
applied
sciences

Article

A Data-Independent Genetic Algorithm Framework
for Fault-Type Classification and Remaining Useful
Life Prediction

Hung-Cuong Trinh 1 and Yung-Keun Kwon 2,*
1 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh 758307, Vietnam;

trinhhungcuong@tdtu.edu.vn
2 Department of Electrical/Electronic and Computer Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu,

Ulsan 680-749, Korea
* Correspondence: kwonyk@ulsan.ac.kr; Tel.: +82-52-259-1449

Received: 5 November 2019; Accepted: 31 December 2019; Published: 3 January 2020
����������
�������

Featured Application: We propose a data-independent framework based on an ensemble of
genetic algorithms for fault-type classification and remaining useful life prediction.

Abstract: Machinery diagnostics and prognostics usually involve the prediction process of fault-types
and remaining useful life (RUL) of a machine, respectively. The process of developing a data-driven
diagnostics and prognostics method involves some fundamental subtasks such as data rebalancing,
feature extraction, dimension reduction, and machine learning. In general, the best performing
algorithm and the optimal hyper-parameters suitable for each subtask are varied across the
characteristics of datasets. Therefore, it is challenging to develop a general diagnostic/prognostic
framework that can automatically identify the best subtask algorithms and the optimal involved
parameters for a given dataset. To resolve this problem, we propose a new framework based on an
ensemble of genetic algorithms (GAs) that can be used for both the fault-type classification and RUL
prediction. Our GA is combined with a specific machine-learning method and then tries to select
the best algorithm and optimize the involved parameter values in each subtask. In addition, our
method constructs an ensemble of various prediction models found by the GAs. Our method was
compared to a traditional grid-search over three benchmark datasets of the fault-type classification
and the RUL prediction problems and showed a significantly better performance than the latter.
Taken together, our framework can be an effective approach for the fault-type and RUL prediction of
various machinery systems.

Keywords: data-driven; diagnostics; prognostics; genetic algorithm; ensemble; fault-types; remaining
useful life

1. Introduction

In a machinery system, diagnostics and prognostics usually involve two kinds of problems,
a fault-type classification and a remaining useful life (RUL) prediction problem. In particular,
prognostics has been applied to the field of machinery maintenance as it allows industries to better
plan logistics, as well as save cost by conducting maintenance only when needed [1]. Various
approaches have been proposed in each problem and they can be divided into three categories:
Physics-based, data-driven, and hybrid-based approaches. Physics-based approaches incorporate
prior system-specific knowledge from an expert, as shown in previous studies, of fault-type
classification [2–5] and RUL prediction [6–9] problems. Alternatively, data-driven approaches are
based on statistical-/machine-learning techniques using the historical data (see example studies about

Appl. Sci. 2020, 10, 368; doi:10.3390/app10010368 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5879-8703
http://www.mdpi.com/2076-3417/10/1/368?type=check_update&version=1
http://dx.doi.org/10.3390/app10010368
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 368 2 of 20

fault-type classification [10–14] and RUL estimation [15–18]). Hybrid-based approaches attempt to
utilize the strengths of both approaches, if applicable, by combining knowledge related to the physical
process and information obtained from the observed data (see example studies about fault-type
classification [19–22] and RUL prediction [23–26]). However, physics-based and hybrid-based
approaches are limited in practice because the underlying physical models are not available in
most real systems. Therefore, data-driven approaches have become increasingly popular along with
recent advancements in sensor systems and data storage/analysis techniques.

From a review of the data-driven approaches, we noticed that many different types of
learning methods and data pre-processing algorithms have been employed. For example, the
fisher discriminative analysis and the support vector machine were used for feature extraction and
classification, respectively, to diagnose seven failure modes of three different polymer electrolyte
membrane fuel cell systems in a previous study [10]. Another study applied a single hidden-layer
feedforward neural network combined with an extreme learning machine technology to identify the
offset, stuck, and noise faults in induction motor drive systems [11]. A multi-classification model
based on the recurrent neural network was established to classify ten different fault-types of a wind
power generation system [27]. A deep convolutional neural network and a random forest ensemble
were employed to diagnose faults of a reliance electric motor and a rolling mill [28]. In [29], a genetic
algorithm-based optimal feature subset selection and a K-nearest-neighbor classifier were applied to
distinguish between normal and crack conditions of a spherical tank. Various approaches have also
been tried for the RUL prediction. A previous study presented a new deep feature learning method for
the RUL estimation of a bearing through a multiscale convolutional neural network [18]. A support
vector machine was applied to predict the RUL of a Li-ion battery [30] and a microwave component [31].
Another study investigated the applicability of the Kalman filter to fuse the estimates of the RUL
from five learning methods such as generalized linear models, neural networks, K-nearest neighbors,
random forests, and support vector machines, using the field data of an aircraft bleed valve [15].

This literature review indicated that the process of developing data-driven diagnostics and
prognostics methods involved some fundamental subtasks such as data rebalancing, feature extraction,
dimension reduction, and machine-learning in the fault-type and/or RUL prediction problems. In
addition, the best performing algorithm in each subtask was varied across the characteristics of
the given dataset. Moreover, each algorithm required appropriate specification of a number of
hyper-parameters. Therefore, it is always challenging to develop a general diagnostics/prognostics
framework that can automatically identify the best subtask algorithms and optimize the involved
parameters for a given dataset. Although such a general framework does not produce the prediction
function that can be common to different systems, it can save the costs in developing diagnostic or
prognostic functions by re-executing it. The most straightforward approaches for this purpose are the
exhaustive grid search [32], which examines a subset of parameters with a constant interval, and the
experience-based manual selection [33], where a human expert specifies the parameter values based
on their experience. However, the former can be inefficient due to the expensive computational cost,
and the latter is dependent on the expert’s knowledge, which is not general to various datasets. In
this regard, there is a pressing need to develop an efficient and data-independent approach, so we
propose a new framework to develop a diagnostics and prognostics method based on an ensemble of
genetic algorithms (GAs) that can be applied for both the fault-type classification and RUL prediction
problems. Our framework handles four subtasks such as the data rebalancing, feature extraction,
feature reduction, and machine-learning. Accordingly, our GA tries to select the optimal algorithm
for each subtask and specify the optimal parameter values involved in the selected algorithm. In
addition, the proposed method constructs an ensemble of the prediction models that are found by the
GAs combined with various machine-learning methods. To verify the usefulness of our approach, we
compared it to a traditional grid-search over three benchmark datasets of the fault-type classification
(the steel plates faults and SECOM datasets) and the RUL prediction (NASA commercial modular

Appl. Sci. 2020, 10, 368 3 of 20

aero-propulsion system simulation (C-MAPSS) dataset) problems. Our method showed a significantly
better and more robust performance than the latter, with a practically acceptable running time.

The remainder of this paper is organized as follows. Section 2 introduces the backgrounds on
the diagnostics and prognostics problem and the performance evaluation metrics. Section 3 explains
the details of our approach and Section 4 presents the experimental results along with discussion.
Section 5 includes the concluding remarks and suggestions for future work.

2. Backgrounds

In the fault-type classification and RUL prediction problems, data-preprocessing has a great impact
on the performance of machine-learning methods and it is usually implemented by the rebalancing
(in a classification problem), filtering, and dimension-reduction methods. They are introduced in the
following subsections, and the last subsection explains the performance evaluation metric used in
the study.

2.1. Data Rebalancing Methods

In the practical fault-type classification problem, the proportion of samples of the minority class
is often severely lower than that of the majority class, which restricts the learning performance. To
resolve this problem, the data rebalancing methods are commonly used. They can be classified into the
over-sampling method, which adds samples of the minority class, and the under-sampling method,
which reduces samples of the majority class. In general, the resampling process is repeated until the
balancing ratio, which is defined by the ratio of the number of samples in the minority class over that in
the majority class, is equal to or greater than a threshold parameter value r (0 < r ≤ 1). In the following,
we introduce some representative rebalancing methods that were included in our framework.

2.1.1. Over-Sampling Methods

• Random duplication (RDUP)—A sample of the minority class is randomly selected and
then duplicated.

• Synthetic minority over sampling technique (SMOTE) [34]—A sample of the minority class is
randomly selected and the weighted mean of the nearest neighbors of it is used to produce a new
sample of the minority class.

• Borderline-SMOTE [35]—Two SMOTE variant methods, borderline-SMOTE1 (BSMOTE1) and
borderline-SMOTE2 (BSMOTE2), were further developed. They are the same as SMOTE except
that a new sample of the minority class is produced near the borderline between classes. In
addition, BSMOTE1 chooses the nearest neighbor from only the minority class, whereas BSMOTE2
does so from any class.

• Support vector machine (SVM)-SMOTE (SSMOTE) [36,37]—Similar to borderline-SMOTE methods,
the new minority-class sample is produced near the borderline but the borderline is determined
by the support vector machine classifiers.

2.1.2. Under-Sampling Methods

Under-sampling methods eliminate the samples of the majority class. This might cause the
loss of information of the data, which led the under-sampling method to be less popular than the
over-sampling of Batista et al. [38].

