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Abstract: The limitations of hyperspectral sensors usually lead to coarse spatial resolution of acquired
images. A well-known fusion method called coupled non-negative matrix factorization (CNMF)
often amounts to an ill-posed inverse problem with poor anti-noise performance. Moreover, from the
perspective of matrix decomposition, the matrixing of remotely-sensed cubic data results in the
loss of data’s structural information, which causes the performance degradation of reconstructed
images. In addition to three-dimensional tensor-based fusion methods, Craig’s minimum-volume
belief in hyperspectral unmixing can also be utilized to restore the data structure information
for hyperspectral image super-resolution. To address the above difficulties simultaneously,
this article incorporates the regularization of joint spatial-spectral smoothing in a minimum-volume
simplex, and spatial sparsity—into the original CNMF, to redefine a bi-convex problem. After the
convexification of the regularizers, the alternating optimization is utilized to decouple the regularized
problem into two convex subproblems, which are then reformulated by separately vectorizing
the variables via vector-matrix operators. The alternating direction method of multipliers is
employed to split the variables and yield the closed-form solutions. In addition, in order to solve
the bottleneck of high computational burden, especially when the size of the problem is large,
complexity reduction is conducted to simplify the solutions with constructed matrices and tensor
operators. Experimental results illustrate that the proposed algorithm outperforms state-of-the-art
fusion methods, which verifies the validity of the new fusion approach in this article.

Keywords: spatial-spectral smoothing; super-resolution; coupled non-negative matrix factorization;
total variation; minimum volume

1. Introduction

Hyperspectral images (HSIs) with high spatial resolution play an increasingly important
role in feature extraction and terrain classification of the underlying materials [1–3].
However, hyperspectral sensors have some limitations regarding spatial resolution, such as hardware
and technology. Furthermore, the spatial and spectral resolutions are closely linked; i.e., better
spectral resolution automatically leads to coarser spatial resolution and vice versa. Therefore,
it is very difficult to obtain high-spatial-resolution HSIs directly. As an effective and economical
approach to image enhancement or super-resolution, fusion of hyperspectral and multispectral
images (MSIs) has attracted extensive attention in remote sensing, and substantial research results

Appl. Sci. 2020, 10, 237; doi:10.3390/app10010237 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1280-034X
https://orcid.org/0000-0001-9400-7833
https://orcid.org/0000-0001-9511-5772
http://www.mdpi.com/2076-3417/10/1/237?type=check_update&version=1
http://dx.doi.org/10.3390/app10010237
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 237 2 of 21

have emerged [4,5]. Nevertheless, there are still many problems to be solved [1,4,6], such as spatial
resolution, spectral distortion and anti-noise performance.

Pansharpening, originally designed to solve the fusion of MSIs and panchromatic images, can be
adapted to handle the fusion of HSIs and MSIs using the classical information processing methods [5],
such as the component substitution method [7,8] and multi-resolution analysis [9,10]. For example,
the component substitution method [8] constructed the spectral band mapping between the MSI and
clustered HSI, and then replaced the spatial component of the HSI with the corresponding part of the
MSI for the reconstructed image. The multi-resolution-analysis-based pansharpening methods [7]
linearly combined multispectral band images to synthesize a high-spatial-resolution image for each
HSI band. However, these methods do not fully exploit the intrinsic relationship between the HSI
and MSI, which often results in serious spectral distortion and performance degradation. In addition,
with the development of artificial intelligence, there are many fusion algorithms based on deep
neural networks [11–13]. For example, Yang et al. [11] proposed a fusion method based on a deep
convolutional neural network (CNN) with two branches for HSI and MSI separately, by exploiting
spectral correlation. Multi-branch back propagation neural networks were employed by Han et al. [13]
to propose a cluster-based fusion method to address the non-linear spectral mapping for each cluster.
Generally, supervised learning needs a training database based on images or pixels.

Data fusion aims at integrating the observed low-spatial-resolution HSI data and
high-spatial-resolution MSI data to obtain the reconstructed super-resolution image with high spatial
and spectral resolutions. Conversely, the observed HSIs and MSIs can be regarded as spectral and
spatial degradation of the high-spatial-resolution HSI, which is called the observation model. Data
fusion is often an inverse problem, made so by fusing the observed HSI and MSI data to enhance
the spatial resolution of reconstructed images. Furthermore, the inverse problem of data fusion is
ill-posed. To address the difficulties, Bayesian-based methods dedicated to the fusion of HSIs and
MSIs have been designed, which adopted the priors (e.g., Guassian prior) to design the algorithms in
the principal component subspace or wavelet domain [14]. Another popular approach is hyperspectral
super-resolution (HySure) [15], in which the fusion problem was reformulated by introducing the
vector-total-variation regularization into convex data fitting terms, and was solved by the split
augmented Lagrangian shrinkage algorithm. In addition, the research by Wei et al. [16] developed
a Bayesian-based sparse representation (BSR) method, in which a proper posterior distribution was
refined by the decomposition of the image on a set of dictionaries. However, this kind of fusion
method typically involves a high computational load, so some measures were taken to reduce
the large computational complexity of Bayesian-based fusion approaches; for example, a Sylvester
equation-based fast fusion [17].

As is well known, HSIs and MSIs are both cubic data, which can be considered three-dimensional
tensors. Recently, another category of state-of-the-art method has been developed on basis of
tensor decomposition, and includes canonical polyadic decomposition (CPD) [18,19] and Tucker
decomposition [20–22], which can retain the cubic structure information of remote sensing images.
For example, Li et al. [20] proposed a fusion algorithm based on coupled sparse tensor factorization
(CSTF), which was reformulated as the iterations of a core tensor and dictionaries of the three modes.
Charilaos et al. [19] brought forward a CPD-based fusion framework, in which the identifiability
of the reconstructed image was discussed under mild conditions. Wang et al. [22] proposed
a tensor-based approach to handle the problem of HSI spatial super-resolution by incorporating
the regularizers of nonlocal low-rank tensor approximation and total variation. However, as the
rank-1 version of Tucker decomposition [23], CPD is usually used to describe linear local features
in the image, rather than complex features. In NMF-based hyperspectral unmixing, the data can
be decomposed into the product of two matrices, which represent the endmember signature and
fractional abundance, respectively. However, the physical meaning of decomposed tensor is not the
same as the aforementioned matrices, so that the spectral signature (i.e., Craig’s belief [24], etc.) cannot
be fully explored. Different from a matrix, the rank of a tensor is determined by a non-deterministic
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polynomial (NP) problem. In summary, the fusion methods based on tensor decomposition usually
suffer from the uncertainty of accurate rank and the non-uniqueness of decomposition [18], especially
when the remote sensing images are contaminated by serious noise. Besides the tensor-based methods,
Craig’s belief in hyperspectral unmixing can effectively solve the problem of data structure loss.

