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Featured Application: Planar deformation measurement in the destructive mechanical testing of
masonry specimens, using an affine geometrical camera model.

Abstract: This paper addresses the planar measurement problem in the destructive mechanical testing
of masonry specimens, describing the proposed optical measurement solution. The adopted affine
geometrical camera model is described as well as its experimental implementation using a digital
camera and a measurement referential traceable to the International System of Units (SI). Experimental
results from non-destructive tests are presented and discussed, including measurements obtained
from the use of classical contact instrumentation. Measurement estimates and uncertainties related to
the quantified mechanical properties are also shown.
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1. Introduction

This paper describes the optical methodology related to the planar deformation measurement
problem in the destructive mechanical testing of masonry specimens, in the context of scientific research
activities related to the study of the behavior of masonry walls in old buildings, built in the beginning
of the 20th century, in the city of Lisbon (Portugal). Some of the old masonry buildings in the city of
Lisbon have a high state of degradation and, as a consequence, a greater vulnerability to seismic actions.
Despite all the scientific advances made in the context of the seismic vulnerability and structural
reinforcement of these buildings, there is still a need for further research in this area, motivated by the
minimization of the risk related to the loss of human lives.

Knowledge of the characteristics of resistant masonry walls is one of the aspects that still have
gaps, mainly due to the difficulty in obtaining representative specimens. In addition, the growing
interest in the rehabilitation of these buildings contributes to the search for new reinforcement solutions
that are compatible with the original building construction techniques. It is equally important to ensure
that these reinforcement techniques, in addition to the aesthetic and functional aspects, also reduce the
seismic vulnerability of these buildings [1–3].
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This research field is characterized by a reduced knowledge about the mechanical behavior of
masonry walls and structural reinforcement techniques, compatible with those walls, aiming the
improvement of the structural performance of this type of buildings, motivated by the high seismic risk
in the Lisbon metropolitan area. In particular, the studied buildings include structural elements such
as load-bearing masonry walls composed by solid and hollow ceramic bricks and bedding mortars
composed by air lime. Therefore, a proper rehabilitation of this type of buildings can be compromised
without a rigorous knowledge of the mechanical behavior of these elements, namely, the development
of reinforcement techniques, which can contribute to increasing the structural safety of buildings.

Since masonry is a heterogeneous composite material on a mesoscopic level, essentially consisting
of bricks and mortar joints, the analysis of its mechanical behavior is extremely complex [4].
The constituent elements themselves and the connection between them may be defective, which
results in a nonlinear structural behavior when masonry is subjected to both static and dynamic loads.
This behavior is usually accompanied by increasing anisotropy to increasing levels of deformation due
to various physical phenomena that occur at different scales of observation, such as contact and friction
between crack surfaces. These phenomena are directly related to the existence of defects present in the
materials’ microstructures [5]. However, masonry can also be analyzed from a macroscopic point of
view on its overall behavior, which results from the combination of the constituent materials, in this
case the behavior of ceramic bricks, bedding mortars, and the interaction between them.

The mechanical destructive testing of masonry specimens retrieved from the studied buildings,
with nominal dimensions of 0.80 m (height), 0.70 m (length), and 0.25 m (width), gives a strong
contribution to the knowledge improvement in this research field. However, in this type of dimensional
testing, the use of conventional instrumentation, typically invasive methods such as measurement
chains using LVDT (linear variable displacement transformer) sensors under dynamic conditions are
known to have many constrains, namely because of risk of damage due to the destructive nature of the
testing (namely, the fracture and collapse of the specimens).

The research and development of optical non-invasive systems and algorithms that provide
novel solutions to obtain accurate measurements under dynamic and destructive conditions are
being improved, and today these have a large potential to overcome the limitations of this type of
conventional contact approach. The introduction of this new technique requires the validation of the
process, considering the evaluation of measurement uncertainty and the traceability to SI.

This paper concerns the study of this measurement problem, including the development of a new
non-invasive measurement solution based on non-contact optical measurement, in order to provide
accurate and SI traceable planar deformation measurements in the tested masonry specimens.

Section 2 describes the classical instrumentation used in masonry specimen testing and presents the
proposed alternative optical approach, namely, the measurement model, method, and system as well
as the adopted digital image processing algorithm. The experimental work, based on non-destructive
testing of masonry specimens, is described in Section 3, including the metrological characterization of
the classical and the optical measurement chains used in this context, the description of the testing
apparatus, and the obtained results. Section 4 describes the measurement uncertainty evaluation of the
quantified mechanical quantities, which includes the instrumental measurement uncertainty related to
the use of the classical and the optical measurement approach. A discussion of the obtained results is
shown in Section 5.

2. Planar Deformation Measurement Methods in Masonry Specimens

2.1. Classical Instrumentation

The study of the structural behavior of masonry walls—composed by solid and hollow ceramic
bricks and air lime bedding mortars—can be supported in multiple experimental activities, namely,
mechanical testing in order to characterize this type of old building material when subjected to
compressive or flexion actions. In general, testing machines and dedicated devices such as reaction
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frames and hydraulic actuators are used in the assembly and testing of specimens representing the
structural element in study. In addition to the force and displacement measurement chains that
compose the testing equipment, the instrumentation of masonry specimens can include (see Figure 1):

• Unidimensional deformeters;
• Electrical strain gauges;
• LVDT sensors.
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strain gauge; (c) linear variable displacement transformer (LVDT) sensor.

In general, these contact sensors are connected to a data acquisition system that provides electrical
power and is responsible for the conditioning and processing of the electrical signals received.
The existence of multiple measurement chains and the dynamic nature of the testing activities also
imply the use of a synchronization signal generator. The collected data allows quantifying the relation
between stress and the dimensional quantities (displacement or strain) in regions of interest in the
tested specimen, namely in its central area, from which several mechanical properties can be obtained
and used for its characterization, namely, the compressive strength, σ, the modulus of elasticity, E, and
the Poisson ratio, υ, which are, respectively, determined by the following expressions:

σ = Fmax/A, (1)

E = Fmax/(3 × εv × A), (2)

υ = εh/εv, (3)

where Fmax is the maximum load force, A is the specimen’s cross-section area (defined by the product
between its length, l, and width, w), and εh and εv are the horizontal and vertical strains measured
when the maximum stress is achieved. Both the horizontal and vertical strains are obtained from the
ratio between the deformation, ∆L, observed between two points at the maximum stress and the initial
length, L0, between the same two points before load application, i.e.,

ε = ∆L/L0 (4)

∆L = L − L0 (5)

where L is the measured length between the two points at the maximum stress.
The overall calculation process related to the compressive mechanical testing of masonry specimens

is shown in Figure 2.
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Figure 2. Functional diagram of the quantities and mathematical models related to the compressive
mechanical testing of masonry specimens.