• Random removal (RREM)—A sample of the majority class is randomly selected for removal.
• Neighborhood cleaning rule (NCL) [39]—A sample of the majority class is selected by Wilson’s

edited nearest neighbor rule [40] or a simple 3-nearest-neighbors search [36] for removal.

Appl. Sci. 2020, 10, 368 4 of 20

2.2. Filtering Methods

A filtering method is employed to remove noise from an original signal, and we herein introduce
five well-known filtering methods. Let ft be the value of the feature f at time t in the following.

• Simple moving average (SMA)—SMA is the unweighted average of values over the past time
points as follows.

SMA(ft) =
ft + ft−1 + . . .+ ft−n+1

n
, (1)

where n is the number of past time-points.
• Central moving average (CMA)—SMA causes a shift in a trend because it considers only the past

samples. On the other hand, CMA is the unweighted average of values over both the past and
future time points as follows.

CMA(ft) =
ft−n/2 + . . .+ ft−1 + ft + ft+1 + . . .+ ft+n/2

n
, (2)

where n is an odd number specifying the number of time points to be averaged.
• Exponential moving average (EMA)—EMA, which is also known as an exponentially weighted

moving average (EWMA), is a type of infinite impulse response filter with an exponentially
decreasing weighting factor. The EMA of a time-series of the feature f is recursively calculated
as follows.

EMA(ft) =

 ft i f t = 1
(1−α)· ft+α(1−αt−1)·EMA(ft−1)

1−αt i f t > 1
, (3)

where, given the total number of observations N, α = e−1/N is a constant factor.
• Exponential smoothing (ES)—Similar to EMA, ES is another weighted recursive combination of

signals with a constant weighting factor α as follows.

ES(ft) =
{

ft i f t = 1
(1− α)· ft + α·ES(ft−1) i f t > 1

. (4)

• Linear Fourier smoothing (LFS)—LFS is based on the Fourier transform, which decomposes a
signal into its frequency components. By suppressing the high-frequency components, one can
achieve a denoising effect.

LFS(f) = F −1
(
χ[−λ,λ]F (f)

)
, (5)

where F (·) and F −1(·) denote the forward and inverse Fourier transform, respectively, and χA is
the characteristic function of the set A (λ is the cut-off frequency parameter). We used the standard
fast Fourier transform algorithm to compute the one-dimensional discrete Fourier transform of a
real-valued feature f .

2.3. Dimensionality Reduction Methods

A reduction method is used to reduce the p-dimensional input space into a lower k-dimensional
feature space (k < p).

• Principal component analysis (PCA) [41–43]—PCA extracts k principal components by using a
linear transformation of the singular value decomposition (SVD) to maintain most of the variability
in input data.

• Latent semantic analysis (LSA) [44]—Contrary to the PCA, LSA performs the linear dimensionality
reduction by means of the truncated SVD.

• Feature agglomeration (FAG) [45]—FAG uses the Ward hierarchical clustering, which groups
features that look very similar to each other. Specifically, it recursively merges a pair of features in

Appl. Sci. 2020, 10, 368 5 of 20

a way to increase the total within-cluster variance as less as possible. The recursion stops when
the remaining number of features is reduced to k.

• Gaussian random projection (GRP) [41]—GRP projects the high-dimensional input space onto
a lower dimensional subspace using a random matrix whose components are drawn from the
normal distribution N

(
0, 1

k

)
.

• Sparse random projection (SRP) [46]—SRP reduces the dimensionality by projecting the original
input space using a sparsely populated random matrix introduced in [47]. The sparse random
matrix is an alternative to a dense Gaussian random projection matrix to guarantee a similar
embedding quality while saving computational cost.

2.4. Performance Evaluation Metrics

In this paper, we used the F1-score and the mean-squared error to evaluate the performance of the
fault-type classification and the RUL prediction, respectively.

2.4.1. F1-Score

For a classification task, the precision and the recall with respect to a given class c are defined as
Precisionc =

TPc
TPc+FPc

and Recallc =
TPc

TPc+FNc
, respectively, where TP, FP, and FN denote true positives,

false positives, and false negatives, respectively. The macro-averaged F1-score is the average of the
harmonic means of precision and recall of each class, as follows:

F1−macro =
1
|C|

∑
c∈C

2Precisionc·Recallc
Precisionc + Recallc

, (6)

where C is the set of all classes.

2.4.2. Mean Squared Error (MSE)

MSE is a general performance measure used in RUL prediction problems. It is defined as follows:

MSE =
1
N

N∑
i=1

(
RULi − ˆRULi

)2
, (7)

where RULi and ˆRULi are the observed and the predicted RUL values of the i-th sample among a total
of N samples, respectively.

3. The Proposed Method

In this work, we propose a novel problem-independent framework for both the fault-type
classification and the RUL prediction based on a GA. As we mentioned, the GA was employed to select
the close-to-optimal set of data-processing algorithms and optimize the involved parameters in a robust
way for a given dataset. As shown in Figure 1a, we first outlined the general process of the data-driven
diagnostics and prognostics, which consists of four subtasks of data rebalancing (for classification
problems), feature extraction, feature reduction, and learning. We did not explicitly include a feature
selection in our framework, although it is a frequently used technique [48]. In fact, an implicit feature
selection was already employed in the feature extraction stage because the inclusion and exclusion
of created features are dynamically determined by a chromosome in the genetic algorithm (see the
Section 3.1.1 for more details). As we explained in Section 2, a variety of algorithms in each subtask
can be considered, and the diagnostics/prognostics performance is likely to be highly dependent on
the selected algorithm and the specified parameter values. In this regard, it is necessary to select the
optimal data preprocessing algorithms and specify the optimal parameter values involved by those
algorithms. Hence, we propose a data-independent diagnostic/prognostic genetic algorithm (DPGA) to
resolve it. In addition, our DPGA can be easily extended to generate an ensemble result [49,50] because

Appl. Sci. 2020, 10, 368 6 of 20

it runs along with various learning methods, as shown in Figure 1b. We note that four representative
machine-learning methods such as the multi-layer perceptron network (MLP), k-nearest neighbor
(kNN), support vector machine (SVM), and random forest (RF) were employed in this study. As shown
in Figure 1b, our DPGA runs to search the optimal data-processing algorithms for data rebalancing,
feature extraction, and feature reduction subtasks and the relevant parameter values over the training
dataset for each learning method in the learning phase. Then, a set of best solutions found by each
DPGA are integrated into an ensemble to predict the fault-type or the RUL value over the test dataset in
the prediction phase. In the following subsections, we explain the details of DPGA and the employed
ensemble approach.

Appl. Sci. 2020, 10, x 6 of 20

We note that four representative machine-learning methods such as the multi-layer perceptron
network (MLP), k-nearest neighbor (kNN), support vector machine (SVM), and random forest (RF)
were employed in this study. As shown in Figure 1b, our DPGA runs to search the optimal data-
processing algorithms for data rebalancing, feature extraction, and feature reduction subtasks and
the relevant parameter values over the training dataset for each learning method in the learning
phase. Then, a set of best solutions found by each DPGA are integrated into an ensemble to predict
the fault-type or the RUL value over the test dataset in the prediction phase. In the following
subsections, we explain the details of DPGA and the employed ensemble approach.

Figure 1. Outline of our proposed approach. (a) A general process in data-driven diagnostics and
prognostics. (b) An approach based on an ensemble of diagnostic/prognostic genetic algorithm
(DPGA) solutions.

3.1. DPGA

DPGA is a steady-state genetic algorithm, and the overall framework is depicted in Figure 2. It
first creates a random initial population of solutions, 𝑃, and evaluates the fitness of each solution. It
selects two parent solutions 𝑠 and 𝑠 among the population according to the fitness values and
generates two offspring solutions 𝑥 and 𝑥 by a crossover operation. These new solutions can be
mutated with a low probability. After evaluating the fitness values of the offspring solutions, the GA
replaces some old solutions in the population with them. This process is repeated until a stopping
condition is satisfied. The specified values of parameters of the GA are summarized in Table 1. In the
following subsections, we introduce the details of each part in DPGA.

Figure 1. Outline of our proposed approach. (a) A general process in data-driven diagnostics and
prognostics. (b) An approach based on an ensemble of diagnostic/prognostic genetic algorithm
(DPGA) solutions.

3.1. DPGA

DPGA is a steady-state genetic algorithm, and the overall framework is depicted in Figure 2. It
first creates a random initial population of solutions, P, and evaluates the fitness of each solution.
It selects two parent solutions s1 and s2 among the population according to the fitness values and
generates two offspring solutions x1 and x2 by a crossover operation. These new solutions can be
mutated with a low probability. After evaluating the fitness values of the offspring solutions, the GA
replaces some old solutions in the population with them. This process is repeated until a stopping
condition is satisfied. The specified values of parameters of the GA are summarized in Table 1. In the
following subsections, we introduce the details of each part in DPGA.