Another popular fusion approach is based on spectral unmixing, whose representative work is
known as coupled non-negative matrix factorization (CNMF) [25]. According to the observation model,
CNMF also amounts to an ill-posed inverse problem that can usually be solved by regularization
methods. Different from the tensor-based approach, the matrix decomposition-based algorithm (called
matrixing method) requires reshaping the cubic data into a two-dimensional form, resulting in the
loss of three-dimensional structure information. To lower the effect of data dimension reduction,
spatial signature regularizers can be incorporated into the original fusion method, such as spatial
smoothing [26,27] and sparse coding [28,29]. However, the sparsity-promoting regularizer itself may
not be sufficient to yield high-quality fused data [28,30,31]; meanwhile, joint spatial and spectral
regularization can perform well [32,33]. Charis et al. proposed an NMF-based fusion method
with several physical constraints by jointly unmixing the HIS and MSI data into pure reflectance
spectra of the observed materials for hyperspectral super-resolution. A regularized CNMF-based
method was proposed [34] by introducing the volume of signature vectors’ simplex regularizer, yet the
heuristic algorithm did not improve the performance substantially. Lin et al. [32] proposed a convex
optimization-based CNMF based on the sum-of-squared distances (SSD) between all the endmembers,
in which the sparsity and SSD-based regularizers were employed to bring significant improvements in
fusion performance. However, this algorithm was not suitable for a high noise environment, yielding
poor anti-noise performance. A spectral-total-variation image fusion framework was proposed by
Zhao et al. [35], which established a model for decomposing components by tailed α-stable-based
random variable distribution. Yang et al. [36] employed total variation and signature-based
regularization, in which the horizontal and vertical difference matrices were constructed separately for
spatial smoothing. According to Craig’s minimum-volume belief [24], all the pixels should be enclosed
by the minimum-volume simplex, whose vertices are the endmember vectors (or pure pixels). From
the view of unmixing, the minimum-volume belief covers not only spectral signature (i.e., endmember
matrix), but also spatial components (i.e., abundance matrix). Thus, incorporating minimum-volume
belief into the fusion method may achieve regularization on both spectral and spatial signatures, but it
is not enough in a high-noise environment.

To address the ill-posedness of fusion method based on spectral unmixing for hyperspectral
image super-resolution in a low-SNR environment, this article proposed a novel fusion method
based on the spatial-spectral regularization. Our main contributions in this article include the
aspects. First of all, we combine spatial-spectral smoothing with minimum volume belief, and propose
a CNMF-based fusion method by incorporating the regularization of joint spatial-spectral smoothing in
the minimum-volume simplex. Then, the surrogate of the minimum-volume expression, based on the
pure pixel algorithm, is redefined as the form of a matrix-vector product. Next, two difference matrices
are constructed for spatial and spectral smoothing, in which the former performs spatial smoothing
based on vectorial total variation, and the latter handles spectral smoothing of the endmember matrix.
Finally, after complexity reduction via Kronecker operators, an efficient solver is carefully designed
to test the performance of fusion methods. The experimental results suggest that the proposed
method performs better than state-of-the-art methods, and verifies its effectiveness for hyperspectral
image enhancement.

The remainder of this paper is organized as follows. Section 2 presents signal models and
problem formulation by incorporating the regularizers. Section 3 proposes ADMM-based data fusion
algorithms. Section 4 evaluates the performance of fusion methods. Section 5 draws a conclusion and
suggests the future research. In addition, there are some key notations summarized in Table 1.
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Table 1. Notations.

Notations Explanations

R, Rn, Rm×n Set of real number, n-vector, m× n matrices
R+, Rn

+, Rm×n
+ Set of non-negative real number, n-vector, m× n matrices

‖·‖F Frobenius-norm
0, 1 and I All-zero vector, all-one vector, identity matrix

e(m)
i ith m-dimensional unit vector

conv(S) Convex hull of the set S
vec(X) Vector formed by stacking the columns of the matrix X
⊗ Kronecker product
[·]+ Orthogonal projection onto the non-negative orthant
� Component-wise inequality operation

Z̄(3) Mode-n product of Z̄

2. Signal Models and Problem Formulation

Let Z̄ ∈ RW×H×M and Z ∈ RM×L represent the cube and matrix forms of hyperspectral data
respectively, in which M is the number of spectral bands and L = W × H is the spatial resolution
for each band. According to the tensor theory, the relationship of Z̄ and Z satisfies Z , Z̄(3),
where Z̄(3) denotes mode-n (i.e., n = 3) product [18,23]. So, we can handle the data matrix Z in
the following sessions.

2.1. Signal Models

Based on linear mixed model (LMM) shown in Figure 1 , the hyperspectral data Z can be factorized
into the product of two matrices [2], i.e.,

Z = AS, (1)

where A � 0M×N is the endmember signature matrix containing N endmembers; S � 0N×L is
the abundance matrix containing the fractions of endmembers for each pixel [37]. Besides the
non-negativity condition, S also satisfies the sum-to-one constraint 1T

NS = 1T
L ; that is, the sum of

the abundance of substances in each pixel is equal to 1. However, the L1-norm of S is equal to
a constant when S is sparse, which makes the sum-to-one constraint unnecessary. Furthermore,
according to observation model, the desired data Z can also be degraded respectively spatially and
spectrally to yield the observed hyperspectral data Yh ∈ RM×Lh and multispectral data Ym ∈ RMm×L,
where Lh denotes the number of pixels in Yh and Mm represents the number of spectral bands in Ym.