The determination of compressive strength requires the destructive testing of the specimen,
which can seriously damage the above-mentioned sensors and, in the case of specimens with large
dimensions retrieved from the old buildings, can significantly increase the economic cost of the
performed testing activities, namely, when dealing with unique specimens with a high asset value.
The loss of instrumentation during the collapse of the specimen also invalidates any measurement
performed in that stage, thus not allowing any behavior analysis.

In the destructive compressive testing, LVDT sensors are usually placed on each frontal and rear
surface of the specimen, aiming strain measurement in two directions (vertical and horizontal) for
determination of the Poisson ratio. When the specimen begins to show the first signs of permanent
deformation, the LDVT sensors are removed in order to avoid any damage, and the test progresses to
the specimen collapse.

2.2. Proposed Optical Approach

2.2.1. Measurement Model and Method

The proposed optical measurement solution consists in the use of a single camera with a spatial
position and orientation that allows the visualization of a set of targets distributed in a balanced way
by different regions (in the static region surrounding the specimen and in the dynamic tested specimen
surface). The use of a single camera instead of multiple cameras is justified by its simplicity, numerical
stability, and less costly experimental apparatus, without compromising the intended measurement
accuracy level.

In the geometrical modeling of the bi-dimensional image formation process in optical systems [6],
it is possible to find two main categories of camera models—perspective and affine models—which
can potentially be applied to the proposed optical measurement solution.

The perspective camera model (see Figure 3a) is usually applied in observation contexts that
demand a highly rigorous geometrical accuracy, being related to complex and nonlinear mathematical
formulation, for example, related to the lens distortion correction. The affine camera models are
characterized by a higher simplicity, since they are approximations to the perspective model; therefore,
they have a lower geometrical accuracy.
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Within the generalized affine camera models, it is possible to distinguish three particular cases:
orthographic, weak perspective, and paraperspective.

The orthographic model (see Figure 3b) is the simplest affine camera model, where the depth of
the three-dimensional component is ignored, and the optical center is located in infinity. This type of
projection is also designated as parallel projection, since the projection lines established between points
in space and in the image are parallel to each other and orthogonal to the image plane. It assumes
a unitary scale coefficient and corresponds to an exact solution for camera modeling when using a
telecentric lens (originates a constant magnification of objects seen in the field depth range, independent
of the observation distance), or an approximate solution in the case of tele-objective lens (with a high
focal length) and object visualization where the depth variation is quite reduced when compared with
the observation distance).

The addition of a non-unitary uniform scale coefficient for both image axis to the orthographic
model, relating the object dimension in the world (expressed in millimeters, for example) with the
corresponding image dimension (usually expressed in pixels), originates the weak perspective model,
as represented in Figure 3c. In this type of projection, object points are projected to the average depth
plane, Zc, parallel to the image plane, followed by a perspective projection with isotropic scaling to the
image plane. For this reason, the weak perspective is also designated orthographic projection with
uniform scaling, where a depth average value is used instead of the depth individual values of each
object point (individual scaling), as it is of the case of the perspective projection. The projection error of
the weak perspective model relative to the perspective model is minimized in the case of the use of a
reduced focal length camera, narrow field-of-view, and reduced depth variation relative to the average
depth plane.
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In the paraperspective, as shown in Figure 3d, object points in space are projected to the average
depth plane (parallel to the image plane) following a direction parallel to the line that passes through
the object’s centroid and the camera optical center.

In this study, the weak perspective model or the orthographic model with uniform scaling, K, is
adopted, allowing to relate the three-dimensional point position (X, Y, Z) in the world (expressed in
millimeters, for example) with the corresponding bi-dimensional position (x, y) in the image (usually
expressed in pixels), i.e.,

∆X = K · ∆x (6)

∆Y = K · ∆y (7)

where ∆X and ∆Y represent the planar displacement of the point between two consecutive time
observations, in the X (horizontal) and Y (vertical) directions, respectively, of the world coordinate
system. In a similar way, ∆x and ∆y represent the corresponding planar point displacement in the x
and y directions of the image coordinate system.

In the proposed approach, a measurement referential composed of reference targets is placed in
front of the observation region in the masonry specimen (with length l and width w) at the minimum
reasonable distance from the specimen surface in order to minimize the observation depth difference
to the monitoring targets fixed and scattered in the observation region (in the inner region of the
referential), as shown in Figure 4.

Appl. Sci. 2020, 10, x 6 of 24 

In the paraperspective, as shown in Figure 3d, object points in space are projected to the average 
depth plane (parallel to the image plane) following a direction parallel to the line that passes through 
the object’s centroid and the camera optical center. 

In this study, the weak perspective model or the orthographic model with uniform scaling, K, is 
adopted, allowing to relate the three-dimensional point position (X, Y, Z) in the world (expressed in 
millimeters, for example) with the corresponding bi-dimensional position (x, y) in the image (usually 
expressed in pixels), i.e., 

ΔX = K ∙ Δx (6)

ΔY = K ∙ Δy (7)

where ΔX and ΔY represent the planar displacement of the point between two consecutive time 
observations, in the X (horizontal) and Y (vertical) directions, respectively, of the world coordinate 
system. In a similar way, Δx and Δy represent the corresponding planar point displacement in the x 
and y directions of the image coordinate system. 