Appl. Sci. 2020, 10, 368 7 of 20

Appl. Sci. 2020, 10, x 7 of 20

Figure 2. Overall framework of DPGA.

Table 1. Parameter values used in DPGA.

Parameters Value
The number of solutions in a population (|𝑃|) 20

Stopping-patience 50
The crossover probability (𝑝) 0.5
The mutation probability (𝑝) 0.1

The algorithm-change mutation probability 0.3
The parameter-change mutation probability 0.7

3.1.1. Chromosome Representation

In a GA, a solution is represented by a chromosome. Table 2 shows a chromosome in DPGA,
which is implemented by a one-dimensional list consisting of categorical and continuous variables to
represent algorithm-selection and parameter-specification. Specifically, it is composed of four parts
corresponding to data rebalancing, feature extraction, feature reduction, and learning subtasks as
follows:

Table 2. Chromosome representation in DPGA. DR: Data rebalancing, FFE: Filtering-based feature
extraction, RFE: Reduction-based feature extraction, LM: Learning model.

Field Description Range of Values

DR algo. A data rebalancing algorithm
One of {None, RDUP, SMOTE, BSMOTE1, BSMOTE2,

SSMOTE, RREM, NCL}
DR para. A parameter value of the rebalancing algorithm Balancing ratio 𝑟 ∈ [0.75–1]

FFE algo.
A list of applied filtering-based feature extraction

algorithms (Available only for time-series datasets)

A subset of {SMA, CMA, EMA, ES, LFS}
(Note that the empty set means that no filtering-based

feature extraction is applied.)

FFE para.
Parameter values of the applied filtering-based

feature extraction algorithms
In case of SMA and CMA:

The number of time points 𝑛 ∈ [3– 10]

Figure 2. Overall framework of DPGA.

Table 1. Parameter values used in DPGA.

Parameters Value

The number of solutions in a population (|P|) 20

Stopping-patience 50

The crossover probability (pc) 0.5

The mutation probability (pm) 0.1

The algorithm-change mutation probability 0.3

The parameter-change mutation probability 0.7

3.1.1. Chromosome Representation

In a GA, a solution is represented by a chromosome. Table 2 shows a chromosome in DPGA,
which is implemented by a one-dimensional list consisting of categorical and continuous variables
to represent algorithm-selection and parameter-specification. Specifically, it is composed of four
parts corresponding to data rebalancing, feature extraction, feature reduction, and learning subtasks
as follows:

Table 2. Chromosome representation in DPGA. DR: Data rebalancing, FFE: Filtering-based feature
extraction, RFE: Reduction-based feature extraction, LM: Learning model.

Appl. Sci. 2020, 10, x 7 of 20

Figure 2. Overall framework of DPGA.

Table 1. Parameter values used in DPGA.

Parameters Value
The number of solutions in a population (|𝑃|) 20

Stopping-patience 50
The crossover probability (𝑝) 0.5
The mutation probability (𝑝) 0.1

The algorithm-change mutation probability 0.3
The parameter-change mutation probability 0.7

3.1.1. Chromosome Representation

In a GA, a solution is represented by a chromosome. Table 2 shows a chromosome in DPGA,
which is implemented by a one-dimensional list consisting of categorical and continuous variables to
represent algorithm-selection and parameter-specification. Specifically, it is composed of four parts
corresponding to data rebalancing, feature extraction, feature reduction, and learning subtasks as
follows:

Table 2. Chromosome representation in DPGA. DR: Data rebalancing, FFE: Filtering-based feature
extraction, RFE: Reduction-based feature extraction, LM: Learning model.

Field Description Range of Values

DR algo. A data rebalancing algorithm
One of {None, RDUP, SMOTE, BSMOTE1, BSMOTE2,

SSMOTE, RREM, NCL}
DR para. A parameter value of the rebalancing algorithm Balancing ratio 𝑟 ∈ [0.75–1]

FFE algo.
A list of applied filtering-based feature extraction

algorithms (Available only for time-series datasets)

A subset of {SMA, CMA, EMA, ES, LFS}
(Note that the empty set means that no filtering-based

feature extraction is applied.)

FFE para.
Parameter values of the applied filtering-based

feature extraction algorithms
In case of SMA and CMA:

The number of time points 𝑛 ∈ [3– 10]

Field Description Range of Values

DR algo. A data rebalancing algorithm One of {None, RDUP, SMOTE, BSMOTE1, BSMOTE2,
SSMOTE, RREM, NCL}

DR para. A parameter value of the rebalancing algorithm Balancing ratio r ∈ [0.75–1]

Appl. Sci. 2020, 10, 368 8 of 20

Table 2. Cont.

Field Description Range of Values

FFE algo.
A list of applied filtering-based feature

extraction algorithms (Available only for
time-series datasets)

A subset of {SMA, CMA, EMA, ES, LFS}
(Note that the empty set means that no filtering-based

feature extraction is applied.)

FFE para. Parameter values of the applied filtering-based
feature extraction algorithms

In case of SMA and CMA:
The number of time points n ∈ [3–10]

In case of LFS:
Top χ% high-frequency components of the Fourier

transform are removed, χ ∈ [10–50]
For EMA and ES:

None

RFE algo. A list of applied reduction-based feature
extraction algorithms

A subset of {PCA,LSA,FAG,GRP,SRP}
(Note that the empty set means that no reduction-based

feature extraction is applied.)

RFE para. Parameter values of the applied
reduction-based feature extraction algorithms

In case of PCA, LSA, GRP, and SRP:
The number of principal components

nPC ∈
[
1−max

(ρ
10 , 2

)]
In case of FAG:

The number of remaining features after merging
nFAG ∈

[
2−max

(ρ
10 , 3

)]
PCA flag Indicator of whether or not the whole set of

features is reduced by PCA True or False

PCA para. A parameter value to determine the number of
dimensions reduced by PCA The threshold amount of explained variance ε ∈ [90–100]

LM para. Parameter values used for a specified learning
algorithm

In case of MLP:
The number of hidden neurons nHN ∈ [5–20]

The type of activation function act fHL ∈ {tanh, relu}
The type of optimization method svWO ∈

{
lb f gs, adam

}
In case of kNN:

The number of neighbors nNN ∈ [2–10]
The type of weight function w fNN ∈

{
uni f orm, distance

}
In case of SVM:

The penalty parameter C ∈ [1–8]
In case of RF:

The number of trees ntree ∈ [2–10]

• Data rebalancing—This part is only applicable in the fault-types classification. As explained in
Section 2.1, the ‘DR algo.’ field in a chromosome indicates one among five over-sampling and
two under-sampling algorithms, or none of them. In addition, the ‘DR para.’ field represents the
threshold parameter of the rebalancing ratio (see Section 2.1 for details).

• Feature extraction—To generate latent features, our GA employed two groups of approaches,
filtering-based (available only for time-series datasets, see Section 2.2) and reduction-based (see
Section 2.3) approaches. The ‘FFE algo.’ field represents the subset of five filtering-based feature
extraction algorithms (SMA, CMA, EMA, ES, and LFS). In addition, the ‘FFE para.’ field includes
the corresponding parameters that are necessary to run the selected feature extraction algorithms
(for example, the number of time points in SMA or CMA). Similar to filtering-based feature
extraction, the ‘RFE algo.’ and ‘RFE para.’ fields represent the combinatorial selection among
five reduction-based feature extraction algorithms (PCA, LSA, FAG, GRP, and SRP) and the
corresponding parameters (for example, the number of principal components), respectively. We
note that if none are selected in ‘FFE algo.’ and ‘RFE algo.,’ only the original variables are used as
input variables in the learning algorithm.

• Dimension-reduction by PCA—Before executing the learning method, the dimension of the input
space consisting of all of the newly constructed features and the original variables can be finally
reduced by the PCA [41–43]. The ‘PCA flag’ and ‘PCA para.’ represent whether PCA is applied or
not, and the threshold parameter (ε) with respect to the desirable explained variance, respectively.
In other words, when the ‘PCA flag’ turns on, the set of highest-order principal components that

Appl. Sci. 2020, 10, 368 9 of 20

account for more than ε% of the data variability are selected as the final input variables to be fed
into a learning method.

• Learning method: As explained before, we employed four machine-learning algorithms in this
study. Therefore, the ‘LM para.’ field represents the corresponding parameters that are necessary
to run the learning method as follows:

- MLP: The MLP of a single hidden layer is assumed and nHN denotes the number of
hidden nodes. In addition, the type of the activation function (act fHL) is selected between
the hyperbolic tan function (“tanh”) and the rectified linear unit function (“relu”). The
solver for weight optimization (svWO) is also selected between an optimizer in the family of
quasi-Newton methods (“lbfgs”) [51] and a stochastic gradient-based optimizer (“adam”) [52].

- kNN: nNN denotes the number of nearest neighbors. In addition, the weight function (w fNN)
is selected between “uniform” and “distance.” In the former, the neighbors are weighted
equally, whereas the neighbors are weighted by the inverse of the distance to the query in
the latter.