Piecewise Spectral Smoothing

Yh[ ] Yh[ ]

Yh[ ] Yh[ ]

r

 Downsampling

 Horizontal Smoothing

 Vertical 
 Smoothing

{

Figure 1. Diagram of LMM and spatial degradation matrix G with the parameter g ∈ R25 (r = 5).
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Combining LMM with the observation model, we have

Yh = ZG + Eh = ASG + Eh, (2)

Ym = FZ + Em = FAS + Em, (3)

where Eh and Em are the residuals of observed HSI and MSI data, respectively. The matrix F ∈ RMm×M,
constructed by the uniform spectral response of two observed sensors, downsamples the hyperspectral
bands of Z to yield the multispectral data Ym. The matrix G = ILh ⊗ g ∈ RL×Lh , derived from a point
spread function, degrades the desired data Z to obtain the observed hyperspectral data Yh [25,36,38].
Using a Guassian kernel with a blurring factor of r ,

√
L/Lh shown in Figure 1, G is defined as

G = ILh ⊗ g ∈ RL×Lh , (4)

where g ∈ Rr2
is a Gaussian kernel vector. In this article, F and G can be estimated from the datasets

for the fusion method [25,32].
From Equations (2) and (3), the objective function of original CNMF proposed in [25] is formulated

as two coupled data fidelity terms; i.e.,

min
A,S

C(A, S) , ‖Yh −ASG‖2
F + ‖Ym − FAS‖2

F

s.t. A � 0M×N , S � 0N×L.
(5)

As an ill-posed inverse problem, the original CNMF is also susceptible to noise and the loss of
data structure information caused by the matrixing method.

2.2. Problem Formulation

According to Craig’s belief, all the pixels should be enclosed in the minimum-volume
simplex [24,39]. On this basis, this article imposes the regularization of joint spatial-spectral smoothing,
as well as spatial sparsity, on the original CNMF to redefine the regularized fusion problem. Therefore,
we get

min
A,S

1
2

C(A, S) + λa φa(A) + λe φe(A) + λh φh(S) + λs φs(S)

s.t. A � 0M×N , S � 0N×L

(6)

where λa, λe, λh and λs are the regularization parameters; φa(A) is the minimum-volume regularizer;
φe(A) and φh(S) are the spatial and spectral smoothing regularizers, respectively; and φs(S) is
to promote the sparsity of abundance matrix. These regularization expressions are defined as
follows [40–42]:

φa(A) ,
1
2

N

∑
j=1
‖aj − µ̄y‖2

2, (7a)

φe(A) ,
N

∑
j=1

∑
{m,n}∈γ

|aj(m)− aj(n)|, (7b)

φs(S) , ‖S‖1,1, (7c)

φh(S) , ∑
{m,n}∈ε

‖sm − sn‖1, (7d)

where ε is the set of horizontal and vertical neighbors in the image; γ denotes the set of vertical
neighbors in endmember matrix; aj(m) is the mth component of jth endmember aj; and ‖S‖1,1 =

∑L
j=1‖sj‖1 (sj denotes the jth column of S ).
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2.3. Regularization Reformulation

In hyperspectral unmixing, the well-known Craig’s belief based on convex geometry is that each
hyperspectral pixel should lie in the simplex spanned by the ground-truth endmembers {a1, . . . , aN};
i.e., containing only one underlying material. The Craig’s minimum-volume simplex covers both
spectral signature of endmembers and spatial information carried by enclosed pixels (i.e., fractional
abundance ). Thus, the minimum-volume belief is well-suited as a regularizer of the original CNMF
to enhance hyperspectral image resolution. Because of the high computations of minimum volume,
there are some expressions that have been proposed as the surrogates of minimum volume. This article
focuses on the term ∑N

j=1‖aj − µ̄‖2
2, which makes each column (i.e., each endmember) of A as close to

µ̄ as possible, as shown in Figure 2. From this figure, we can observe that µ̄ is the geometric center
of the minimum-volume simplex, i.e., µ̄ = 1

N ∑N
i=1 ai, in which the red triangle is the optimal simplex

and k is the number of iterations. For the convenience of calculation, ∑N
j=1‖aj − 1

N ∑N
i=1 ai‖2

2 can be
reformulated into the form of a matrix-vector product. Therefore, using the relationship between the
jth (or ith) column aj (or ai) and the endmember vector a , vec(A), a matrix P is constructed to make
the equation true as

φa(A) =
1
2

N

∑
j=1
‖aj −

1
N

N

∑
i=1

ai‖2
2 =

1
2
‖Pa‖2

2, (8)

where P = IMN − 1
N (1N ⊗ IM).

a2

a3

a1

k-1

k+1

k

µ

Figure 2. Schematic diagram of the minimum-volume simplex with three vertices or endmembers a1,
a2 and a3.

The endmember signature describes the spectral reflectance of a substance, which seems to be an
intrinsic identity. Regardless of the bands absorbed by vapor, the spectral signature of each endmember
is theoretically a smooth curve in Figure 3. It would be piecewise smooth if some bands were to be
removed or absorbed by vapor. Equation (7b) aims at smoothing the signature curve, but it is in scalar
form. Therefore, we establish a vertical difference matrix D̄e using a Toeplitz matrix to promote the
smoothing of endmember signature, and then Equation (7b) can be converted as the vertical total
variation ‖D̄eA‖1,1. When the matrix A is vectorized as a, (7b) can be reformulated as

φe(A) =
N

∑
j=1

∑
{m,n}∈γ

|aj(m)− aj(n)| = ‖Dea‖1 (9)

where De = IM ⊗ D̄e is the vector-based difference matrix.
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Figure 3. The curves of endmember signature, in which the curve of each color represents
an endmember or substance.