In the proposed approach, a measurement referential composed of reference targets is placed in 
front of the observation region in the masonry specimen (with length l and width w) at the minimum 
reasonable distance from the specimen surface in order to minimize the observation depth difference 
to the monitoring targets fixed and scattered in the observation region (in the inner region of the 
referential), as shown in Figure 4. 

 
Figure 4. Schematic representation of the proposed optical measurement method. 

As shown in Figure 4, the targets positioning on the specimen allows determining horizontal and 
vertical deformations, including bricks and mortar joints, making the deformation measurement 
representative of the overall deformation of the masonry specimen. 

The mentioned referential is subjected, before the specimen testing, to dimensional measurement 
aiming at the determination of the three-dimensional world position of each reference target. The 
knowledge of these spatial coordinates supports the determination of the scale coefficient in each 
acquired image, since the measurement referential is placed in a static region of the specimen 
experimental setup (assuring that it does touch the specimen and is not subjected to vibrations 
produced by the testing machine). Through digital image processing, it is possible to obtain the 
corresponding two-dimensional image positions of the observed reference targets and calculate the 
scale coefficient between pairs of targets using the expression 

Ki,j = Di,j/di,j  (8)

Figure 4. Schematic representation of the proposed optical measurement method.

As shown in Figure 4, the targets positioning on the specimen allows determining horizontal
and vertical deformations, including bricks and mortar joints, making the deformation measurement
representative of the overall deformation of the masonry specimen.

The mentioned referential is subjected, before the specimen testing, to dimensional measurement
aiming at the determination of the three-dimensional world position of each reference target.
The knowledge of these spatial coordinates supports the determination of the scale coefficient
in each acquired image, since the measurement referential is placed in a static region of the specimen
experimental setup (assuring that it does touch the specimen and is not subjected to vibrations produced
by the testing machine). Through digital image processing, it is possible to obtain the corresponding
two-dimensional image positions of the observed reference targets and calculate the scale coefficient
between pairs of targets using the expression

Ki,j = Di,j/di,j (8)
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where i = j = 1, 2, . . . , n, with i , j and n being the total number of reference targets in the referential,
and Di,j and di,j are, respectively, the distances between the two targets i and j in the world and in the
image coordinate system, i.e.,

Di,j =
√

[(Xi − Xj)2 + (Yi − Yj)2 + (Zi − Zj)2] (9)

di,j =
√

[(xi − xj)2 + (yi − yj)2]. (10)

Since the measurement referential can have several pairs of reference targets, an average value
of the scale coefficient and the correspondent standard deviation of the experimental sample can be
obtained. This calculation procedure (represented in Figure 5) contributes to the reduction of the scale
coefficient measurement uncertainty components related to the effect of the lens distortion and planar
misalignments between the specimen surface, the measurement referential, and the image plane.
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It should be noticed that the reference target’s image coordinates can also be used to assess the
referential static position stability and the turbulence effect on the optical path between the targets and
the camera by analyzing low and high-frequency fluctuations in their position during testing.

2.2.2. Measurement System

The implemented optical measuring system for the masonry specimen testing setup is presented
in Figure 6. In this figure, the main elements are numbered and described as follows:

1. Digital camera (brand Allied Vision Technologies, model Prosilica GX1050, Stadtroda, Germany),
which includes the image sensor (CCD—charge-coupled device type, 1024 × 1024 pixels, 3.6 mm x
4.8 mm dimension, 5.5 µm squared pixel, acquisition frequency of 100 images per second, 14 bits
radiometric resolution for gray-level images, exposure time between 10 µs and 26.8 s, GigE data
communication and “mono8” image format), and an optical lens (with variable focal distance
between 8 mm and 48 mm and C-type connection);

2. Telemetry device (brand Videotec, model DTMRX224, Schio, Italy) for remote adjustment of
the camera’s focal distance, aperture, and lens focus, supported by a LabVIEW™ (National
Instruments, Austin, Texas, USA) computational routine;

3. Signal generator (LNECs Scientific Instrumentation Centre, Lisbon, Portugal) for the
synchronization of additional cameras and remaining instrumentation of the tested specimens
(50% duty-cycle, frequency between 0.1 Hz and 114 Hz and variable frequency increments of
0.1 Hz and 1 Hz);

4. AVT Vimba computational application (version 1.3.0) for use with Allied Vision Technologies
cameras, for image acquisition configuration, visualization, and image record purposes;

5. Measurement referential (LNEC’s Scientific Instrumentation Centre, Lisbon, Portugal), with eight
reference targets (circular geometrical shape and 4 mm diameter, with known world coordinates),
with a white color in order to have a high contrast relative to the remaining black surface of
the referential;
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6. Monitoring targets (LNEC’s Scientific Instrumentation Centre, Lisbon, Portugal), with unknown
world coordinates, applied to the tested specimen, with the dimension and shape similar to the
reference targets in the measurement referential.

1 
 

  

(a) (b) 

 

3 and 4 

1 

2 

6 

5 

Figure 6. Experimental setup: (a) global view; (b) classical and optical measurement systems.

2.2.3. Digital Image Processing

The image digital processing was supported in a computational routine developed in MATLAB®

(MathWorks, Natick, Massachusetts, USA), aiming at the determination of image coordinates of the
geometrical center of both the reference and monitoring targets. In the case of the reference targets,
the adopted target identification convention was a numerical sequence between one and eight, starting
in the target located in the image upper left corner and following a clockwise direction for the following
targets located in the measurement referential (see Figure 7a). For the case of the monitoring targets
(located in the inner region of the measurement referential, as shown in Figure 7a), the mentioned
numerical sequence was extended to these targets, continuing with the monitoring target located
in the upper left corner of the referential inner region and following the clockwise direction for the
remaining targets.
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The developed algorithm (schematically shown in Appendix A) is composed by the following
sequential tasks:

1. Initialization (execution display configuration, memory, and command window cleaning, opened
images closure and variable numerical format definition);

2. Assignment of numerical values to the input quantities:

a. Number of images;
b. Threshold (in gray level);
c. Window dimension (in pixels) around the targets, based on the lateral dimension of the

target support and expected displacement;
d. Approximate image coordinates of the targets centroids (in pixels);

3. File opening for the record of target image coordinates;
4. Matrix initialization for the record of target image coordinates;
5. For each acquired image, execution of the following tasks:

a. Variable definition related to the original image designation;
b. Original image opening;
c. Matrix initialization with the targets individual sub-images;
d. Counter initialization related to the coordinates;
e. For each target visible on the image, execution of the following operations:

i. Definition of the interest area in the original image;
ii. Matrix initialization related to the target binary sub-image;
iii. Generation of the binary image by thresholding;
iv. Target identification;
v. Determination of the target centroid in the binary sub-image;
vi. Conversion of the target centroid image coordinates for the original image

coordinate system;
vii. Record the target image coordinates;

f. Record the targets image coordinates in the output file;
g. Graphical representation of the centroids in the image (optional);

6. Closure of the targets image coordinates record file.

Figure 7 shows an example regarding three sub-images of a digitally processed target.