- SVM: C denotes the penalty parameter for the misclassification.
- RF: ntree denotes the number of trees in the forest.

3.1.2. Fitness Calculation

To evaluate a chromosome s, the F1-score and MSE measures (see Section 2.4 for details) are used
for the fault-type classification and the RUL prediction, respectively, as follows.

f itness(s) =
{

F1−macro(s) for f ault− type classi f ication
A− MSE(s) f or RUL prediction

,

where F1−macro(s) and MSE(s) are the results by the leaning method using the algorithms and the
parameter values included in s. In addition, A denotes a constant large enough to make the fitness
a positive real value. Consequently, the higher the fitness value, the better the solution in both the
fault-type classification and the RUL prediction problems. To avoid the over-fitting, we used d-fold
cross-validation in computing the fitness over the training data. More specifically, the whole training
dataset was randomly divided into d disjoint subsets. Then, each subset was held out for evaluation
while the rest (d− 1) of the subsets were used as the training data. For a more stable fitness evaluation,
we repeated the cross-validation l times. Accordingly, the fitness of s is the average over d × l trials.
In this work, we set d to 5 and l to 3.

3.1.3. Selection

To choose a parent solution from the population P, we employed the roulette wheel selection
where the selection probability of a chromosome x is proportional to the fitness value of x as follows:

Pr(x) =
f itness(x)∑

y∈P f itness(y)
.

3.1.4. Crossover

Two new offspring solutions are generated by a crossover with a probability pc, or they are
duplicated from the parent solutions with a probability 1− pc. The employed crossover is a block-wise
uniform crossover, as shown in Figure 3. Specifically, there are five blocks such as ‘DR,’ ‘FFE,’ ‘RFE,’
‘PCA,’ and ‘LM,’ all of which, except for the last block, consist of ‘algo. (or flag)’ and ‘para.’ fields, as
explained in Section 3.1.1. For each block, the first offspring chromosome is inherited from one of two
parent chromosomes uniformly at random and the second offspring chromosome is inherited from the

Appl. Sci. 2020, 10, 368 10 of 20

remaining parent chromosome. For example, the first offspring inherited DR, PCA, and LM blocks
from the first parent, whereas FFE and RFE blocks were inherited from the second parent in Figure 3.Appl. Sci. 2020, 10, x 10 of 20

Figure 3. An example of the crossover used in DPGA.

3.1.5. Mutation

The offspring chromosome created by the block-wise crossover is mutated with a small
probability 𝑝 , whereas the offspring created by the duplication is surely mutated to create a new
chromosome that is not identical to the parent chromosome. Only one among four blocks, ‘DR,’ ‘FFE,’
‘RFE,’ and ‘PCA,’ in the offspring is randomly selected, and it is mutated by one of the following two
ways:

• Algorithm-change mutation—The selected algorithm is changed. In other words, the current
choice in the ‘DR algo.’, ‘FFE algo.’, ‘RFE algo.’, or ‘PCA flag’ field is replaced with an alternative
uniformly at random.

• Parameter-change mutation—The parameter value specified for the corresponding algorithm is
mutated. In other words, the ‘DR para.,’ ‘FFE para.,’ ‘RFE para.,’ or ‘PCA para’ field is replaced
with a new value.

In this work, the parameter-change mutation probability was set to a larger value (0.7) than the
algorithm-change mutation probability (0.3) considering that the range of values in the former case
is much wider than that in the latter case.

3.1.6. Replacement and Stop Criterion

When the offspring solution is better than the worst solution in the population, the latter is
replaced with the former. For an efficient stopping criterion, we set a patience parameter 𝑇. Our GA
stops when the best solution in the population is not improved during the past 𝑇 consecutive
generations.

3.2. Ensemble Methods

As explained in Figure 1b, the DPGA can produce many prediction models, which can constitute
an ensemble of solutions. Herein, we employed the voting ensemble and the Kalman filter ensemble
[53] for the fault-type classification and the RUL prediction, respectively. For the former case, we
applied a soft voting rule to achieve the combined results of multiple optimal classifiers. The voting
ensemble is based on the sums of the predicted probabilities from well-calibrated classifiers. The
Kalman filter ensemble can provide a mechanism for fusing multiple model predictions over time for
a stable and high prediction performance.

4. Results

To validate the performance of our method, we compared it to the traditional grid-search
approaches over the following two fault-type classification benchmark datasets and one RUL
prediction benchmark dataset.

Figure 3. An example of the crossover used in DPGA.

3.1.5. Mutation

The offspring chromosome created by the block-wise crossover is mutated with a small probability
pm, whereas the offspring created by the duplication is surely mutated to create a new chromosome
that is not identical to the parent chromosome. Only one among four blocks, ‘DR,’ ‘FFE,’ ‘RFE,’ and
‘PCA,’ in the offspring is randomly selected, and it is mutated by one of the following two ways:

• Algorithm-change mutation—The selected algorithm is changed. In other words, the current
choice in the ‘DR algo.’, ‘FFE algo.’, ‘RFE algo.’, or ‘PCA flag’ field is replaced with an alternative
uniformly at random.

• Parameter-change mutation—The parameter value specified for the corresponding algorithm is
mutated. In other words, the ‘DR para.’, ‘FFE para.’, ‘RFE para.’, or ‘PCA para’ field is replaced
with a new value.

In this work, the parameter-change mutation probability was set to a larger value (0.7) than the
algorithm-change mutation probability (0.3) considering that the range of values in the former case is
much wider than that in the latter case.

3.1.6. Replacement and Stop Criterion

When the offspring solution is better than the worst solution in the population, the latter is replaced
with the former. For an efficient stopping criterion, we set a patience parameter T. Our GA stops when
the best solution in the population is not improved during the past T consecutive generations.

3.2. Ensemble Methods

As explained in Figure 1b, the DPGA can produce many prediction models, which can constitute an
ensemble of solutions. Herein, we employed the voting ensemble and the Kalman filter ensemble [53]
for the fault-type classification and the RUL prediction, respectively. For the former case, we applied a
soft voting rule to achieve the combined results of multiple optimal classifiers. The voting ensemble is
based on the sums of the predicted probabilities from well-calibrated classifiers. The Kalman filter
ensemble can provide a mechanism for fusing multiple model predictions over time for a stable and
high prediction performance.

Appl. Sci. 2020, 10, 368 11 of 20

4. Results

To validate the performance of our method, we compared it to the traditional grid-search
approaches over the following two fault-type classification benchmark datasets and one RUL prediction
benchmark dataset.

4.1. Datasets

4.1.1. Steel Plates Faults Dataset

This dataset is provided by the Semeion Research Center of Sciences of Communication (www.
semeion.it). Each observation is classified into seven different types of steel plate’s faults, namely,
Pastry, Z-Scratch, K-Scratch, Stains, Dirtiness, Bumps, and Other Faults [54,55]. The numbers of
observations corresponding to the fault type are shown in Table 3. As shown in the table, the numbers
of observations vary a lot from one category to another. The total number of observations is 1941,
and each observation is made up of 27 features representing the geometric shape of the defect and
its contour.

Table 3. Steel plates faults dataset.

Class Type of Faults Number of Observations

1 Pastry 158
2 Z-Scratch 190
3 K-Scratch 391
4 Stains 72
5 Dirtiness 55
6 Bumps 402
7 Other Faults 673

4.1.2. SECOM Dataset

The dataset provided by UCI Machine Learning Repository (http://archive.ics.uci.edu/mL) is
related to a semiconductor manufacturing process. The dataset consists of 1567 observations, and
each observation is made up of 591 features representing manufacturing operations of a single
semiconductor [56]. The data were collected from the continuous monitoring process using sensors
and metrology equipment along the semiconductor manufacturing line. At the end of manufacturing
operation, functional testing was performed to ensure that the semiconductor meets the specification
for which it is designed. If the result met the expectation, the semiconductor would be classified as
the accepted product; otherwise, it would be rejected. There are only 104 rejected cases, whereas
there are 1463 accepted cases. Due to its high imbalance ratio, it is difficult to get a high classification
performance on the dataset.

4.1.3. NASA C-MAPSS Dataset

The NASA commercial modular aero-propulsion system simulation (C-MAPSS) dataset is
generated by using a model-based simulation program [57,58]. It is further divided into four
sub-datasets, as shown in Table 4. Each trajectory within the train and test trajectories is assumed to
be the life-cycle of an aircraft gas turbine engine, and starts with different degrees of initial wear and
manufacturing variation, which are unknown to the data analyzer. All engines operate in normal
condition at the start, and then begin to degrade at some point. The degradation in the training set
grows in magnitude until failure, while the degradation in the test set ends prior to failure. Thus, the
main objective is to predict the correct RUL value for each engine in the test set.

www.semeion.it
www.semeion.it
http://archive.ics.uci.edu/mL

Appl. Sci. 2020, 10, 368 12 of 20

Table 4. NASA C-MAPSS dataset details.