The regularizer that we use, ∑{m,n}∈ε‖sm− sn‖1, known as anisotropic total variation, is employed
to promote image piecewise smoothing and further reduce the impact of structure information loss.
Furthermore, anisotropy total variation can be reshaped into a vector-based form, which has two
meanings: one is the vectorization of the abundance matrix for separately yielding the horizontal and
vertical difference matrices, and the other is the combination of two difference matrices into a block
vector. Let S̄ be a frontal slice (i.e., single-band image data) of hyperspectral data cube Z̄ with the size
of Ly × Lx pixels (i.e., Ly = Lx =

√
L). The vertical and horizontal differences of S̄ can be presented as

RLS̄ and S̄RT
L , respectively, where RL is the first-order difference matrix [42], defined as

RL(m, n) ,


1, n = m + 1,
−1, n = m,
0, otherwise.

when the spatial data S̄ is reformed as a vector via vector-matrix operator, the vertical and horizontal
difference matrices are presented as Dv = IL ⊗ RL and Dh = RL ⊗ IL, respectively. Then, these two
difference matrices are incorporated into a block vector H̄ = [Dv; Dh]. With due consideration of N
endmembers aforementioned, the ultimate vector-based difference matrix is constructed as H = H̄⊗ IN .
The regularizer ∑{m,n}∈ε‖sm − sn‖1 in (7d) can be reformulated into the form of a matrix-vector
product as

φh(S) = ∑
{m,n}∈ε

‖sm − sn‖1 = ‖Hs‖1, (10)

where s , vec(S) ∈ RNL. In addition, the expression of ‖S‖1,1 can be converted directly to ‖s‖1.
Furthermore, One can observe that (6) is a bi-convex problem, that is, it is convex when we fix

either A or S alone. Alternating optimization (AO) is widely used to solve the bi-convex problem.

3. Proposed Fusion Algorithm

In this section, we incorporate the regularization of joint spatial-spectral smoothing in a minimum
volume simplex into the CNMF framework, and propose the CNMF-based fusion method (termed
JSMV-CNMF) to solve the problem (6).
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3.1. JSMV-CNMF Algorithm via AO

To reconstruct the high-spatial-resolution HSIs by calculating A and S, the JSMV-CNMF algorithm
is proposed via AO, as shown in Algorithm 1. The JSMV-CNMF iteratively updates the following two
convex subproblems until convergence,

Sk+1 ∈ arg min
S�0N×L

1
2

C(Ak, S) + λhφh(S) + λsφs(S), (11)

Ak+1 ∈ arg min
A�0M×N

1
2

C(A, Sk) + λaφa(A) + λeφe(A), (12)

where k is the iteration number of the outer loop. Owing to the iterative order of S prior to A,
an initial value of A0 can be determined by successive projection algorithm [43,44]. To solve these
subproblems (11) and (12), the alternating direction method of multipliers (ADMM) [45] is utilized to
design an efficient solver in the following subsections.

Algorithm 1 JSMV-CNMF algorithm for solving (6).

1: Input: Yh, Ym, F and G.
2: Output Z = AkSk.
3: Initialize A0.
4: k = 0.
5: while the stopping rule of the outer loop is not met do
6: update Sk+1 by (11);
7: update Ak+1 by (12);
8: k := k + 1;
9: end while.

3.2. Abundance Estimation via ADMM

Using ADMM and Kronecker operators, we can integrate two Frobenius-norm terms into
an `2-norm term by vectorizing the variable S. In (11), the bottleneck lies in the heavy complexities of
B1 and H. By splitting the primal variables into several separable components via equality constraints,
we rewrite (11) as

min
s,u,v,x

1
2
‖B1s− y‖2

2 + λh‖v‖1 + λs‖x‖1 + I+(x)

s.t. s = u, (13)

v = Hu,

s = x,

where B1 , [(GT ⊗ Ak)T , (IL ⊗ FAk)T ]T ∈ R(MLh+LMm)×NL; y , [vec(Yh)
T , vec(Ym)T ]T ∈

RMLh+LMm ; and I+(x) is a indicator function, defined as

I+(x) ,

{
0, if x � 0MN ,
∞, otherwise.

In addition, the equation constraint s = u is introduced to separate the s and v using the variable u
for reducing the complexity of closed-form solutions. Then, we can obtain the augmented Lagrangian
of (13) by

L(s, u, v, x, hi) =
1
2
‖B1s− y‖2

2 + λh‖v‖1 + λs‖x‖1 + I+(x) + h1
T(s− u)+

η

2
‖s− u‖2

2

+ h2
T(v−Hu)+

η

2
‖v−Hu‖2

2 + h3
T(s− x)+

η

2
‖s− x‖2

2, (14)
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where hi(i = 1, · · · , 3) are called dual variables, and η is the weight. Via ADMM, these primal and
dual variables can be iteratively updated in step with provable convergence [46] by

sj+1 ∈ arg min
s∈RNL

L(s, uj, xj, h1
j, h3

j), (15a)

uj+1 ∈ arg min
u∈RNL

L(sj+1, u, vj, h1
j, h2

j), (15b)

vj+1 ∈ arg min
v∈R2N

√
L(
√

L−1)
L(uj+1, v, h2

j), (15c)

xj+1 ∈ arg min
x∈RNL

+

L(sj+1, x, h3
j), (15d)

h1
j+1 = h1

j + η(sj+1 − uj+1), (15e)

h2
j+1 = h2

j + η(vj+1 −Huj+1), (15f)

h3
j+1 = h3

j + η(sj+1 − xj+1), (15g)

where j denotes the iteration number of inner loop. Combined with the expression (14),
subproblems (15a) · · · (15d) can easily converted into the scaled forms as

sj+1 ∈ arg min
s∈RNL

1
2
‖B1s− y‖2

2 +
η

2
‖s− uj + h̃1

j‖2
2 +

η

2
‖s− xj + h̃3

j‖2
2, (16a)

uj+1 ∈ arg min
u∈RNL

η

2
‖sj+1 − u + h̃1

j‖2
2 +

η

2
‖vj −Dvu + h̃2

j‖2
2, (16b)

vj+1 ∈ arg min
v∈R2N

√
L(
√

L−1)
λh‖v‖1 +

η

2
‖v−Huj+1 + h̃2

j‖2
2, (16c)

xj+1 ∈ arg min
x∈RNL

+

λs‖x‖1 +
η

2
‖sj+1 − x + h̃3

j‖2
2, (16d)

where h̃i , hi/η, (i = 1, 2, 3) are the scaled dual variables. Since s is the first iteration
variable, the initial values of other variables can be assigned to zeros or warm start [45],

including u0, x0, v0 and h̃i
0
.