3. Experimental Testing

3.1. Metrological Characterization of the Optical Measurement Chain

Two identical measurement referentials (with designations A and B) were subjected to dimensional
testing, aiming at the determination of the reference targets world coordinates, which are visualized in
the camera’s field-of-view.

These tests were performed in a laboratorial environment (controlled temperature between
19 and 21 ◦C, and relative humidity below 65%), using an SI traceable three-dimensional optical
measuring machine (brand Mitutoyo, model QV APEX 302 PRO, Kawasaki, Kanagawa, Japan), with a
measurement interval of 300 mm × 200 mm × 200 mm, resolution equal to 0.1 µm and an instrumental
measurement accuracy of 5 µm, as the reference equipment.

Figure 8 shows the dimensional measurement of referential A in the mentioned optical measuring
machine. Tables 1 and 2 show the estimates and sample experimental standard deviations of the
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reference targets’ world coordinates for the measurement referentials A and B, respectively, considering
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Table 1. Three-dimensional spatial coordinates of the reference targets—referential A.

Target Identification X
/mm

Y
/mm

Z
/mm

1 10.320 ± 0.009 10.153 ± 0.030 5.105 ± 0.031
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Table 2. Three-dimensional spatial coordinates of the reference targets—referential B.

Target Identification X
/mm

Y
/mm

Z
/mm

1 10.197 ± 0.018 10.733 ± 0.034 5.077 ± 0.028
2 10.183 ± 0.032 100.785 ± 0.036 4.936 ± 0.015
3 10.213 ± 0.057 190.752 ± 0.032 4.959 ± 0.011
4 100.437 ± 0.054 190.655 ± 0.016 4.858 ± 0.007
5 190.448 ± 0.053 190.558 ± 0.025 4.811 ± 0.012
6 190.007 ± 0.035 100.710 ± 0.026 4.928 ± 0.011
7 190.112 ± 0.022 10.751 ± 0.025 5.032 ± 0.037
8 100.135 ± 0.024 10.920 ± 0.017 5.198 ± 0.009

The measurement samples of the reference targets show a dispersion of values comprised between
9 and 57 µm, which can be considered as a major measurement uncertainty component, reflecting
the influence of shape deviation of each target in the measurement of the center three-dimensional
coordinates. Estimates of the Z coordinate show a variation of 0.1 mm order of magnitude close to the
nominal value of 5 mm, which is considered suitable for the adopted camera model (weak perspective)
and implemented observation distance.

3.2. Metrological Characterization of the Contact Measurement Chain

Although not used in the destructive compressive testing of masonry specimens, this study
included the metrological characterization of contact dimensional measurement chains with LVDT
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sensors in order to establish a comparative basis relative to the proposed alternative measurement
approach described in Section 2.2. In a first stage, this laboratorial task included the horizontal
calibration of the LVDT sensors (composed by its fixed coil housing and the moveable core stem)
without assembly accessories (springs) and, in a second stage, the vertical calibration with and without
the assembly accessories. This last stage aimed to determine the magnitude of the measurement
uncertainty component related to the LVDT installation onto the masonry specimen to be tested,
namely, the impact of the measurement position and the use of springs.

The tested LVDT sensors (brand HBM, model W50K, Darmstadt, Germany), with a measurement
interval between ±50 mm, were calibrated in a controlled laboratorial environment (temperature
between 19 and 21 ◦C, and relative humidity below 65%), based on the electrical tension readings
obtained through the data acquisition system (brand HBM, model Spider 8, Darmstadt, Germany) to
which each LVDT sensor was connected. In the horizontal calibration, displacement reference values
were obtained from SI traceable measurement standard equipment, a unidimensional measuring
machine (brand Trimos, model Tulm 0210-450, Renens, Switzerland), with a 200 mm range, resolution
equal to 0.1 µm and instrumental measurement accuracy of 1 µm. From the sample of eight LVDT
sensors calibrated in the horizontal position, the following maximum values of standard uncertainties
were obtained: (i) calibration, 1.3 µm; (ii) repeatability, 3.0 µm; (iii) linearity, 36 µm.

In the second stage, the LVDT sensors were assembled in a vertical column having an SI
traceable measurement standard displacement calibrator (brand Sylvac, model P50, Yverdon-les-Bains,
Switzerland), with a 50 mm range, resolution equal to 0.1 µm, and with an instrumental measurement
accuracy of 1 µm). Reference displacement values and the corresponding LVDT sensor readings in the
data acquisition system were obtained. Tests were performed with and without the complete set of
assembly accessories (including two springs). Although a similar calibration standard uncertainty was
obtained, significant changes were observed in (i) repeatability, which increased up to 47 µm (with
accessories) and up to 43 µm (without accessories), and (ii) linearity, which increased up to 115 µm.

These differences (relative to the horizontal position) are justified by (i) the vertical misalignment
between the LVDT core stem and the measurement standard vertical axis, (ii) the type of stem
(non-telescopic, with free movement), and (iii) the transverse movement of the core stem inside the
coil housing, which does not occur in the horizontal position, where the core stem follows the inner
surface of the coil housing by the gravity effect.

These results illustrate the measurement accuracy vulnerability in the use of LVDT sensors
for displacement measurements. The proposed optical approach, as described in Section 2.2, is a
non-contact measurement that can not only can be used in destructive testing but, in addition, it is
less vulnerable to measurement uncertainty components related to instrumentation assembly onto the
masonry specimen.