Sub-Dataset FD001 FD002 FD003 FD004

Train trajectories 100 260 100 248
Test trajectories 100 259 100 248

No. of operational
modes 1 6 1 6

The data are arranged in an N-by-26 matrix where N corresponds to the number of data points in
each dataset. Each row is a snapshot taken during a single operational cycle and includes 26 different
features: Engine number, time step (in cycles), three operational settings, and 21 sensor measurements
(temperature, pressure, fan/core speed, and so on). The three features of operational settings specify
the flight condition or operational mode of an engine, which have a substantial effect on engine
performance [53,59,60]. There is a single operational mode in FD001 and FD003 sub-datasets, whereas
there are six operational modes in FD002 and FD004 sub-datasets. Therefore, the operational mode
was included as a feature by using six real variables, each of which represents the number of cycles
spent in the corresponding operational mode since the beginning of the series [53]. In addition, they
were normalized as in [53].

4.2. Performance Comparisons between DPGA and Grid-Search Approaches

We compare the prediction performance of our method to the traditional exhaustive grid-search
(EGS) approaches applied to MLP, kNN, SVM, and RF (we call them EGS-MLP, EGS-kNN, EGS-SVM,
and EGS-RF, respectively). In an EGS approach, 5-fold cross-validation is conducted to find an optimal
set of parameters. In addition, we further compared the performance of the ensemble of the prediction
models of all EGS approaches (we call this EGS-E). As our method, the voting ensemble and the
Kalman filter ensemble for the fault-type classification and the RUL prediction, respectively, were used
for EGS-E. We first scatter-plotted the relation of the performance between the training and test sets
by DPGA and five EGS approaches (Figure 4). Unfortunately, the positive relation was not observed
among the results of EGS approaches in all figures. This implies that a better solution in the training
set can show a worse performance over the test set. Therefore, it is not efficient to simply select a best
grid-search approach based on the training set. Interestingly, our approach (DPGA) was best over the
test set, whereas it was not best over the training set in all datasets. Figure 5 shows the result where
Y-axis values mean the average and the standard deviation of the F1-score or MSE values in the test
dataset over 50 trials. As shown in the figure, our DPGA achieved significantly better results among
the examined methods in all datasets of fault-type classification and the RUL prediction problems
(all p-values < 0.02). Specifically, the second-best methods were EGS-kNN, EGS-E, and EGS-MLP for
the C-MAPSS, steel-plate, and SECOM datasets, respectively. This implies that the performance of a
learning algorithm is varied across the given dataset, but our method stably overwhelmed the EGS
approaches. In addition, we investigated the best solutions found by EGS (Table 5) and DPGA (Tables 6
and 7), and observed that they are very different to each other. EGS approaches have almost found the
best solution, which only includes an algorithm of the FFE (filter-based feature extraction) part and the
RD (rebalancing data) part in the RUL prediction and the fault-type classification, respectively. In other
words, the RFE and the PCA part were not useful in the search. On the other hand, the best solutions
found by DPGA have included valid algorithms in all RD, FFE, RFE, and PCA parts. Specifically, the
RD (in fault-type classification), FFE (in RUL prediction), and PCA parts were effective in all best-found
solutions. This means that DPGA has efficiently searched a variety of combinations of all subtasks in
the fault-type classification and the RUL prediction.

Appl. Sci. 2020, 10, 368 13 of 20

Appl. Sci. 2020, 10, x 13 of 20

Figure 4. Relations of the performance between the training and the test data by DPGA and the
exhaustive grid-search approach. (a–d) Results in remaining useful life (RUL) prediction datasets. (e,f)
Results in fault-types classification datasets.

Figure 4. Relations of the performance between the training and the test data by DPGA and the
exhaustive grid-search approach. (a–d) Results in remaining useful life (RUL) prediction datasets.
(e,f) Results in fault-types classification datasets.

Appl. Sci. 2020, 10, 368 14 of 20

Appl. Sci. 2020, 10, x 14 of 20

Figure 5. Performance comparison of our DPGA approach with the exhaustive grid-search
approaches on different machine-learning methods. (a–d) Results in RUL prediction datasets. (e,f)
Results in fault-types classification datasets.

Table 5. Best solutions found by the exhaustive grid-search approaches (NA: Not available).

Dataset Method DR FFE RFE PCA Parameters

FD001

EGS-MLP NA ES None False 𝑠𝑣 = 𝑙𝑏𝑓𝑔𝑠, 𝑛 = 20, 𝑎𝑐𝑡𝑓 = 𝑟𝑒𝑙𝑢

EGS-kNN NA SMA None False 𝑛 = 4, 𝑤𝑓 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

EGS-SVM NA ES None False 𝐶 = 8

EGS-RF NA ES None False 𝑛 = 10

FD002

EGS-MLP NA ES None False 𝑠𝑣 = 𝑎𝑑𝑎𝑚, 𝑛 = 18, 𝑎𝑐𝑡𝑓 = 𝑡𝑎𝑛ℎ

EGS-kNN NA EMA None False 𝑛 = 10, 𝑤𝑓 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

EGS-SVM NA ES None False 𝐶 = 6

EGS-RF NA ES None False 𝑛 = 10

FD003

EGS-MLP NA ES None False 𝑠𝑣 = 𝑙𝑏𝑓𝑔𝑠, 𝑛 = 20, 𝑎𝑐𝑡𝑓 = 𝑟𝑒𝑙𝑢

EGS-kNN NA SMA None False 𝑛 = 8, 𝑤𝑓 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

EGS-SVM NA ES None False 𝐶 = 8

EGS-RF NA ES None False 𝑛 = 6

FD004

EGS-MLP NA ES None False 𝑠𝑣 = 𝑙𝑏𝑓𝑔𝑠, 𝑛 = 15, 𝑎𝑐𝑡𝑓 = 𝑟𝑒𝑙𝑢

EGS-kNN NA None None False 𝑛 = 10, 𝑤𝑓 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

EGS-SVM NA ES None False 𝐶 = 8

Figure 5. Performance comparison of our DPGA approach with the exhaustive grid-search approaches
on different machine-learning methods. (a–d) Results in RUL prediction datasets. (e,f) Results in
fault-types classification datasets.

Appl. Sci. 2020, 10, 368 15 of 20

Table 5. Best solutions found by the exhaustive grid-search approaches (NA: Not available).

Dataset Method DR FFE RFE PCA Parameters

FD001

EGS-MLP NA ES None False svWO = lb f gs, nHN = 20, act fHL = relu
EGS-kNN NA SMA None False nNN = 4, w fNN = distance
EGS-SVM NA ES None False C = 8
EGS-RF NA ES None False ntree = 10

FD002

EGS-MLP NA ES None False svWO = adam, nHN = 18, act fHL = tanh
EGS-kNN NA EMA None False nNN = 10, w fNN = distance
EGS-SVM NA ES None False C = 6
EGS-RF NA ES None False ntree = 10

FD003

EGS-MLP NA ES None False svWO = lb f gs, nHN = 20, act fHL = relu
EGS-kNN NA SMA None False nNN = 8, w fNN = distance
EGS-SVM NA ES None False C = 8
EGS-RF NA ES None False ntree = 6

FD004

EGS-MLP NA ES None False svWO = lb f gs, nHN = 15, act fHL = relu
EGS-kNN NA None None False nNN = 10, w fNN = distance
EGS-SVM NA ES None False C = 8

EGS-RF NA ES None False ntree = 10

Steel plates
faults

EGS-MLP NCL None None False r = 1.0, svWO = adam, nHN = 15, act fHL = tanh
EGS-kNN None None None False nNN = 8, w fNN = distance
EGS-SVM NCL None None False r = 1.0, C = 4
EGS-RF SSMOTE None None False r = 1.0, ntree = 10

SECOM

EGS-MLP RDUP None None False r = 1.0, svWO = adam, nHN = 20, act fHL = relu
EGS-kNN RDUP None None False r = 1.0, nNN = 2, w fNN = uni f orm
EGS-SVM SSMOTE None None False r = 1.0, C = 8
EGS-RF SMOTE None None False r = 1.0, ntree = 8

Table 6. Best solutions of our DPGA approach in RUL prediction datasets. (a–d) Results of the
sub-dataset FD001, FD002, FD003, and FD004, respectively, in the NASA C-MAPSS dataset. Bold values
denote the minority cases in all sub-datasets.

(a) FD001 dataset

FFE Algo. FFE Para. RFE Algo. RFE Para. PCA Flag PCA Para. LM Para.

CMA nMA = 10 PCA, LSA nPC = 1 TRUE ε = 91.649 MLP:
svWO = adam∧ nHN = 11∧ act fHL = tanh

CMA nMA = 10 LSA, FAG nFAG = 2
nPC = 1 TRUE ε = 91.649 MLP:

svWO = adam∧ nHN = 11∧ act fHL = tanh

CMA nMA = 10 LSA, FAG nFAG = 2
nPC = 1 TRUE ε = 91.649 MLP:

svWO = adam∧ nHN = 10∧ act fHL = tanh
SMA, CMA,

EMA, ES nMA = 10 PCA, LSA nPC = 1 TRUE ε = 98.517 kNN: nNN = 7∧w fNN = uni f orm

CMA, EMA,
ES, LFS

nMA = 6
χ = 40.196 PCA nPC = 1 TRUE ε = 98.394 kNN: nNN = 9∧w fNN = distance

CMA, ES nMA = 6 None None TRUE ε = 99.012 SVM: C = 5
CMA, ES nMA = 9 FAG nFAG = 2 TRUE ε = 99.477 RF: ntree = 4

(b) FD002 dataset

FFE Algo. FFE Para. RFE Algo. RFE Para. PCA Flag PCA Para. LM Para.