We can observe that (16a) and (16b) are both unconstrained quadratic problems; (16c) is
a generalized Lasso problem [45]; and (16d) can be solved by KKT optimal condition [32,42], and then
projected to a non-negative orthantRNL

+ . Thus, we can obtain the closed-form solutions as

sj+1 = (BT
1 B1 + 2η INL)

−1(BT
1 y + η uj − h1

j + η xj − h3
j), (17a)

uj+1 =(HTH + INL)
−1[HT(vj + h̃2

j
) + sj+1 + h̃1

j
], (17b)

vj+1 =shrink(Huj+1 − h̃2
j
, λh/η), (17c)

xj+1 =
[
sj+1 + h̃3

j − (λs/η)1NL

]
+

, (17d)

where shrink(s, γ) = sgn(s)max(|s| − γ, 0). The computation of (17a) is O
(

Lh(NL)2ξ
)
, where ξ ,

max{M, Mmr2, Nr2}. It is obvious that the computation of BT
1 B1 is the bottleneck when the value

of L is large. To decrease the computation burden, we define B̄1 , [(gT ⊗Ak)T , (Ir2 ⊗ FAk)T ]T ∈
R(M+r2 Mm)×Nr2

, BT
1 y , vec((gT ⊗ Ak)TYh) + vec((FAk)TYm) and ṽ , BT

1 y + η uj − hj
1 + xj − hj

3),
and then convert ṽ into a matrix Ṽ ∈ RNr2×Lh . Using structure matrix (4) and Kronecker operators,
the optimized solution of (17a) is rewritten [32] as

sj+1 = vec((B̄T
1 B̄1 + 2η INr2)−1Ṽ), (18)

whose computation takes the complexity of O(((Nr2)2 + NL)ξ), much lower than that of (17a).
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In the same way, to reduce the high complexity ofO
(
(NL)3) in (17b), we define ũ1 , vj

1 + h̃2
j
and

ũ2 , sj+1 + h̃1
j
, and then reshape these two vectors into the matrices Ũ1 and Ũ2, respectively. By the

structure of difference matrix H, (17b) is simplified as

uj+1 = vec({[(R̄T
Ly

R̄Ly + η ILy)
−1R̄T

Ly
]⊗ IN}Ũ1) + vec([(R̄T

Ly
R̄Ly + η ILy)

−1 ⊗ IN ]Ũ2), (19)

which involves the computation of O
(

N2L
√

L
)

, much less than (17b). In summary, in order to obtain
the abundance matrix S by alternatively iterating the above original and dual variables, the resulting
ADMM-based algorithm for solving (11) is presented in Algorithm 2.

Algorithm 2 Solving (11) via ADMM

1: Input: N, Yh, Ym, F, G and Ak.
2: Output Sk+1.
3: Initialize u0, z0, x0,v0 and h0

i (i = 1, . . . , 3) with 0 or warm start.
4: j = 0
5: while the predefined stopping rule of the inner loop is not met do
6: update sj+1 by (18);
7: update uj+1 by (19);
8: update vj+1 by (17c);
9: update xj+1 by (17d);

10: update h̃i
j+1

= hi
j+1/η (i = 1, 2, 3) by (15e) · · · (15g), respectively;

11: j := j + 1;
12: end while.

3.3. Endmember Estimation via ADMM

Similar to the above process of abundance estimation, we reformulate (12) in such a vector-based
form that the primal variable can also be divided into several separable elements with equality
constraints. To be exact, we rewrite (12) as

min
a,b,w,d

1
2
‖B2 a− y‖2

2 +
λa

2
‖Pa‖2

2 + λe‖w‖1 + I+(d)

s.t. a = b (20)

w = Deb

a = d

where B2 , [((Sk+1G)T ⊗ IM)T , ((Sk+1)T ⊗ F)T ]T ∈ R(MLh+LMm)×MN and a = vec(A) ∈ RMN
+ .

After splitting the variables based on the augmented Lagrangian function, we can derive the
closed-form solutions as

aj+1 =(BT
2 B2 + λa PTP + 2η IMN)

−1(BT
2 y + η bj − fj

1 + η dj − fj
3), (21a)

bj+1 =(DT
e De + IMN)

−1[DT
e (w

j + f2
j) + aj+1 + f1

j], (21b)

wj+1 =shrink(Debj+1 − f2
j/η, λe/η), (21c)

dj+1 =
[
aj+1 + fj

1/η
]
+

, (21d)

fj+1
1 =fj

1 + η(aj+1 − bj+1), (21e)

fj+1
2 =fj

2 + η(wj+1 −Debj+1), (21f)

fj+1
3 =fj

3 + η(aj+1 − dj+1). (21g)
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It is not difficult to find that (21a) is time-consuming with the computational complexity of
O(N4M3 + (NM)2ξ ′), where ξ ′ , max {MLh, MmL}. Thus, using the structure of B2, (21a) can be
simplified [32] as

aj+1 ={((Sk+1G)(Sk+1G)T)⊗ IM + λa PTP + 2η IMN + (Sk+1(Sk+1)T)⊗ FTF}−1

(BT
2 y + η bj − fj

1 + η dj − fj
3), (22)

where BT
2 y = vec(Yh(Sk+1G)T) + vec(FTYm(Sk+1)T). The computational complexity of (22) is

computed by O
(

N4M3 + N2L
)
, which is much lower than that of (21a). By the equation De =

IN ⊗ D̄e, (21b) can conveniently simplified as

bj+1 = vec((D̄T
e D̄e + η IM)−1D̄T

e Q1) + vec((D̄T
e D̄e + η IM)−1Q2), (23)

Put simply, aiming at the endmember matrix A, the ADMM-based algorithm for solving (12) is
given in Algorithm 3.

Algorithm 3 Solving (12) via ADMM

1: Input: N, Yh, Ym, F, G, and Sk+1.
2: Output Ak+1.
3: Initialize b0,w0,d0 and f0

i (i = 1, 2, 3) with 0MN or warm start.
4: j = 0
5: while the predefined stopping rule of the inner loop is not met do
6: update aj+1 by (22);
7: update bj+1 by (23);
8: update wj+1 by (21c);
9: update dj+1 by (21d);

10: update fj+1
i by (21e)–(21g), respectively;

11: j := j + 1;
12: end while.