3.3. Experimental Apparatus

Solid and hollow ceramic brick masonry specimens were retrieved from the walls of one
building built in the beginning of the 20th century in the city of Lisbon (Portugal), which was
undergoing rehabilitation.

These specimens were prepared and instrumented for testing at LNEC, with the classical apparatus
described in Section 2.1. In particular, eight LDVT sensors were installed in the central region of the
specimen frontal and rear surfaces (see Figure 6b), four of them in a vertical position (aiming the
determination of the modulus of elasticity based on the measured vertical force and corresponding
deformation), and the remaining four in a horizontal position, in order to determine the horizontal
strain, and consequently, the Poisson ratio. All the LVDT sensors were fixed directly onto the specimen’s
ceramic bricks, avoiding bedding joints.

The proposed optical approach was also implemented by fixing monitoring targets in the
specimen’s ceramic bricks and placing the measurement referential with the reference targets close
to the observation surfaces (see Figure 6b). The observation distance of the camera relative to the
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specimen observation surface was optimized in order to establish a suitable field-of-view (with all the
monitoring and reference targets visible on the image) and the maximum spatial resolution on the
recorded images.

Readings from the LVDT sensors and camera images were properly synchronized using a dedicated
signal generator, as schematically shown in Figure 9.
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The specimens were subjected to axial compression in a universal testing machine (brand
SERVOSIS MFL, model UPS 5000 V, Madrid, Spain) NP 4015-1:1990 force class 0.5 in the measurement
interval comprised between 300 and 3000 kN, as shown in Figure 6a, based on an adaptation of the
standardized method described in EN 1052-1:1998 [7]. Since the specimens’ fracture stress is unknown,
several increasing loading and unloading cycles were carried out for both solid ceramic brick masonry
specimens (increments of 100 kN, starting from 100 kN) and hollow ceramic brick masonry specimens
(increments of 50 kN, starting at 50 kN, due to the known reduced axial compression resistance when
compared with solid brick masonry). A total of three cycles were performed for each load level,
considering loading speeds between 0.5 and 1.5 kN·s−1 (as the maximum applied compression force
increased throughout the performed cycles, the loading speed was also increased [8–10]). For safeguard
purposes, LVDT sensors were removed after the appearance of cracks in the bricks, since the collapse
of masonry specimens is quite fragile and destructive, as shown in Figure 10.
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3.4. Results

A first step in the application of the proposed optical measurement approach is the determination
of the scale coefficient for each performed mechanical test, based on the previous laboratorial results
of the metrological characterization of the used measurement referential (shown in Tables 1 and 2)
and in the corresponding reference targets image coordinates. Tables 3 and 4 show an example of the
obtained input quantities estimates, respectively, for referentials A and B.

Table 3. Reference targets image and world coordinates—referential A.

Target Identification x
/pixel

y
/pixel

X
/mm

Y
/mm

Z
/mm

1 92.7 24.6 10.032 10.153 5.105
2 72.5 502.7 10.344 100.137 5.023
3 37.1 977.6 10.387 189.870 5.070
4 492.7 972.9 100.241 189.803 5.152
5 933.2 983.0 190.090 189.852 5.266
6 955.3 531.8 189.827 99.927 4.939
7 996.0 57.7 190.081 9.926 4.973
8 551.5 48.3 100.318 10.047 4.934

Table 4. Reference targets image and world coordinates—referential B.

Target Identification x
/pixel

y
/pixel

X
/mm

Y
/mm

Z
/mm

1 85.8 72.1 10.197 10.733 5.077
2 533.8 96.8 10.183 100.785 4.936
3 984.8 110.9 10.213 190.752 4.959
4 957.4 547.4 100.437 190.655 4.858
5 942.7 978.5 190.448 190.558 4.811
6 498.9 948.5 190.007 100.710 4.928
7 57.1 934.4 190.112 10.751 5.032
8 77.9 505.6 100.135 10.920 5.198

These estimates can be applied to Equations (8)–(10) in order to obtain the corresponding scale
coefficient measurement samples with a dimension equal to 28 (see Tables A1 and A2 in Appendix B).
In the presented calculation example, an average value of 0.19650 mm·pixel−1 was obtained for images
where the referential A is visible, and an average value of 0.20559 mm·pixel−1 was obtained for the
case of referential B. Figure 11 illustrates the dispersion of scale coefficient values obtained for both
measurement referentials (A and B).
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In addition to the axial compression force reading obtained from the used universal testing
machine, vertical and horizontal dimensional measurements were performed in the frontal and rear
surfaces of the specimen, as shown in Figure 12, noticing that the contact and the optical measurement
points are not spatially coincident.
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Based on the specimen’s length and width measurements (exemplified in Appendix C, Table A4),
stress versus strain curves, regarding the loading and unloading cycle corresponding to 1/3 of the
fracture stress, were obtained as shown in Figure 13 for the case of a solid brick specimen (ID M0M10).
Figure 13a presents the values based in the contact dimensional measurement chain and Figure 13b
presents the values based in the optical measuring system, referring to the same observation surface
and illustrating the determination of the modulus of elasticity.
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Figure 13b shows the presence of noise in the extension measurements obtained by the optical
dimensional measurements, when compared with the strain measurements obtained by the contact
measurement chain (Figure 13a). This is justified by the low spatial resolution of the acquired images,
which affects the targets image coordinates that support the deformation measurement. A higher spatial
resolution can be achieved with an image sensor composed by smaller pixels or by using a different
lens that is capable of producing a higher image magnification with an acceptable narrow field-of-view.

From the collected data, the main compressive mechanical properties of the tested masonry
specimens were calculated using Equations (1)–(3), namely, the compressive strength, the modulus of
elasticity, and the Poisson ratio, which were obtained from both the contact and the optical dimensional
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measurement chains. An example of these measurement estimates is presented in Table 5 for a set of
hollow and solid masonry specimens.

Table 5. Mechanical properties estimates of some tested masonry specimens.