SMA, CMA,
EMA nMA = 4 PCA, LSA, FAG,

GRP
nFAG = 2
nPC = 2 TRUE ε = 99.456 MLP:

svWO = adam∧ nHN = 6∧ act fHL = relu
CMA nMA = 9 FAG nFAG = 3 TRUE ε = 99.980 kNN: nNN = 5∧w fNN = uni f orm
CMA nMA = 10 PCA nPC = 1 TRUE ε = 98.771 SVM: C = 4
CMA nMA = 9 PCA nPC = 1 TRUE ε = 98.771 SVM: C = 4

SMA, EMA nMA = 10 PCA, LSA, FAG,
GRP, SRP

nFAG = 3
nPC = 2 TRUE ε = 93.179 RF: ntree = 5

SMA, CMA nMA = 9 PCA nPC = 2 TRUE ε = 93.179 RF: ntree = 5

(c) FD003 dataset

FFE Algo. FFE Para. RFE Algo. RFE Para. PCA Flag PCA Para. LM Para.

SMA, CMA,
ES nMA = 10 LSA, GRP nPC = 1 TRUE ε = 94.131 MLP:

svWO = adam∧ nHN = 8∧ act fHL = relu
CMA, ES,

LFS
χ = 21.056

nMA = 9 LSA nPC = 2 TRUE ε = 95.048 kNN: nNN = 7∧w fNN = uni f orm

SMA, ES nMA = 8 PCA, LSA, FAG nPC = 1
nFAG = 2 TRUE ε = 95.047 SVM: C = 4

SMA, ES nMA = 8 PCA, LSA, FAG nPC = 1
nFAG = 2 TRUE ε = 93.092 SVM: C = 4

SMA, CMA,
EMA, ES nMA = 9 FAG, SRP nPC = 1

nFAG = 2 TRUE ε = 96.689 RF: ntree = 8

Appl. Sci. 2020, 10, 368 16 of 20

Table 6. Cont.

(d) FD004 dataset

FFE Algo. FFE Para. RFE Algo. RFE Para. PCA Flag PCA Para. LM Para.

EMA None PCA, FAG nFAG = 3
nPC = 1 TRUE ε = 92.148 MLP:

svWO = adam∧ nHN = 6∧ act fHL = relu
CMA nMA = 10 FAG nFAG = 2 TRUE ε = 99.023 kNN: nNN = 5∧w fNN = distance

SMA, EMA,
LFS

nMA = 10
χ = 23.091 FAG nFAG = 2 TRUE ε = 99.987 SVM: C = 4

SMA, EMA,
LFS

nMA = 9
χ = 23.091 FAG nFAG = 2 TRUE ε = 99.987 SVM: C = 4

LFS χ = 45.570 PCA, LSA nPC = 2 TRUE ε = 99.825 RF: ntree = 5

Table 7. Best solutions of our DPGA approach in fault-types classification datasets. (a,b) Results of the
steel plates faults and SECOM datasets, respectively.

(a) Steel plates faults dataset

DR Algo. DR Para. RFE Algo. RFE Para. PCA Flag PCA Para. LM Para.

SSMOTE r2m = 0.934 FAG nFAG = 2 TRUE ε = 98.964 MLP:
svWO = adam∧ nHN = 20∧ act fHL = tanh

SMOTE r2m = 0.933 FAG nFAG = 3 TRUE ε = 98.964 MLP:
svWO = adam∧ nHN = 19∧ act fHL = tanh

SMOTE r2m = 1 PCA nPC = 1 TRUE ε = 93.742 kNN: nNN = 2∧w fNN = distance
BSMOTE1 r2m = 0.918 PCA nPC = 1 TRUE ε = 93.742 kNN: nNN = 3∧w fNN = distance

RDUP r2m = 0.834 PCA nPC = 1 TRUE ε = 93.742 kNN: nNN = 3∧w fNN = distance

SMOTE r2m = 0.928 PCA, LSA, FAG nPC = 2
nFAG = 2 TRUE ε = 98.157 SVM: C = 7

BSMOTE1 r2m = 1 PCA, LSA, FAG nPC = 1
nFAG = 3 TRUE ε = 98.634 SVM: C = 8

RDUP r2m = 0.931 PCA, LSA nPC = 1 TRUE ε = 98.216 RF: ntree = 9

BSMOTE1 r2m = 0.993 PCA, LSA, FAG nPC = 1
nFAG = 3 TRUE ε = 98.859 RF: ntree = 10

RDUP r2m = 0.874 FAG nFAG = 3 TRUE ε = 98.216 RF: ntree = 10

(b) SECOM dataset

DR Algo. DR Para. RFE Algo. RFE Para. PCA Flag PCA Para. LM Para.

BSMOTE1 r2m = 0.910 LSA, FAG nPC = 53
nFAG = 52 TRUE ε = 97.867 MLP:

svWO = adam∧ nHN = 20∧ act fHL = relu

RDUP r2m = 0.907 LSA, FAG nPC = 54
nFAG = 52 TRUE ε = 96.521 MLP:

svWO = adam∧ nHN = 17∧ act fHL = relu
RDUP r2m = 0.910 None None TRUE ε = 98.027 kNN: nNN = 2∧w fNN = distance
RDUP r2m = 0.763 None None TRUE ε = 97.678 kNN: nNN = 2∧w fNN = uni f orm

BSMOTE2 r2m = 0.968 PCA, LSA, FAG nPC = 8
nFAG = 20 TRUE ε = 98.322 SVM: C = 6

SSMOTE r2m = 0.803 FAG nFAG = 19 TRUE ε = 90.882 RF: ntree = 9
SMOTE r2m = 0.934 LSA nPC = 9 TRUE ε = 91.980 RF: ntree = 9

Finally, we compare the running time between the approaches on a system with a four-core
Intel® Core™ i7-6700 Processor 3.40 GHz and 16 GB of memory. As the execution time of the Kalman
filter or voting ensemble is very small (less than 1 min), we compared the running time of DPGA
to that of EGS-E only (Figure 6). Note that the running time is measured for the learning phase in
Figure 1b. As shown in the figure, the running time of DPGA is even shorter than that of the EGS-E
for the small-sized dataset (steel plates faults). For large datasets (FD001–FD004, and SECOM), the
running time of DPGA approaches was, at most, 1.9 times longer than that of the EGS-E ones, which is
practically acceptable considering the performance improvement.

Appl. Sci. 2020, 10, 368 17 of 20

Appl. Sci. 2020, 10, x 17 of 20

Figure 6. Comparison of running time between DPGA and exhaustive grid-search (EGS)-E. (a) RUL
prediction datasets. (b) Fault-types classification datasets.

5. Conclusions

In this study, we proposed a DPGA, which is a novel framework to predict the RUL and fault-
types. It is a self-adaptive method to select the close-to-optimal set of data-preprocessing algorithms
and optimize the involved parameters in each subtask of data rebalancing, feature extraction, feature
reduction, and learning. Although DPGA used four machine-learning methods such as the multi-
layer perceptron network, k-nearest neighbor, support vector machine, and random forest in this
study, it can be easily extended to combine other kinds of machine-learning methods. In addition,
our method seems robust because it can generate an ensemble of prediction models. Through the
performance comparison of DPGA with the traditional grid-search framework over three benchmark
datasets, the former showed significantly better accuracies than the latter in a comparable running
time. This implies that our genetic search was efficient in solving the large-scaled diagnostics and
prognostics problems. It was interesting that the best solutions found by DPGA involve many
filtering- or reduction-based feature extraction algorithms to generate various feature variables. As
shown in the results, it is advantageous that DPGA can be applicable to other machinery systems
without a priori knowledge about the most proper machine-learning method or a feature processing
algorithm. In a future study, a parallel and distributed version of the DPGA method can be developed
to reduce the execution time. It is also promising to further validate the usefulness of our approach
by employing other kinds of the machine-learning models such as the recurrent neural network.
Finally, it will be another interesting future study to design a more robust ensemble approach than
what was employed in DPGA.

Author Contributions: Conceptualization, Y.-K.K.; Formal analysis, H.-C.T.; Funding acquisition, Y.-K.K.;
Methodology, H.-C.T.; Project administration, Y.-K.K.; Writing—original draft, H.-C.T.; Writing—review &
editing, Y.-K.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National IT Industry Promotion Agency (NIPA) grant funded by the
Korea government (MSIP) (S1106-16-1002, Development of smart RMS software for ship maintenance-based
fault predictive diagnostics).