4. Experiments and Performance Analysis

In this section, the careful design of some experimental tests is described to estimate the
performance of the proposed JSMV-CNMF algorithm.

4.1. Experimental Methodology

Generally speaking, Wald’s protocol is widely used for quality assessment of fused
images [5,25,47], in which the real dataset is thought of as the reference image Z. According to
the Guassian observed model, the observed HSI Yh and MSI Ym, can be obtained by spatial and
spectral degradation of high-resolution image Z, respectively. As shown in Figure 4, the fusion method
is designed to simulate the degraded images Yh and Ym for the fused image Ẑ. This flowchart can
solve two difficulties in image fusion, including the registration of observed images and the acquisition
of the ground truth for performance evaluation.

For comparison, four state-of-the-art methods were taken as the baseline, including the original
CNMF [25], BSR [16], HySure [15] and tensor-based CSTF [20]. To drop the effect of randomness,
the performances in the experiments were the means of multiple measurements. All the methods
were tested on a laptop equipped with Intel CPU Core-3210 with 2.5 GHz speed and 16 GB RAM,
using Mathworks Matlab R2015a.
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Ẑ

Reference Image 

        Z=AS

Downsampling
G F

Observed HSI 

     Yh=ASG

Observed MSI

     Ym=FAS

  Data Fusion Method

Fused Image    

Quality Evaluation

Figure 4. Flowchart of Wald’s protocol.

4.2. Performance Metrics

In order to quantitatively estimate the similarity between Ẑ and Z, some widely used performance
metrics were adopted [5,16,25,32], including reconstruction signal-to-noise ratio (RSNR), root mean
squared error (RMSE), spectral angle mapper (SAM), erreur relative globale adimensionnelle de
synth è se (ERGAS), degree of distortion (DD) and structural similarity index for measuring image
quality (SSIM), as listed below.

• RSNR evaluates the spatial quality, defined as

RSNR = 10 log10

(
‖Z‖2

F

‖Ẑ− Z‖2
F

)
.

• RMSE evaluates the error of global quality by

RMSE =

√
1

ML
‖Ẑ− Z‖2

F. (24)

• SAM evaluates the spectral distortion, defined as

SAM =
1
L

L

∑
n=1

arccos
(

(ẑ[n])Tz[n]
‖ẑ[n]‖2 · ‖z[n]‖2

)

where ẑ[n] denotes the nth column of Ẑ.
• ERGAS evaluates the relative dimensionless global error, defined as

ERGAS =
100

r

√√√√ 1
M

M

∑
m=1

RMSE2
m

µ2
Z(m)

,

where r is the blurring factor, µZ(m) is the mean of the mth row vector Z(m) and RMSEm is the
RMSE of the mth band image.
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• DD is an indicator to estimate the spectral quality, defined as

DD =
1

ML
‖vec(Ẑ)− vec(Z)‖2

1.

• SSIM is to measure the structure similarity between the reconstructed and reference images,
defined in [48].

Generally, the higher the value of RSNR and SSIM, the better the evaluated performance.
However, the lower the values of DD, RMSE, SAM and ERGAS, the less distortion. Besides theoretical
complexity in order of magnitude (OM), the running time T (in seconds) is regarded as the metric of
computational complexity for the fusion methods, while per-iteration running time (PRT, in seconds)
is to evaluate a single time complexity of a simplified solution.

4.3. Datasets

In this study, we took two widely-used datasets acquired separately by different hyperspectral
sensors to test the performance of fusion methods. The first dataset was collected over the area of
Pavia University, northern Italy [49], by the reflective optics system imaging spectrometer (ROSIS)
sensor, with a total of 103 spectral bands from 430 to 860 nm (corresponding to Landsat TM bands
1–4). The second dataset was captured by an airborne visible/infrared imaging spectrometer (AVIRIS)
sensor over Moffett Field [50], CA, with which a total of 183 bands (ranging from 400 to 2500 nm)
approximate to the Landsat TM bands 1–5 and 7. Therefore, we can separately construct the spectral
response transform matrices F1 ∈ R4×103 and F2 ∈ R6×183, which spectrally degrade the reference
data Z to generate their respective observed MSI data Ym [16,25,32,36]. Furthermore, we selected the
sub-scene of size L = 160× 160 as the target region for each dataset [16,32,36], as shown in the top row
of Figure 5. With a Gaussian kernel of size r = 5 and variance 2 [25,51], we were able to establish the
matrix G ∈ R25600×1024, which spatially degrades the reference data Z to obtain the observed HSI data
Yh with the size of Lh = 32× 32 pixels [38,52,53], which are depicted in the bottom row of Figure 5.

( a ) ( b ) 

Figure 5. Display of (top row) the reference images and (bottom row) observed hyperspectral images
(HSIs) for the two datasets; i.e., (a) Pavia University and (b) Moffett.

4.4. Parameter Settings

This article focuses on joint spatial-spectral smoothing in a minimum-volume simplex for
hyperspectral image super-resolution, which is performed by incorporating four regularizers with the
corresponding weights into the original CNMF method. The parameters, including λa, λe, λh and λs

are to balance data fidelity terms and regularizers [32,51], which are relevant to the noise powers
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of HSIs and MSIs. For simplicity, all the weights in this article were set to the same value 0.001,
i.e., λa = λe = λh = λs = 0.001, although the settings of these parameters deserve further study.
The convergence of the proposed algorithm can be guaranteed by the threshold value and the iteration
number of inner and outer loops. The stopping rule of the outer loop is that the relative difference
threshold value between the successive updates of the objective function F0(A, S) is set to 0.001 [51];
that is,

F0(Ak+1, Sk+1)− F0(Ak, Sk)

F0(Ak, Sk)
≤ 0.001. (25)

Moreover, the experimental tests show that Algorithm 3 generally converges within 15 steps,
which is faster than Algorithm 2 in iterating 50 steps. Considering the relation between inner
and outer loops, the inner iterations need not run exhaustively to reach the stopping condition
of (25), because varying the number of iterations will not have much effect on the convergence
performance [51]. Thus, the iteration numbers of two ADMM-based inner loops are set to 30 [51],
respectively. Therefore, the predefined stopping rule of two inner loops is that each algorithm run
until it converges or iterates 30 times. That is, Algorithms 2 and 3 will stop if one of the convergence
condition or the number of iterations is satisfied. Assume that the observed data Ym and Yh are
corrupted by additive Gaussian white noise with three different sets of SNRs, in which the first set is
40 and 35 dB, the second set is 30 and 30 dB, and the third set is 25 and 20 dB.