Specimen
Identification

Specimen
Type

Compressive
Strength

/MPa

Contact Measurement Chain Optical Measurement Chain

Modulus of
Elasticity

/GPa
Poisson Ratio

Modulus of
Elasticity

/GPa
Poisson Ratio

M0F3
Hollow

2.053 1.32 0.31 1.47 0.32
M0F7 2.272 0.96 0.06 0.73 0.07
M0F9 2.194 1.99 0.05 0.52 0.08

Average value 2.173 1.42 0.14 0.91 0.16
Average std. deviation 0.064 0.30 0.09 0.29 0.08
M0M9

Solid
5.338 2.12 0.10 1.71 0.17

M0M10 7.515 1.87 0.06 1.50 0.36
M0M12 4.194 3.20 0.17 1.75 0.07

Average value 5.682 2.40 0.11 1.65 0.20
Average std. deviation 0.974 0.41 0.03 0.08 0.09

Regarding the comparison of the main results, which generally provide a good agreement between
the Poisson ratio and some discrepancy of values relates with the measurement of the modulus of
elasticity, the differences found could be explained by the nature of the methods applied. In fact,
considering that the testing is developed under dynamic conditions, the mechanical contact between
the LVDT sensors and the specimen influences the estimates of measurement and its uncertainty.
A better understanding of the impact of this source of error should be further studied in order to
consider other types of specimens together with a sensitive analysis of the quantities that contribute to
the uncertainty budget. Other possible sources of measurement uncertainty, namely, the time delay on
acquisition and resolution, were disregarded.

With respect to the compressive strength, the measurement sample shows that the solid specimens
are characterized by higher estimates, as expected for this type of masonry, in addition to a higher
dispersion of values, when compared with the hollow specimens. Independently of the used
measurement system, the modulus of elasticity related to the solid specimens is also higher when
compared to the hollow specimens. In terms of the Poisson ratio, similar estimates and experimental
dispersion of values are obtained, considering both types of test masonry specimens.

Comparisons between estimates and dispersion of values related to different measurement
systems are not recommended at this stage, since the instrumental measurement uncertainty related
to each dimensional measurement system is only presented in Section 4, in addition to the fact that
we are dealing with different points of measurement and a complex spatial mechanical behavior of
the specimens.

4. Measurement Uncertainty Evaluation

4.1. Calculation of the Output Measurement Uncertainties

As mentioned before, three main output quantities are usually defined in the context of the
determination of the compressive mechanical testing of masonry specimens: the compressive
strength, the modulus of elasticity, and the Poisson ratio defined, respectively, by Equations (1)–(3).
The application of the uncertainty propagation law [11] to these mathematical models allows obtaining
expressions for the corresponding measurement uncertainties

u(σ) = [(1/A2) · u2(Fmax) + (Fmax
2/A4) · u2(A)]0.5 (11)

u(E) = {[1/(9 · εv
2
· A2) ] · u2(Fmax) + [Fmax

2/(9· εv
4
·A2)] · u2(εv) + [Fmax

2/(9 · εv
2
· A4)] · u2(A)}0.5 (12)

u(υ) = {(1/εv
2) · u2(εh) + (εh

2
/εv

4) · u2(εv)}0.5 (13)
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where u(A) is given by
u2(A) = w2

· u2(l) + l2 · u2(w). (14)

The measurement uncertainty of the vertical or horizontal strain, ε, is given by

u(ε) = [(1/L0
2) · u2(∆L) + (∆L2/L0

4) · u2(L0)]0.5. (15)

This expression can be simplified based on the ∆L definition given by Expression (5)
and on the assumption that u(L) = u(L0), originating the following expression for the strain
measurement uncertainty

u(ε) = [(2 + ∆L2/L0
2) · (1/L0

2) · u2(L)]0.5, (16)

which is related to each dimensional method (optical or contact).
Appendix C lists the measurement uncertainty calculations related to the specimen’s cross-section

area and maximum load force, while the following Sections 4.2 and 4.3 describe, in detail,
the determination of the strain measurement uncertainty, respectively, for the optical and the
contact method.

4.2. Measurement Uncertainty for the Optical Method

Due to the nonlinear models (Equations (9) and (10)) applied in the determination of the individual
scale coefficients, the Monte Carlo method (MCM) [12] was used in the evaluation of the corresponding
measurement uncertainties. Estimates of the reference targets image and world coordinates, as
exemplified in Tables 3 and 4, were used in the performed simulations assuming uniform probability
density functions (PDF) for the image coordinates with a semi-amplitude of 0.25 pixels, and a Gaussian
PDF was used for the world coordinates with standard uncertainties equal to the obtained sample
experimental standard deviations (see Tables 1 and 2). Table 6 exemplifies the results obtained for
the intermediate and output quantities (in this case for the individual scale coefficient calculated with
targets 1 and 2 of referential B), based on 105 trials.

Table 6. Results of the MCM simulation for the determination of the measurement uncertainty of scale
coefficient K1,2 obtained with referential B. PDF: probability density functions.

Quantity Estimate 95% Expanded
Uncertainty

Computational
Accuracy Numerical PDF

D1,2 90.52 mm 0.097 mm <0.002 mm
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The application of the uncertainty propagation law to expressions (6,7) allows determining the
standard measurement uncertainty related to the dimensional optical measurement, given by

u(L) = u(X) = u(Y) = [l2 · u2(Kaverage) + K2
average · u2(l)]0.5 (17)

where the standard uncertainty of the targets’ image coordinates is majorated by a spatial resolution
equal to 0.25 pixel, considering a uniform PDF, i.e.,

u(l) = u(x) = u(y) = 0.25 pixel/
√

3 = 0.07 pixel. (18)

The standard uncertainty of the average scale coefficient corresponds to

u(Kaverage) = [u2
max(Ki) + s2(Ki)/n]0.5 (19)

where s(Ki) is the experimental standard deviation of the scale coefficient measurement sample with
dimension n (equal to 28, see Tables A1 and A2 in Appendix B). This measurement uncertainty is
majorated by the use of the maximum measurement uncertainty, umax(Ki), which was obtained in the
complete set of individual scale coefficients.