Figure 6. Comparison of running time between DPGA and exhaustive grid-search (EGS)-E. (a) RUL
prediction datasets. (b) Fault-types classification datasets.

5. Conclusions

In this study, we proposed a DPGA, which is a novel framework to predict the RUL and fault-types.
It is a self-adaptive method to select the close-to-optimal set of data-preprocessing algorithms and
optimize the involved parameters in each subtask of data rebalancing, feature extraction, feature
reduction, and learning. Although DPGA used four machine-learning methods such as the multi-layer
perceptron network, k-nearest neighbor, support vector machine, and random forest in this study, it
can be easily extended to combine other kinds of machine-learning methods. In addition, our method
seems robust because it can generate an ensemble of prediction models. Through the performance
comparison of DPGA with the traditional grid-search framework over three benchmark datasets, the
former showed significantly better accuracies than the latter in a comparable running time. This implies
that our genetic search was efficient in solving the large-scaled diagnostics and prognostics problems.
It was interesting that the best solutions found by DPGA involve many filtering- or reduction-based
feature extraction algorithms to generate various feature variables. As shown in the results, it is
advantageous that DPGA can be applicable to other machinery systems without a priori knowledge
about the most proper machine-learning method or a feature processing algorithm. In a future study, a
parallel and distributed version of the DPGA method can be developed to reduce the execution time.
It is also promising to further validate the usefulness of our approach by employing other kinds of the
machine-learning models such as the recurrent neural network. Finally, it will be another interesting
future study to design a more robust ensemble approach than what was employed in DPGA.

Author Contributions: Conceptualization, Y.-K.K.; Formal analysis, H.-C.T.; Funding acquisition, Y.-K.K.;
Methodology, H.-C.T.; Project administration, Y.-K.K.; Writing—original draft, H.-C.T.; Writing—review & editing,
Y.-K.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National IT Industry Promotion Agency (NIPA) grant funded by the
Korea government (MSIP) (S1106-16-1002, Development of smart RMS software for ship maintenance-based fault
predictive diagnostics).

Appl. Sci. 2020, 10, 368 18 of 20

Acknowledgments: This work was supported by National IT Industry Promotion Agency (NIPA) grant funded
by the Korea government (MSIP) (S1106-16-1002, Development of smart RMS software for ship maintenance
based fault predictive diagnostics).

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Vogl, G.W.; Weiss, B.A.; Helu, M. A review of diagnostic and prognostic capabilities and best practices for
manufacturing. J. Intell. Manuf. 2019, 30, 79–95. [CrossRef]

2. Sadoughi, M.; Hu, C. Physics-based convolutional neural network for fault diagnosis of rolling element
bearings. IEEE Sens. J. 2019, 19, 4181–4192. [CrossRef]

3. Sadoughi, M.; Hu, C. A physics-based deep learning approach for fault diagnosis of rotating machinery.
In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society,
Washington, DC, USA, 21–23 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 5919–5923.

4. Vasu, J.Z.; Deb, A.K.; Mukhopadhyay, S. Mvem-based fault diagnosis of automotive engines using
dempster–shafer theory and multiple hypotheses testing. IEEE Trans. Syst. Man Cybern. Syst. 2015,
45, 977–989. [CrossRef]

5. Nadeer, E.P.; Mukhopadhyay, S.; Patra, A. Hybrid system model based fault diagnosis of automotive engines.
In Fault Diagnosis of Hybrid Dynamic and Complex Systems; Sayed-Mouchaweh, M., Ed.; Springer: Cham,
Switzerland, 2018; pp. 153–178.

6. Wei, Z.; Bhattarai, A.; Zou, C.; Meng, S.; Lim, T.M.; Skyllas-Kazacos, M. Real-time monitoring of capacity
loss for vanadium redox flow battery. J. Power Sources 2018, 390, 261–269. [CrossRef]

7. Cubillo, A.; Perinpanayagam, S.; Esperon-Miguez, M. A review of physics-based models in prognostics:
Application to gears and bearings of rotating machinery. Adv. Mech. Eng. 2016, 8, 1687814016664660.
[CrossRef]

8. Cubillo, A.; Vermeulen, J.; Rodriguez de la Peña, M.; Collantes Casanova, I.; Perinpanayagam, S. Physics-based
integrated vehicle health management system for predicting the remaining useful life of an aircraft planetary
gear transmission. Int. J. Struct. Integr. 2017, 8, 484–495. [CrossRef]

9. Downey, A.; Lui, Y.-H.; Hu, C.; Laflamme, S.; Hu, S. Physics-based prognostics of lithium-ion battery using
non-linear least squares with dynamic bounds. Reliab. Eng. Syst. Saf. 2019, 182, 1–12. [CrossRef]

10. Li, Z.; Outbib, R.; Giurgea, S.; Hissel, D.; Giraud, A.; Couderc, P. Fault diagnosis for fuel cell systems: A
data-driven approach using high-precise voltage sensors. Renew. Energy 2019, 135, 1435–1444. [CrossRef]

11. Gou, B.; Xu, Y.; Xia, Y.; Wilson, G.; Liu, S. An intelligent time-adaptive data-driven method for sensor fault
diagnosis in induction motor drive system. IEEE Trans. Ind. Electron. 2018, 66. [CrossRef]

12. Chen, H.; Jiang, B.; Chen, W.; Yi, H. Data-driven detection and diagnosis of incipient faults in electrical drives
of high-speed trains. IEEE Trans. Ind. Electron. 2019, 66, 4716–4725. [CrossRef]

13. Li, M.; Yu, D.; Chen, Z.; Xiahou, K.; Ji, T.; Wu, Q.H. A data-driven residual-based method for fault diagnosis
and isolation in wind turbines. IEEE Trans. Sustain. Energy 2019, 10, 895–904. [CrossRef]

14. Zhong, J.; Zhang, J.; Liang, J.; Wang, H. Multi-fault rapid diagnosis for wind turbine gearbox using sparse
bayesian extreme learning machine. IEEE Access 2019, 7, 773–781. [CrossRef]

15. Baptista, M.; Henriques, E.M.P.; de Medeiros, I.P.; Malere, J.P.; Nascimento, C.L.; Prendinger, H. Remaining
useful life estimation in aeronautics: Combining data-driven and kalman filtering. Reliab. Eng. Syst. Saf.
2019, 184, 228–239. [CrossRef]

16. Li, X.; Ding, Q.; Sun, J.-Q. Remaining useful life estimation in prognostics using deep convolution neural
networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [CrossRef]

17. Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.;
Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy
2019, 4, 383–391. [CrossRef]

18. Zhu, J.; Chen, N.; Peng, W. Estimation of bearing remaining useful life based on multiscale convolutional
neural network. IEEE Trans. Ind. Electron. 2019, 66, 3208–3216. [CrossRef]

http://dx.doi.org/10.1007/s10845-016-1228-8
http://dx.doi.org/10.1109/JSEN.2019.2898634
http://dx.doi.org/10.1109/TSMC.2014.2384471
http://dx.doi.org/10.1016/j.jpowsour.2018.04.063
http://dx.doi.org/10.1177/1687814016664660
http://dx.doi.org/10.1108/IJSI-01-2016-0003
http://dx.doi.org/10.1016/j.ress.2018.09.018
http://dx.doi.org/10.1016/j.renene.2018.09.077
http://dx.doi.org/10.1109/TIE.2018.2880719
http://dx.doi.org/10.1109/TIE.2018.2863191
http://dx.doi.org/10.1109/TSTE.2018.2853990
http://dx.doi.org/10.1109/ACCESS.2018.2885816
http://dx.doi.org/10.1016/j.ress.2018.01.017
http://dx.doi.org/10.1016/j.ress.2017.11.021
http://dx.doi.org/10.1038/s41560-019-0356-8
http://dx.doi.org/10.1109/TIE.2018.2844856

Appl. Sci. 2020, 10, 368 19 of 20

19. Frank, S.; Heaney, M.; Jin, X.; Robertson, J.; Cheung, H.; Elmore, R.; Henze, G. Hybrid Model-Based and
Data-Driven Fault Detection and Diagnostics for Commercial Buildings; National Renewable Energy Lab (NREL):
Golden, CO, USA, 2016.

20. Matei, I.; Ganguli, A.; Honda, T.; de Kleer, J. The case for a hybrid approach to diagnosis: A railway switch.
In Proceedings of the 26th International Workshop on Principles of Diagnosis, Paris, France, 31 August–3
September 2015; pp. 225–234.