The parameter N denotes the number of endmembers, which can be estimated by virtual
dimensionality algorithm [54,55] as four and 10 for datasets, respectively. The spectral-unmixing-based
CNMF has a property that the performance can remain stable as long as the number of endmembers
is set larger than the ground truth [25]. To verify the robustness of N, the performance of two
CNMF-based algorithms is estimated with the change of N, as shown in Figure 6. One can observe
that the proposed JSMV-CNMF performs better than the original CNMF methods. When the value of
N is very small, the performances of both algorithms decrease to different degrees. However, with the
increase in N, the performances of two algorithms tend to be stable, although there are slight
fluctuations. But setting N > 10 does not significantly improve the performance of the algorithm,
which indicates that the parameter is robust. Without loss of generality, the number of endmembers
N is set to 10 in the experiments. With the above parameter settings, the reconstructed images by
the proposed JSMV-CNMF and the baseline methods for two real datasets are displayed in Figure 7.
From the figure, one can see that the reconstructed images are very similar to the reference image in
Figure 5 for each dataset, but the spatial resolution is much higher than that of the observed image.
Although the performance differences of these fusion algorithms are difficult to distinguish visually in
the reconstructed images, they can be identified from the tables and curves.
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Figure 6. The performance curves of CNMF (�) and the proposed JSMV-CNMF (◦), in terms of (a)
reconstruction signal-to-noise ratio (RSNR) and (b) spectral angle mapper (SAM), with respect to the
number of endmembers N for the two datasets; i.e., (top row) Pavia University and (bottom row)
Moffett datasets, respectively.
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Figure 7. The reconstructed images by such fusion methods as (a) CNMF, (b) BSR, (c) HySure, (d) CSTF
and (e) JSMV-CNMF for (top row) Pavia University and (bottom row) Moffett datasets, respectively.

4.5. Performance Evaluation

The regularizers based on total variation are used to achieve joint spatial-spectral smoothing
of reconstructed images and improve the anti-noise performance of the fusion method. To evaluate
the anti-noise performance, the test results of three sets of SNRs are summarized in Tables 2 and 3
for two datasets, in which the boldface numbers denote the best performance (i.e., the highest
RSNR/SSIM, or the lowest DD/SAM/RMSE/ERGAS). From the tables, we can observe that the
proposed JSMV-CNMF outperforms the baseline methods for two datasets in three noise environments.
The performance of the original CNMF algorithm decreases rapidly with the increase in noise, while the
proposed JSMV-CNMF can significantly improve its performance. Especially, the results of the
proposed JSMV-CNMF at low SNRs provide improvements of 43% on RMSE and 46% on spectral
quality over the original CNMF for two datasets, which must be caused by the regularization used in
this paper. For the Pavia University dataset in Table 2, the performance of the CSTF is second only
to that of the proposed JSMV-CNMF and almost better than that of other baseline methods. For the
Moffett dataset in Table 3, the BSR method achieves the second best performance in the low-SNR
environment with the SNR set of 25 and 20 dB. This fully shows the validity of the regularization in
the proposed method.

Table 2. Performance comparison of fusion algorithms for Pavia University dataset (the boldface
numbers denote the best performance).

Methods CNMF BSR HySure CSTF Proposed Ideal

SNR(Ym) = 40 dB
SNR(Yh) = 35 dB

DD 62.15 94.72 96.51 61.15 45.76 0
RSNR(dB) 25.78 22.04 21.97 26.23 27.61 +∞

RMSE 96.38 148.24 149.49 91.52 78.11 0
SAM 2.55 3.16 4.04 2.90 2.52 0

ERGAS 1.38 2.07 2.10 1.30 1.13 0
SSIM 0.97 0.96 0.96 0.97 0.98 1

SNR(Ym) = 30 dB
SNR(Yh) = 30 dB

DD 80.80 102.41 110.38 72.13 63.59 0
RSNR(dB) 24.20 21.74 21.10 25.31 25.90 +∞

RMSE 115.63 153.56 165.24 101.74 95.05 0
SAM 3.23 3.43 4.42 3.24 3.03 0

ERGAS 1.59 2.13 2.24 1.44 1.35 0
SSIM 0.96 0.95 0.95 0.96 0.97 1

SNR(Ym) = 25 dB
SNR(Yh) = 20 dB

DD 152.02 119.75 138.96 114.90 92.19 0
RSNR(dB) 18.64 20.73 19.36 21.78 23.46 +∞

RMSE 219.22 172.35 201.77 152.74 125.83 0
SAM 7.23 3.95 5.49 5.13 3.93 0

ERGAS 2.59 2.37 2.63 2.15 1.69 0
SSIM 0.87 0.93 0.91 0.91 0.94 1
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Table 3. Performance comparison of fusion algorithms for Moffett dataset (the boldface numbers
denote the best performance).