Table 7 shows the obtained estimates and standard uncertainties of the average scale coefficients
for both referentials A and B.

Table 7. Cross-section area measurements in tested masonry specimens.

Referential Estimate
/mm·pixel−1

Standard Uncertainty
/mm·pixel−1

A 0.196 50 0.000 97
B 0.205 59 0.000 63

These results were used in the determination of the standard measurement uncertainty related to
the dimensional optical measurement (by use of Equation (17)), being posteriorly used to calculate
the strain standard uncertainty (Equation (16)) and, in a last stage, the modulus of elasticity and the
Poisson ratio. Figure 14 shows the measurement estimates and standard uncertainties obtained for the
tested masonry specimens, taking into account the specimen’s cross-section area and maximum load
force measurement uncertainties described in Appendix C.
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With respect to the modulus of elasticity, a standard uncertainty between 0.07 and 0.60 GPa was
obtained considering a measurement sample with dimensions equal to four (two measurements on the
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frontal and rear observation surfaces). Significant differences were obtained between the frontal and
rear measurements, namely, for specimens with ID M0F3 (hollow) and ID M0M9 (solid), justified by a
spatial complex mechanical behavior of the tested specimens.

The results related to the Poisson ratio show a standard uncertainty between 0.19 and 0.51, making
this measurement quite inaccurate, when compared with the expected dimension of the measurement
interval for this type of material. This is justified by the higher relative measurement uncertainty of
the horizontal strain (reduced deformations, close to 0.01 mm and near the spatial resolution of the
acquired images) when compared with the vertical strain characterized by higher deformations. Again,
the spatial complex mechanical behavior of the tested specimens is seen in the Poisson ratios, namely,
in the case of opposite algebraic sign within the same masonry specimen.

4.3. Measurement Uncertainty for the Contact Method

The metrological characterization described in Section 3.2 supported the determination of the
standard measurement uncertainty related to the contact dimensional measurement which was
posteriorly used to calculate the strain standard uncertainty (by the application of Equation (16)) and,
in a last stage, the modulus of elasticity and the Poisson ratio. Figure 15 shows the measurement
estimates and standard uncertainties obtained for the tested masonry specimens, taking into account
the specimen’s cross-section area and maximum load force measurement uncertainties described in
Appendix C.
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A standard uncertainty comprised between 0.18 and 0.78 GPa was obtained for the modulus of
elasticity, excluding a 1.9 GPa dispersion value obtained for the specimen with ID M0M12. In this
specimen, significant differences were obtained between strain measurements in the frontal and the
rear specimen surfaces.

The results related to the Poisson ratio show a standard uncertainty between 0.10 and 0.32,
making this measurement quite inaccurate, since this variation has a similar dimension to the expected
measurement interval.

4.4. Comparison between the Optical and the Contact Measurement Methods

This section aims the comparison between the modulus of elasticity and Poisson ratio
measurements obtained from both the optical and the contact measurement methods, considering
average values obtained from the four local measurements performed in each specimen. Figure 16
shows the corresponding estimates and measurement uncertainties for the modulus of elasticity and
Poisson ratio.
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Concerning the modulus of elasticity, the contact measurement method provided estimates
with a higher magnitude, namely, in the case of specimen ID M0M12. In general, the dispersion of
values related to each measurement method overlap, with the exception of the specimen IDs M0MF9
and M0M12.

With respect to the Poisson ratio, the optical method provided slightly higher estimates in the
majority of the tested specimens, noticing an overlap of the dispersion of values in most cases with a
high magnitude.

5. Discussion

The performed study allowed identifying the strain measurement as the major component of
instrumental measurement uncertainty related to the modulus of elasticity and the Poisson ratio for
both methods. In the case of the optical method, this uncertainty component reflects the influence of
the spatial resolution of the acquired images and the dispersion of the scale coefficient related to the
effect of the lens distortion and planar misalignments between the specimen surface, the measurement
referential, and the image plane. In the case of the contact method, the LVDT sensor repeatability and
linearity have a strong impact on the dimensional measurement uncertainty and are mainly due to its
assembly onto the masonry specimen and the use of installation accessories.

Regarding the modulus of elasticity, the instrumental measurement uncertainty related to the
optical approach (between 0.07 and 0.60 GPa, as mentioned in Section 4.2) has a slightly reduced
magnitude when compared with the instrumental measurement uncertainty of the contact measurement
method (between 0.18 and 0.78 GPa). In both cases, the dispersion of values related to the modulus of
elasticity is higher that the measurement sample dispersion, between 0.08 and 0.30 GPa, as shown in
Table 5.

Regarding the Poisson ratio, both measurement methods show high values of measurement
uncertainty, namely, the optical method due to the reduced spatial resolution affecting the measurement
of the horizontal strain, which is characterized by a low magnitude. Poisson ratio standard uncertainties
are comprised between 0.19 and 0.50, in the case of the optical method (see Section 4.2), while for the
case of the contact method, this interval corresponds to 0.10 and 0.32 (see Section 4.3). In a global
perspective, the mentioned dispersion of values has a higher magnitude than the measurement sample
dispersion, between 0.03 and 0.09 (see Table 5).

This study showed that the suitability of the new approach proposed, based on non-invasive optical
measurements applied to the destructive compressive mechanical testing of masonry specimens, is able
to provide comparable results to conventional invasive measurements obtained using LVDT sensors.
However, the scope of the validation process will need to be further studied, considering that the
described mechanical tests were performed in a real case scenario, using a reduced dimension sample
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of masonry specimens, each one characterized by a high variability in terms of the record strain spatial
distribution, and different measurement points were defined for the optical and contact measurement
methods. In this context, the development of reference materials and the use of advanced optical
systems based on PIV (particle image velocimetry) [13–15] are recommended as future validation work.

Based on the analysis of the results, the increase of confidence in the studied compressive
mechanical properties of masonry specimens should be focused on the sampling process, e.g., by
increasing the number of local strain measurements in the specimen (thus reducing the average
standard deviation related to the strain spatial variability) and also the number of specimens of a
certain type (hollow or solid).
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Appendix B

Table A1. Sample of calculated scale coefficients related to referential A.

