 0.3,−0.48,−1.9, −1.2, 2)T . Clearly, Figure 1 shows that the finite-time stabilization task can be
successfully performed by the corresponding control signals shown in Figure 2, where the abrupt
changes in the control signals originate from the discontinuity of d(x, t) at t = 0.4 s. It can be
found that the settling-time (convergence time) of state trajectories is much less than Tmax = 35 (i.e.,
the settling-time estimate). This in turn reveals that the fixed-time stabilization can be achieved
by the controller designed by Theorem 1. In addition, Figure 3 depicts the convergence times
of the simulations conducted with different initial states from which one can observe that the
correspondence between the convergence time and initial state, and obtain, moreover, the same
conclusion (i.e., the success of the fixed-time stabilization). Notably, this example exhibits the merits
and effectiveness of the proposed approach.
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Figure 1. State trajectories of the closed-loop system.
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Figure 2. Control signals of the closed-loop system.
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Figure 3. Convergence times for different initial states.

5. Conclusions

This paper has addressed the problem of fixed-time stabilization for a class of second-order
(multivariable) nonlinear systems. A new design approach was developed by skillfully introducing
extra manipulations in the feedback domination and delicately revamping the technique of adding a
power integrator. Under the presented approach, a state feedback fixed-time stabilizing controller and
a Lyapunov function for verifying fixed-time convergence can be organized explicitly. An example of
the spacecraft attitude stabilization was also presented to demonstrate the effectiveness of our method.
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Appendix A

Appendix A.1 Proof of V(x) Being Positive Definite

It follows directly from the construction of V(x) that V(0) = 0. Moreover, by using Lemma 1, it is
easy to show that

V2(x) =
n

∑
i=1

∫ x2i

x∗2i(x1i)

(
s

1
1+κ1 − x

∗ 1
1+κ1

2i (x1i)

)1−κ1

ds

≥
n

∑
i=1

ci

(
x2i − x∗2i(x1i)

) 2
1+κ1
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where

ci = 2
κ1(1−κ1)

1+κ1

(
1 + κ1

2

)
.

This shows that

V(x) ≥ V1(x1) +
n

∑
i=1

ci

(
x2i − x∗2i(x1i)

) 2
1+κ1 . (A1)

As x∗2i(0) = 0 and V1(x1) is positive definite and proper, the remaining proof can be divided into
two cases.

Case 1: If x = (xT
1 , xT

2 ) 6= 0 with x1 6= 0, we have

V(x) ≥ V1(x1) +
n

∑
i=1

ci

(
x2i − x∗2i(x1i)

) 2
1+κ1

≥ V1(x1)

> 0.

Case 2: In the case when x = (0T , xT
2 ) 6= 0, it follows from (A1) that

V(x) ≥ V1(x1) +
n

∑
i=1

ci

(
x2i − x∗2i(x1i)

) 2
1+κ1

≥ cix
2

1+κ1
2i

> 0.

Hence, one can conclude that V(x) is positive definite.

Appendix A.2 Proof of Properness of V(x)

Considering the properness of V1(x1), it can be deduced from (A1) that V(x)→ ∞ when ‖x1‖ →
∞ or |x2i| → ∞ for some i ∈ {1, . . . , n}. This implies directly that V(x)→ ∞ as ‖x‖ = ‖(xT

1 , xT
2 )‖ → ∞;

that is, V(x) is proper.

Appendix A.3 Proof of V(x) Being Continuously Differentiable

Since V1(x1) is continuously differentiable, we only show that V2(x) is continuously differentiable.
Obviously, one has

∂

∂x1i

∫ x2i

x∗2i(x1i)

(
s

1
1+κ1 −x

∗ 1
1+κ1

2i (x1i)

)1−κ1

ds=
− (1− κ1) ∂x∗1/(1+κ1)

2i (x1i)

∂x1i

∫ x2i

x∗2i(x1i)

(
s

1
1+κ1 −x

∗ 1
1+κ1

2i (x1i)

)−κ1

ds

and

∂

∂x2i

∫ x2i

x∗2i(x1i)

(
s

1
1+κ1 − x

∗ 1
1+κ1

2i (x1i)

)1−κ1

ds = ξ1−κ1
2i .

By the fact that (1− κ1) > 1 and the continuity of ξ2i, it is not hard to see that

∂

∂x2i

∫ x2i

x∗2i(x1i)

(
s

1
(1+κ1) − x

∗ 1
(1+κ1)

2i (x1i)

)1−κ1

ds
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is continuous. On the other hand, the continuity of

∫ x2i

x∗2i(x1i)

(
s

1
(1+κ1) − x

∗ 1
(1+κ1)

2i (x1i)

)−κ1

ds

is due to the continuity of both x∗2i(x1i) and (s1/(1+κ1) − x∗1/(1+κ1)
2i (x1i))

−κ1 (see, e.g., [45]). Now, since

1/(1 + κ1) > 1, it follows that ∂x∗1/(1+κ1)
2i (x1i)/∂x1i is continuous, and therefore V2(x) is continuously

differentiable.
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