Methods CNMF BSR HySure CSTF Proposed Ideal

SNR(Ym) = 40 dB
SNR(Yh) = 35 dB

DD 71.44 94.91 98.70 73.37 42.91 0
RSNR(dB) 25.38 23.25 22.86 26.60 29.55 +∞

RMSE 111.49 142.55 149.01 103.12 68.98 0
SAM 1.76 2.06 3.23 2.44 1.65 0

ERGAS 1.18 1.53 1.55 1.05 0.80 0
SSIM 0.98 0.97 0.97 0.972 0.99 1

SNR(Ym) = 30 dB
SNR(Yh) = 30 dB

DD 88.56 100.92 107.84 80.80 60.72 0
RSNR(dB) 24.23 22.93 22.38 25.58 27.63 +∞

RMSE 127.28 147.76 157.54 108.91 86.01 0
SAM 2.37 2.38 3.44 2.62 2.04 0

ERGAS 1.35 1.58 1.64 1.16 0.92 0
SSIM 0.97 0.96 0.96 0.97 0.98 1

SNR(Ym) = 25 dB
SNR(Yh) = 20 dB

DD 150.43 112.29 128.10 131.06 91.07 0
RSNR(dB) 20.18 22.24 21.31 21.64 24.66 +∞

RMSE 202.99 159.99 178.24 171.45 121.16 0
SAM 5.02 2.76 3.98 4.55 2.73 0

ERGAS 2.07 1.71 1.86 1.89 1.28 0
SSIM 0.91 0.95 0.94 0.92 0.96 1

To further study the performance of the methods in terms of spectral bands (wavelength), we
drew the RSNR and RMSE curves w.r.t. wavelength in the environment, wherein the set of SNRs
is 25 and 20 dB for two datasets in Figure 8. One can see that the proposed JSMV-CNMF yields
better performance than all the baseline methods for the Pavia University and Moffett datasets,
except for a small range of wavelengths, i.e., 750 to 850 nm, in the Pavia University dataset. In addition,
from the perspective of smoothness, the curves of the JSMV-CNMF and BSR algorithms are relatively
smooth, owing to good anti-noise performance, while the other three methods fluctuate violently
because of their sensitivity to noise. In summary, the JSMV-CNMF algorithm can significantly
improve the performance of CNMF, which fully verifies the effectiveness of the joint spatial-spectral
smoothing regularization.

In experimental simulations, one may find that the iterations of sj+1 and uj+1 often run out of
memory in Algorithm 2, and the complexities of aj+1 and bj+1 are relatively high in Algorithm 3.
Therefore, complexity reduction needs to be conducted to address these bottlenecks separately
for two ADMM-based algorithms. As shown in Table 4, compared with the original closed-form
solutions (17a) and (17b), the complexities of the simplified solutions (18) and (19) are reduced by
eight OMs for two datasets. We can see that some variables, i.e., (18) and (19), have the same
theoretical complexity, but their PRTs vary greatly owing to the sparsity and structure of the matrices.
The theoretical complexity of aj+1 is reduced by only one OM between equations (21a) and (22),
but the running time of aj+1 is greatly improved owing to structured matrices. However, in spite of
the complexity decrease of three OMs, the improvement of bj+1 in running time is almost negligible,
given that M and N are far less than L. Without the reduction in complexity described above,
the proposed JSMV-CNMF algorithm would take at least 3000 s. Furthermore, comparing the time
complexity of all methods, the running time is listed in Table 5 for two datasets. One can observe that
the original CNMF algorithm has the best running time for each dataset. The proposed JSMV-CNMF
takes much more running time than the baseline methods, affected by a number of factors, such as
the size of target image, matrix sparsity, convergence accuracy and stopping rules, which still need
further improvement.
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Figure 8. The performance curves of (top row) RSNR and (bottom row) RMSE w.r.t. wavelength
(i.e., spectral bands), including CNMF (black dash-dotted line), BSR (green solid line), HySure (cyan
dashed line), CSTF (blue dotted line) and the proposed JSMV-CNMF (red solid line) for (a) Pavia
University and (b) Moffett datasets, respectively.

Table 4. Complexity comparison of ADMM iterations in the proposed JSMV-CNMF algorithm for two
datasets, in which the non-simplified (including Equations (17a), (17b), (21a) and (21b)) and simplified
solutions (including Equations (18), (19), (22) and (23)) to various variables are compared for two
datasets.

Variable Equation Complexity
Pavia University Moffett

OM PRT (Seconds) OM PRT (Seconds)

sj+1 (17a) O
(

Lh(NL)2ξ
)
. 1016 31.225 1016 57.537

(18) O((N2r4 + NL)ξ) 107 0.024 107 0.028

uj+1 (17b) O
(

N3L3)
)

1016 0.257 1016 0.272
(19) O

(
N2L
√

L
)

108 0.087 108 0.093

aj+1 (21a) O(N4 M3 + (NM)2ξ ′) 1011 27.196 1011 42.635
(22) O

(
N4 M3 + N2L

)
1010 0.023 1010 0.107

bj+1 (21b) O
(

N3 M3) 109 0.009 109 0.013
(23) O

(
M3 + NM2) 106 0.002 106 0.002
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Table 5. Running time (in seconds) comparison of fusion algorithms (the boldface numbers denote the
best performances).

Dataset
Running Time (Seconds)

CNMF BSR HySure CSTF Proposed

Pavia University 6.5 103.2 18.7 19.6 152.9
Moffett 9.2 94.5 17.6 20.6 178.3

5. Conclusions

This article imposes the regularization of joint spatial-spectral smoothing in the minimum-volume
simplex on the original CNMF to propose the JSMV-CNMF fusion method. AO and ADMM algorithms
have been used to carefully design the solvers. Then, complexity reduction was conducted to solve
the bottleneck of heavy computation. To evaluate the performance of the proposed algorithm,
the experimental tests have been conducted based on Wald’s protocol, using two real datasets
collected by different sensors. Then, three different noise conditions were set to test the anti-noise
performance, in which the curves of RSNR and RMSE in the low-SNR environment were drawn to
show the image performance changes of the fused images with the spectral bands (or wavelengths).
Simultaneously, the computational complexities of non-simplified and simplified solutions were
compared, and the running time was computed as the complexity measure of the complete fusion
methods. Experimental results show that the proposed JSMV-CNMF algorithm has outperformed
the state-of-the-art methods, which may not only enhance the spatial resolution of reconstructed
images, but also greatly improve the anti-noise performance of the original CNMF method. At the
same time, it fully verifies the validity of the regularization used in this article. Planned future work
includes (i) further exploring the parameter tuning of the regularization weights; (ii) further studying
the iteration stopping rules for convergence and efficiency; and (iii) investigating the effect of low-rank
A and S on the fusion method, which will improve the performance of the proposed algorithm and
enhance the quality of the reconstructed images.
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