21. Leturiondo, U.; Salgado, O.; Ciani, L.; Galar, D.; Catelani, M. Architecture for hybrid modelling and its
application to diagnosis and prognosis with missing data. Measurement 2017, 108, 152–162. [CrossRef]

22. Pantelelis, N.G.; Kanarachos, A.E.; Gotzias, N. Neural networks and simple models for the fault diagnosis of
naval turbochargers. Math. Comput. Simul. 2000, 51, 387–397. [CrossRef]

23. Qian, Y.; Yan, R.; Gao, R.X. A multi-time scale approach to remaining useful life prediction in rolling bearing.
Mech. Syst. Signal Process. 2017, 83, 549–567. [CrossRef]

24. Djeziri, M.A.; Benmoussa, S.; Sanchez, R. Hybrid method for remaining useful life prediction in wind turbine
systems. Renew. Energy 2018, 116, 173–187. [CrossRef]

25. Sun, H.; Cao, D.; Zhao, Z.; Kang, X. A hybrid approach to cutting tool remaining useful life prediction based
on the wiener process. IEEE Trans. Reliab. 2018, 67, 1294–1303. [CrossRef]

26. Hu, C.; Ye, H.; Jain, G.; Schmidt, C. Remaining useful life assessment of lithium-ion batteries in implantable
medical devices. J. Power Sources 2018, 375, 118–130. [CrossRef]

27. Junnian, W.; Yao, D.; Zhenheng, W.; Dan, J. Multi-fault diagnosis method for wind power generation system
based on recurrent neural network. Proc. Inst. Mech. Eng. Part A J. Power Energy 2019, 0957650919844065.
[CrossRef]

28. Xu, G.; Liu, M.; Jiang, Z.; Söffker, D.; Shen, W. Bearing fault diagnosis method based on deep convolutional
neural network and random forest ensemble learning. Sensors 2019, 19, 1088. [CrossRef]

29. Hasan, J.M.; Kim, J.-M. Fault detection of a spherical tank using a genetic algorithm-based hybrid feature
pool and k-nearest neighbor algorithm. Energies 2019, 12, 991. [CrossRef]

30. Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A novel multistage support
vector machine based approach for li ion battery remaining useful life estimation. Appl. Energy 2015, 159,
285–297. [CrossRef]

31. Sun, F.; Li, X.; Liao, H.; Zhang, X. A bayesian least-squares support vector machine method for predicting
the remaining useful life of a microwave component. Adv. Mech. Eng. 2017, 9, 1687814016685963. [CrossRef]

32. Jiménez, Á.B.; Lázaro, J.L.; Dorronsoro, J.R. Finding optimal model parameters by discrete grid search.
In Innovations in Hybrid Intelligent Systems; Corchado, E., Corchado, J.M., Abraham, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 120–127.

33. Beydoun, G.; Hoffmann, A. Building problem solvers based on search control knowledge. In Proceedings of
the 11th Banff Knowledge Acquisition for Knowledge Base System Workshop, Banff, AB, Canada, 18–23
April 1998.

34. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. Smote: Synthetic minority over-sampling technique.
J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

35. Han, H.; Wang, W.-Y.; Mao, B.-H. Borderline-Smote: A New Over-Sampling Method in Imbalanced Data Sets
Learning; Springer: Berlin/Heidelberg, Germany, 2005; pp. 878–887.

36. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18
July 1967; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297.

37. Nguyen, H.M.; Cooper, E.W.; Kamei, K. Borderline over-sampling for imbalanced data classification. Int. J.
Knowl. Eng. Soft Data Paradig. 2011, 3, 4–21. [CrossRef]

38. Batista, G.E.A.P.A.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing
machine learning training data. SIGKDD Explor. Newsl. 2004, 6, 20–29. [CrossRef]

39. Laurikkala, J. Improving Identification of Difficult Small Classes by Balancing Class Distribution; Springer:
Berlin/Heidelberg, Germany, 2001; pp. 63–66.

40. Wilson, D.R.; Martinez, T.R. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000,
38, 257–286. [CrossRef]

41. Jolliffe, I.T. Principal component analysis and factor analysis. In Principal Component Analysis; Springer:
Berlin/Heidelberg, Germany, 1986; pp. 115–128.

http://dx.doi.org/10.1016/j.measurement.2017.02.003
http://dx.doi.org/10.1016/S0378-4754(99)00131-7
http://dx.doi.org/10.1016/j.ymssp.2016.06.031
http://dx.doi.org/10.1016/j.renene.2017.05.020
http://dx.doi.org/10.1109/TR.2018.2831256
http://dx.doi.org/10.1016/j.jpowsour.2017.11.056
http://dx.doi.org/10.1177/0957650919844065
http://dx.doi.org/10.3390/s19051088
http://dx.doi.org/10.3390/en12060991
http://dx.doi.org/10.1016/j.apenergy.2015.08.119
http://dx.doi.org/10.1177/1687814016685963
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1504/IJKESDP.2011.039875
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1023/A:1007626913721

Appl. Sci. 2020, 10, 368 20 of 20

42. Hamadache, M.; Lee, D.; Mucchi, E.; Dalpiaz, G. Vibration-based bearing fault detection and diagnosis
via image recognition technique under constant and variable speed conditions. Appl. Sci. 2018, 8, 1392.
[CrossRef]

43. Hamadache, M.; Lee, D. Principal component analysis based signal-to-noise ratio improvement for inchoate
faulty signals: Application to ball bearing fault detection. Int. J. Control. Autom. Syst. 2017, 15, 506–517.
[CrossRef]

44. Landauer, T.K.; Foltz, P.W.; Laham, D. An introduction to latent semantic analysis. Discourse Process. 1998,
25, 259–284. [CrossRef]

45. Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244.
[CrossRef]

46. Bingham, E.; Mannila, H. Random projection in dimensionality reduction: Applications to image and text
data. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, 26–29 August 2001; ACM: New York, NY, USA, 2001; pp. 245–250.

47. Achlioptas, D. Database-friendly random projections. In Proceedings of the Twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Santa Barbara, CA, USA,
21–23 May 2001; ACM: New York, NY, USA, 2001; pp. 274–281.

48. Hamadache, M.; Jung, J.H.; Park, J.; Youn, B.D. A comprehensive review of artificial intelligence-based
approaches for rolling element bearing phm: Shallow and deep learning. JMST Adv. 2019, 1, 125–151.
[CrossRef]

49. Wang, X.; Wang, H. Classification by evolutionary ensembles. Pattern Recognit. 2006, 39, 595–607. [CrossRef]
50. Kim, Y.W.; Oh, I.S. Classifier ensemble selection using hybrid genetic algorithms. Pattern Recognit. Lett. 2008,

29, 796–802. [CrossRef]
51. Shanno, D.F. Conditioning of quasi-newton methods for function minimization. Math. Comput. 1970, 24,

647–656. [CrossRef]
52. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
53. Peel, L. Data driven prognostics using a kalman filter ensemble of neural network models. In Proceedings of

the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 Octomber
2008; pp. 1–6.

54. Buscema, M.; Terzi, S.; Tastle, W. A New Meta-Classifier; IEEE: Piscataway, NJ, USA, 2010; pp. 1–7.
55. Srivastava, A.K. Comparison analysis of machine learning algorithms for steel plate fault detection. IRJET

2019, 6, 1231.
56. Arif, F.; Suryana, N.; Hussin, B. Cascade quality prediction method using multiple pca + id3 for multi-stage

manufacturing system. IERI Procedia 2013, 4, 201–207. [CrossRef]
57. Saxena, A.; Goebel, K. TURBOFAN Engine Degradation Simulation Data Set, Nasa Ames Prognostics

Data Repository. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

#turbofan (accessed on 20 July 2018).
58. Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure

simulation. In Proceedings of the International Conference on Prognostics and Health Management, Denver,
CO, USA, 6–9 Octomber 2008; pp. 1–9.

59. Wang, T.; Jianbo, Y.; Siegel, D.; Lee, J. A similarity-based prognostics approach for remaining useful life
estimation of engineered systems. In Proceedings of the 2008 International Conference on Prognostics and
Health Management, Denver, CO, USA, 6–9 Octomber 2008; pp. 1–6.

60. Heimes, F.O. Recurrent Neural Networks for Remaining Useful Life Estimation. In Proceedings of the 2008
International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 Octomber 2008;
pp. 1–6.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/app8081392
http://dx.doi.org/10.1007/s12555-015-0196-7
http://dx.doi.org/10.1080/01638539809545028
http://dx.doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/10.1007/s42791-019-0016-y
http://dx.doi.org/10.1016/j.patcog.2005.09.016
http://dx.doi.org/10.1016/j.patrec.2007.12.013
http://dx.doi.org/10.1090/S0025-5718-1970-0274029-X
http://dx.doi.org/10.1016/j.ieri.2013.11.029
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Backgrounds
	Data Rebalancing Methods
	Over-Sampling Methods
	Under-Sampling Methods

	Filtering Methods
	Dimensionality Reduction Methods
	Performance Evaluation Metrics
	F1-Score
	Mean Squared Error (MSE)

	The Proposed Method
	DPGA
	Chromosome Representation
	Fitness Calculation
	Selection
	Crossover
	Mutation
	Replacement and Stop Criterion

	Ensemble Methods

	Results
	Datasets
	Steel Plates Faults Dataset
	SECOM Dataset
	NASA C-MAPSS Dataset

	Performance Comparisons between DPGA and Grid-Search Approaches

	Conclusions
	References