Reference Targets Ids. Di,j
/mm

di,j
/pixel

Ki,j
/mm·pixel−1

1–2 89.985 478.5 0.188 0
1–3 179.717 954.6 0.188 3
1–4 201.027 1029.2 0.195 3
1–5 254.387 1274.7 0.199 6
1–6 200.962 995.6 0.201 8
1–7 180.049 903.9 0.199 2
1–8 90.286 459.4 0.196 5
2–3 89.733 476.2 0.188 4
2–4 126.970 630.6 0.201 3
2–5 200.892 985.6 0.203 8
2–6 179.483 883.0 0.203 3
2–7 201.105 1025.3 0.196 1
2–8 127.325 660.2 0.192 8
3–4 89.854 455.6 0.197 2
3–5 179.703 896.1 0.200 5
3–6 200.720 1025.1 0.195 8
3–7 254.303 1329.1 0.191 3
3–8 201.057 1062.2 0.189 3
4–5 89.849 440.6 0.203 9
4–6 126.899 646.1 0.196 4
4–7 201.065 1044.8 0.192 4
4–8 179.756 926.5 0.194 0
5–6 89.926 461.7 0.194 8
5–7 179.926 927.8 0.193 9
5–8 200.970 1009.6 0.199 1
6–7 90.001 466.3 0.193 0
6–8 126.847 622.3 0.203 8
7–8 89.763 444.6 0.201 9

Table A2. Sample of calculated scale coefficients related to referential B.

Reference Targets Ids. Di,j
/mm

di,j
/pixel

Ki,j
/mm·pixel−1

1–2 90.052 448.7 0.200 7
1–3 180.019 899.8 0.200 1
1–4 201.284 992.8 0.202 7
1–5 254.612 1247.3 0.204 1
1–6 201.066 968.9 0.207 5
1–7 179.915 862.8 0.208 5
1–8 89.938 433.6 0.207 4
2–3 89.967 451.2 0.199 4
2–4 127.367 618.4 0.205 9
2–5 201.382 971.9 0.207 2
2–6 179.824 852.4 0.211 0
2–7 201.198 963.8 0.208 8
2–8 127.150 612.3 0.207 6
3–4 90.224 437.4 0.206 3
3–5 180.235 868.6 0.207 5
3–6 201.081 968.3 0.207 7
3–7 254.448 1240.5 0.205 2
3–8 201.061 989.1 0.203 3
4–5 90.011 431.4 0.208 7
4–6 126.937 609.2 0.208 4
4–7 201.015 980.0 0.205 1
4–8 179.736 880.5 0.204 1
5–6 89.849 444.8 0.202 0
5–7 179.807 886.7 0.202 8
5–8 201.063 985.7 0.204 0
6–7 89.959 442.0 0.203 5
6–8 127.041 611.1 0.207 9
7–8 89.977 429.3 0.209 6
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Appendix C

This appendix exemplifies the measurement uncertainty calculation for the compressive strength
output quantity in the mechanical testing of masonry specimens, including the probabilistic formulation
of the cross-section area and maximum load force measurements.

Based on the calibration certificate of the used universal testing machine, the compression force
expanded measurement uncertainty, considering a 95% confidence interval, which corresponded
to 0.53% of the force estimate value, in the measurement interval comprised between 300 and
3000 kN. This Gaussian dispersion value reflects both the measurement uncertainty component related
to the applied calibration force and to the force measuring chain of the testing machine, namely,
reproducibility, repeatability, interpolation, zero deviation, reversibility, and creep measurement
uncertainty components. Table A3 shows the obtained maximum load force estimates and standard
measurement uncertainties for several tested masonry specimens.

Table A3. Maximum load force measurements in tested masonry specimens.

Specimen
Identification Specimen Type Estimate, Fmax

/kN
Standard Uncertainty, u(Fmax)

/kN

M0F3
Hollow

351.00 0.93
M0F7 375.32 0.99
M0F9 373.74 0.99
M0M9

Solid
929.1 2.5

M0M10 1292.6 3.4
M0M12 706.3 1.9

With respect to the cross-section area, its indirect determination is supported in linear
measurements of the specimen’s length and width, namely, three equally spaced measurements
in its top surface and two additional measurements in the bottom surface, using a ruler tape with a
resolution equal to 1 mm. Table A4 shows the obtained average values for the specimen’s length and
width and the corresponding standard measurement uncertainties, which combine the instrumental
resolution (related to an uniform PDF with a semi-amplitude equal to 0.5 mm) with the average
experimental standard deviation (obtained from the measurement samples with dimension equal to
five). The presented cross-section area standard measurement uncertainties were obtained from the
application of Equation (14).

Table A4. Cross-section area measurements in tested masonry specimens.

Specimen
Identification Specimen Type Length, l

/mm
Width, w

/mm
Area, A

/m2

M0F3
Hollow

700.8 ± 0.7 244.0 ± 2.0 0.171 0 ± 0.001 4
M0F7 671.6 ± 0.9 246.0 ± 1.0 0.165 2 ± 0.000 7
M0F9 693.0 ± 3.0 246.0 ± 3.0 0.170 5 ± 0.002 2
M0M9

Solid
703.0 ± 1.3 247.6 ± 1.6 0.174 1 ± 0.001 2

M0M10 702.0 ± 1.1 245.0 ± 3.0 0.172 0 ± 0.002 1
M0M12 684 ± 10 246.2 ± 0.6 0.168 4 ± 0.002 5

Based on the information mentioned in the previous Tables A3 and A4, the compressive strength
estimates and standard measurement uncertainties were determined for each tested masonry specimen
using, respectively Equations (1) and (11). The obtained results are shown in Table A5.
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Table A5. Compressive strength measurements in the tested masonry specimens.

Specimen
Identification Specimen Type Estimate, σ

/MPa
Standard Uncertainty, u(σ)

/MPa

M0F3
Hollow

2.053 0.018
M0F7 2.272 0.011
M0F9 2.194 0.028
M0M9

Solid
5.338 0.038

M0M10 7.515 0.094
M0M12 4.194 0.063
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